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Abstract. Searching for information on the web has attracted many research communities.

Due to the enormous size of the web and low precision of user queries, finding the right

information from the web is the difficult or even impossible task. Clustering, one of the most

the fundamental tools in Granular Computing (GrC), offers an interesting approach to this

problem. By grouping of similar documents, clustering approach facilitates the presentation

of search results in more compact form and enable thematic browsing of the results set.

The main problem of existing web search result (snippet) clustering algorithms is based on

the poor vector representation of snippets. In this paper, we present a method of snippet

representation enrichment based on the rough set theory. We apply the Tolerance Rough Set

(TRS) model for document collection to construct a rough set based search result clustering

algorithm and compared it with other recent methods.

Keywords: rough sets, granular computing, snippet, clustering.

1 Introduction

Granular Computing (GrC) was characterized as a common name of theories, method-

ologies, techniques, and tools that make use of granules (groups, classes or clusters)

in the process of problem solving [2]. From this point of view clustering can be treated

as an information granulation process, which is also the main step of Computing

with Words (CW) approach.

Rough set theory has been introduced by Pawlak [11] as a tool for concept

approximation under uncertainty. The idea is to approximate the concept by two

descriptive sets called lower and upper approximations. The main philosophy of



rough set approach to concept approximation problem is based on minimizing the

difference between upper and lower approximations (also called the boundary region).

This simple, but brilliant idea, leads to many efficient applications of rough sets in

machine learning, data mining and also in granular computing.

The connection between rough set theory and granular computing was examined

by many researchers. In [12] [13] [7] [29] some particular semantics and interpre-

tations of information granules were defined, and some algorithms for constructing

granules were given. Many clustering methods based on rough sets and other com-

putational intelligence techniques were proposed including support vector machine

(SVM) [24], genetic algorithm (GA) [26] [30], modified self-organizing map (SOM)

[28]. The rough set based clustering methods were applied to many real life appli-

cations, e.g., medicine [25], web user clustering [27] [28] and marketing [30].

This paper presents the rough set approach to document clustering and its appli-

cation in search engine technology, particularly, in the web search result clustering

problem. Let us explain the problem more precisely and present its current state of

the art.

Two most popular approaches to facilitate searching for information on the web

are represented by web search engine and web directories. Web search engines 1

allow user to formulate a query, to which it responds using its index to return set

of references to relevant web documents (web pages). Web directories 2 are human-

made collection of references to web documents organized as hierarchical structure

of categories.

Although the performance of search engines is improving every day, searching on

the web can be a tedious and time-consuming task because (1) search engines can

only index a part of the “indexable web”, due to the huge size and highly dynamic

nature of the web, and (2) the user’s “intention behind the search” is not clearly

1 e.g., Altavista (http://www.altavista.com), AllTheWeb (http://www.alltheweb.com),
Google(http://www.google.com), HotBot (http://www.hotbot.com), Lycos (http://www.lycos.com),

2 e.g., Yahoo (http://www.yahoo.com) or Open Directory Project (http://www.dmoz.org)
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expressed by too general, short queries. As the effects of the two above, results

returned by search engine can count from hundreds to hundreds of thousands of

documents.

One approach to manage the large number of results is clustering. The concept

arises from document clustering in Information Retrieval domain: find a grouping for

a set of documents so that documents belonging to the same cluster are similar and

documents belonging to different cluster are dissimilar. Search results clustering thus

can be defined as a process of automatical grouping search results into to thematic

groups. However, in contrast to traditional document clustering, clustering of search

results are done on-the-fly and locally on a limited set of results return from the

search engine. Clustering of search results can help user navigate through large set

of documents more efficiently. By providing concise, accurate description of clusters,

it lets user localizes interesting document faster.

Despite being derived from document clustering, methods for clustering web

search results differ from its ancestors on numerous aspects. Most notably, document

clustering algorithms are designed to works on relatively large collection of full-text

document (or sometimes document abstract). In opposite, the algorithm for web

search results clustering is supposed to works on moderate size (several hundreds

elements) set of text snippets (with length of 10-20 words).

In document clustering, the main emphasis is put on the quality of clusters

and the scalability to large number of documents, as it is usually used to process

the whole document collection (e.g. for document retrieval on clustered collection).

