Tu Bao Ho

Tu-Bao Ho

(Hồ Tú Bảo)

Professor, School of Knowledge Science

email: bao@jaist.ac.jp phone&fax:(81)-761-51-1730

Education and Career

B.Tech. degree in Applied Mathematics from Hanoi University of Technology (1978), M.S. and Ph.D. degrees in Computer Science from Pierre and Marie Curie University, Paris (1984, 1987), and Habilitation à diriger des recherches from Paris Dauphine University (1998). Ph.D. candidate (1983-1987) at INRIA (the French National Institute for Research in Computer Science and Control, France), visiting fellow (1992) at Wisconsin-Madison University (USA).

Researcher (since 1979) and Associate Professor (1991) at the Institute of Information Technology, Vietnam Academy of Science and Technology (VAST), Visiting Associate Professor (1993-1997) at the School of Information Science, and Professor (1998) at the School of Knowledge Science (JAIST).

Ho Lab: Machine Learning and Data Mining

Japan Advanced Institute of Science and Technology (JAIST)

JAIST office in Vietnam

Knowledge Discovery Nuggets

Professional Services

  • In the steering committee of PAKDD (Pacific-Asia Conferences on Knowledge Discovery and Data Mining, Chair), ACML (Asian Conference on Machine Learning, Co-Chair ), IEEE RIVF (IEEE Conference on Research, Innovation, and Vision for the Future), PRICAI (Pacific Rim International Conference on Artificial Intelligence, SC member).

  • In the program committee of various international conferences, including: PRICAI'90, PC Co-Chair of PRICAI 2008; ICML'05; ICML'06; PC Vice-Chair of ICDM'06, ICDM'09; PAKDD 2000, PAKDD 2005 (PC co-chair), PAKDD 2006, PAKDD 2007, PAKDD 2008 (Area Chair), PAKDD 2009 (PC co-chair), PAKDD 2010; DS 2005, DS 2006, DS 2007; ECML/PKDD 2005, 2007, 2010; IFSR'05; RIVF 2006, PC-Chair of RIVF 2007, PC Co-Chair of RIVF 2008, General Co-chair RIVF 2009, PC Chair RIVF 2010; AI Nectar Track at the 21st AAAI 2006; SIGKDD'08; CIKM'09; Tutorial Chair of ACML'09; Area Chair ECML/PKDD 2010; ICDM 2011, RIVF 2013, ACML 2013, PAKDD 2014, ACML 2014, ACIS 2014 PAKDD 2015, etc.

  • Co-organizer of some recent conferences:

    IEEE-RIVF Research, Innovation, and Vision for the Future (IEEE-RIVF 2016)

    6th Asian Conference on Machine Learning (ACML2014)

    19th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2015)

  • Research Interests

    Machine Learning

    Machine learning is the study of computer algorithms that improve automatically through experience. It is one of the most exciting areas in computer science that have witnessed tremendous developments in the past few decades. Our work ranges from basic research on various machine learning paradigms to their applications.

    Knowledge Discovery and Data Mining

    This rapidly growing interdisciplinary field merges databases, statistics, machine learning and others in order to extract useful knowledge from data. We are interested in developing scalable methods to deal with different types of complexly structured data, typically temporal, sequential, textual, graphical, and network data. We do applying those methods in solving problems in biomedicine, analysing languages and the Internet.

    Computational science

    Computational science is science about using math and computing to do research in other sciences. We work on modelling, simulation and computation methods using high performance computers. Our current work includes a simulation-based data mining approach to study the water properties in biological systems and learning methods to study pathogenesis and therapy of liver diseases.

    Publications by years (since JAIST)

    Publications by categories (since JAIST)

    Vài bài viết tiếng Việt