For web search results clustering, apart from delivering good quality clusters, it is

also required to produce meaningful, concise description for cluster. Additionally,

the algorithm must be extremely fast to process results on-line (as post-processing

search results before delivered to the user) and scalability with the increase of user
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requests. (e.g. measures as number of processed requests per specified amount of

time).

Document clustering Web Search result cluster-

ing

Objects full-text documents or

document abstracts

short text snippets

Processing

mode

off-line processing on a

large collection

on-line processing of moderate

size set of snippets

Quality

measure-

ment

cluster quality cluster quality and cluster de-

scription meaningfulness

Computation

require-

ment

scalability with number

of documents

scalability with number of user

requests

The earliest work on clustering results were done by Pedersen, Hearst et al.

on Scather/Gather system [3], followed with application to web documents and

search results by Zamir et al. [23] to create Grouper based on novel algorithm Suffix

Tree Clustering. Inspired by their work, a Carrot framework was created by Weiss

[20] to facilitate research on clustering search results. This has encouraged others

to contribute new clustering algorithms under the Carrot framework like LINGO

[8][10], AHC [22].

In this paper, we proposed an approach to search results clustering based on

Tolerance Rough Set following the work on document clustering of Bao [16, 19].

The main problem that occurs in all mentioned works is based on the fact that

many snippets remain unrelated because of their short representation (see Table

3). Tolerance classes are used to approximate concepts existed in documents and

to enrich the vector representation of snippets. Set of documents sharing similar
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concepts are grouped together to form clusters. Concise, intelligible cluster labels

are next derived from tolerance classes using special heuristic.

2 Rough Sets and Tolerance Rough Set Model

Rough set theory was originally developed [11, 5] as a tool for data analysis and

classification. It has been successfully applied in various tasks, such as feature selec-

tion/extraction, rule synthesis and classification [5]. In this chapter we will present

fundamental concepts of rough sets with illustrative examples. Some extensions of

rough set are described, concentrating on the use of rough set to synthesize approx-

imations of concepts from data.

Consider a non-empty set of objects U called the universe. Suppose we want to

define a concept over universe of objects U . Let us assume that our concept can be

represented as subset X of U . The central point of rough set theory is the notion

of set approximation: any set in U can be approximated by its lower and upper

approximation.

2.1 Generalized approximation spaces

The classical rough set theory is based on equivalence relation that divides the

universe of objects into disjoint classes. By definition, an equivalence relation R ⊆

U × U is required to be reflexive, symmetric, and transitive. Practically, for some

applications, the requirement for equivalent relation has showed to be too strict.

The nature of the concepts in many domains are imprecise and can be overlapped

additionally. For example, let us consider a collection of scientific documents and

keywords describing those documents. It is clear that each document can have several

keywords and a keyword can be associated with many documents. Thus, in the

universe of documents, keywords can form overlapping classes.
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Skowron [17] has introduced a generalized tolerance space by relaxing the relation

R to a tolerance relation, where transitivity property is not required. Formally, the

generalized approximation space is defined as a quadruple A = (U, I, ν, P ), where

– U is a non-empty universe of objects,

– I : U → P(U), where P(U) is a power set of U , is an uncertainty function

satisfying conditions: (1) x ∈ I(x) for x ∈ U , and (2) y ∈ I(x) ⇐⇒ x ∈ I(y)

for any x, y ∈ U . Thus the relation xRy ⇐⇒ y ∈ I(x) is a tolerance relation

and I(x) is a tolerance class of x,

– ν : P(U) × P(U) → [0, 1] is a vague inclusion function. Vague inclusion ν mea-

sures the degree of inclusion between two sets. Vague inclusion must be monotone

with respect to the second argument, i.e., if Y ⊆ Z then ν(X, Y ) ≤ ν(X,Z) for

X, Y, Z ⊆ U .

– P : I(U)→ {0, 1} is a structurality function.

Together with uncertainty function I, vague inclusion function ν defines the

rough membership function for x ∈ U,X ⊆ U by µI,ν(x,X) = ν(I(x), X). Lower

and upper approximations of any X ⊆ U in A, denoted by LA(X) and UA(X), are

respectively defined as

LA(X) = {x ∈ U : P (I(x)) = 1 ∧ ν(I(x), X) = 1}

UA(X) = {x ∈ U : P (I(x)) = 1 ∧ ν(I(x), X) > 0}

With given definition above, generalized approximation spaces can be used in any

application where I, ν and P are appropriately determined.

2.2 Tolerance Rough Set Model

Tolerance Rough Set Model (TRSM) was developed [16, 19] as basis to model doc-

uments and terms in information retrieval, text mining, etc. With its ability to deal
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with vagueness and fuzziness, tolerance rough set seems to be promising tool to

model relations between terms and documents. In many information retrieval prob-

lems, especially in document clustering, defining the similarity relation between

document-document, term-term or term-document is essential. In Vector Space

Model, is has been noticed [19] that a single document is usually represented by

relatively few terms. This results in zero-valued similarities which decreases quality

of clustering. The application of TRSM in document clustering was proposed as

a way to enrich document and cluster representation with the hope of increasing

clustering performance.

The idea is to capture conceptually related index terms into classes. For this

purpose, the tolerance relation R is determined as the co-occurrence of index terms in

all documents from D. The choice of co-occurrence of index terms to define tolerance

relation is motivated by its meaningful interpretation of the semantic relation in

context of IR and its relatively simple and efficient computation.

Let D = {d1, . . . , dN} be a set of documents and T = {t1, . . . , tM} set of index

terms for D. With the adoption of Vector Space Model [1], each document di is

represented by a weight vector [wi1, . . . , wiM ] where wij denoted the weight of term

tj in document di. TRSM is an approximation space R = (T, Iθ, ν, P ) determined

over the set of terms T as follows:

– Uncertain function: The parameterized uncertainty function Iθ is defined as

Iθ(ti) = {tj | fD(ti, tj) ≥ θ} ∪ {ti}

where fD(ti, tj) denotes the number of documents in D that contain both terms ti

and tj. Clearly, the above function satisfies conditions of being reflexive: ti ∈ Iθ(ti)

and symmetric: tj ∈ Iθ(ti) ⇐⇒ ti ∈ Iθ(tj) for any ti, tj ∈ T . Thus, the tolerance
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relation I ⊆ T × T can be defined by means of function Iθ:

tiItj ⇐⇒ tj ∈ Iθ(ti)

where θ is a parameter set by an expert.

The set Iθ(ti) is called the tolerance class of index term ti.

– Vague inclusion function: To measure degree of inclusion of one set in another,

the vague inclusion function is defined as is defined as

ν(X, Y ) =
|X ∩ Y |
|X|

It is clear that this function is monotonous with respect to the second argument.

– Structural function: All tolerance classes of terms are considered as structural

subsets: P (Iθ(ti)) = 1 for all ti ∈ T .

The membership function µ for ti ∈ T , X ⊆ T is then defined as µ(ti, X) =

ν(Iθ(ti), X) = |Iθ(ti)∩X|
|Iθ(ti)|

and the lower and upper approximations of any subsetX ⊆ T

can be determined – with the obtained tolerance R = (T, I, ν, P ) – in the standard

way

LR(X) = {ti ∈ T | ν(Iθ(ti), X) = 1}

UR(X) = {ti ∈ T | ν(Iθ(ti), X) > 0}

2.3 Example

Consider an universe of unique terms extracted from a set of search result snippets

returned from Google search engine for a “famous” query: jaguar which is frequently

used as a test query in information retrieval because it is a polysemy, i.e., word that

has several meanings, especially in the web. The word jaguar can have the following

meanings:
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– jaguar as a cat (panthera onca - http://dspace.dial.pipex.com/agarman/jaguar.htm);

– jaguar as an Jaguar car;

– jaguar was a name for a game console made by Atari - http://www.atari-jaguar64.de,

– it is also a codename for Apple’s newest operating system MacOS X -

http://www.apple.com/macosx.

Tolerance classes are generated for threshold θ = 9. It is interesting to ob-

serve (Table 1) that the generated classes do reveal different meanings of the word

“jaguar”: a cat, a car, a game console, an operating system and some more.

Term Tolerance class Document
frequency

Atari Atari, Jaguar 10
Mac Mac, Jaguar, OS, X 12
onca onca, Jaguar, Panthera 9
Jaguar Atari, Mac, onca, Jaguar, club, Pan-

thera, new, information, OS, site,
Welcome, X, Cars

185

club Jaguar, club 27
Panthera onca, Jaguar, Panthera 9
new Jaguar, new 29
information Jaguar, information 9
OS Mac,Jaguar, OS, X 15
site Jaguar, site 19
Welcome Jaguar, Welcome 21
X Mac, Jaguar, OS, X 14
Cars Jaguar, Cars 24

Table 1. Tolerance classes of terms generated from 200 snippets return by Google
search engine for a query “jaguar” with θ = 9;

In context of Information Retrieval, a tolerance class represents a concept that is

characterized by terms it contains. By varying the threshold θ , one can control the

degree of relatedness of words in tolerance classes (or the preciseness of the concept

represented by a tolerance class).
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3 Applications of TRS Model in Text Mining

One interpretations of the given approximations can be as follows: if we treat X

as an concept described vaguely by index terms it contains, then UR(X) is the set

of concepts that share some semantic meanings with X, while LR(X) is a ”core”

concept of X. Let us mention two basic applications of TRSM in text mining area:

3.1 Enriching document representation:

In standard Vector Space Model, a document is viewed as a bag of words/terms.

This is articulated by assigning, non-zero weight values, in document’s vector, to

terms that occurs in document. With TRSM, the aim is enrich representation of

document by taking into consideration not only terms actually occurring document

but also other related terms with similar meanings. A “richer” representation of

document can be acquired by representing document as set of tolerance classes of

terms it contains. This is achieved by simply representing document with its upper

approximation, i.e. the document di ∈ D is represented by

di 99K UR(di) = {ti ∈ T | ν(Iθ(ti), di) > 0}

In fact, one can apply the enriched representation scheme to any collection of words,

e.g., clusters. Moreover, composition the upper approximation operator several times

can return even more richer representation of a document, i.e.,

di 99K Uk
R(di) = UR(...UR︸ ︷︷ ︸

k times

(di))

The use of upper approximation in similarity calculation to reduce the number of

zero-valued similarities is the main advantage the TRSM-based algorithms claimed

to have over traditional approaches. This makes the situation, in which two docu-

ments have a non-zero similarity although they do not share any terms, possible.
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3.2 Extended weighting scheme:

To assign weight values for document’s vector, the TF*IDF weighting scheme is

used. In order to employ approximations for document, the weighting scheme need

to be extended to handle terms that occurs in document’s upper approximation

but not in the document itself. The extended weighting scheme is defined from the

standard TF*IDF by:

w∗ij =


(1 + log fdi(tj)) log N

fD(tj)
if tj ∈ di

0 if tj /∈ UR(di)

mintk∈di wik
log N

fD(tj)

1+log N
fD(tj)

otherwise

The extension ensures that each terms occurring in upper approximation of di but

not in di, has a weight smaller than the weight of any terms in di. Normalization by

vector’s length is then applied to all document vectors:

wnewij =
w∗ij√∑
tk∈di(w

∗
ij)

2

4 Document clustering algorithms based on TRSM

With the introduction of Tolerance Rough Set Model in [16], several document

clustering algorithms based on that model was also introduced [16, 19]. The main

novelty that TRSM brings into clustering algorithms are the way of representing

clusters and document.

4.1 Cluster representation:

Determining cluster representation is very important factor in partitioning-based

clustering. Frequently, cluster is represented as a mean or median of all documents

it contains. Sometime however, a representation not based on vector is needed as
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Title: EconPapers: Rough sets bankruptcy prediction models
versus auditor
Description: Rough sets bankruptcy prediction models ver-
sus auditor signalling rates. Journal of Forecasting, 2003, vol.
22, issue 8, pages 569-586. Thomas E. McKee. ...

Original vector Enriched vector
Term Weight Term Weight
auditor 0.567 auditor 0.564
bankruptcy 0.4218 bankruptcy 0.4196
signalling 0.2835 signalling 0.282
EconPapers 0.2835 EconPapers 0.282
rates 0.2835 rates 0.282
versus 0.223 versus 0.2218
issue 0.223 issue 0.2218
Journal 0.223 Journal 0.2218
MODEL 0.223 MODEL 0.2218
prediction 0.1772 prediction 0.1762
Vol 0.1709 Vol 0.1699

applications 0.0809
Computing 0.0643

Table 2. Example of snippet and its two vector representations.

cluster description is directly derived from its representation. For example, cluster

can be represented by most ”distinctive” terms from cluster’s documents (e.g. most

frequent terms; or frequent terms in clusters but infrequent globally).

In [19], an approach to construct a polythetic representation is presented. Let Rk

denotes a representative for cluster k. The aim is to construct a set of index terms

Rk representing cluster Ck so that:

– each document di in Ck share some or many terms with Rk

– terms in Rk occurs in most documents in Ck

– terms in Rk needs not to be contained by every document in Ck

The weighting for terms tj in Rk is calculated as an averaged weight of all oc-

currences in documents of Ck:

wkj =

∑
di∈Ck wij

|{di ∈ Ck | tj ∈ di}|
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Let fCk(tJ) be the number of documents in Ck that contain tj. The above as-

sumptions lead to following rules to create cluster representatives:

Algorithm 1 Determine cluster representatives

1: Rk = ∅
2: for all di ∈ Ck and tj ∈ di do
3: if fCk(tj)/|Ck| > σ then
4: Rk = Rk ∪ tj
5: end if
6: end for
7: if di ∈ Ck and di ∩Rk = ∅ then
8: Rk = Rk ∪ argmaxtj∈diwij
9: end if

To the initially empty representative set, terms that occur frequent enough (con-

trolled by threshold σ) in documents within cluster are added. After this phase, for

each document that is not yet ”represented” in representative set (i.e. document

shares no terms with Rk), the strongest/heaviest term from that document is added

to the cluster representatives.

4.2 TRSM-based clustering algorithms:

Both hierarchical and non-hierarchical clustering algorithms were proposed and eval-

uated with standard test collections and have shown some successes [16, 19].

The non-hierarchical document clustering algorithm based on TRSM is a varia-

tion of a K-means clustering algorithm with overlapping clusters. The modifications

introduced are:

– use of document’s upper approximation when calculating document-cluster and

document-document similarity,

– documents are soft-assigned to cluster with associated membership value

– use nearest-neighbor to assign unclassified documents to cluster
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A hierarchical agglomerative clustering algorithm based on TRSM utilizes upper

approximation to calculate cluster similarities in the merging step.

5 Case Study: The TRSM-based Snippets Clustering

Algorithm

The Tolerance Rough set Clustering algorithm is based primarily on the K-means

algorithm presented in [19]. By adapting K-means clustering method, the algorithm

remain relatively quick (which is essential for on-line results post-processing) while

still maintaining good clusters quality. The usage of Tolerance Space and upper

approximation to enrich inter-document and document-cluster relation allows the

algorithm to discover subtle similarities not detected otherwise. As it has been men-

tioned, in search results clustering, the proper labelling of cluster is as important as

cluster contents quality. Since the use of phrases in cluster label has been proven [23,

8] to be more effective than single words, TRC algorithm utilize n-gram of words

(phrases) retrieved from documents inside cluster as candidates for cluster descrip-

tion.

Fig. 1. Phases of TRC algorithm

The TRC algorithm is composed from five phases (depicted in Fig .1):

1. documents preprocessing: In TRC, the following standard preprocessing steps

are performed on snippets: text cleansing, text stemming, and Stop-words elimi-

nation.

2. documents representation building: In this step, two main procedures are

performed: index term selection and term weighting.
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3. tolerance class generation: The goal of the tolerance class generation is to

determine for each term, set of its related terms with regards to the tolerance

relation – the tolerance class.

4. clustering: Applying k-means clustering algorithm based on TRSM.

5. cluster labelling: For labelling cluster we have decided to employs phrases

because of its high descriptive power [23, 8]. We have adapted an algorithm for

n-gram generation from [18] to extract phrases from contents of each cluster.

Most descriptive phrases are chosen to serve as labels for cluster.

The details of the last three steps are described in the following Sections.

While document clustering deals with full-size documents, in clustering search

results we have only set of small-size snippets.

5.1 Preprocessing

It is widely known [4] that preprocessing text data before feeding it into clustering

algorithm is essentials and can have great impact on algorithm performance. In

TRC, several preprocessing steps are performed on snippets:

Text cleaning In this step, text content of snippet is cleaned from unusable terms

such as:

– non-letter characters like , $, #

– HTML-related tags (e.g.= <a>, <p>) and entities (e.g. &amp, &quot)

Stemming A version of Porter’s stemmer [14] is used in this step to remove prefixes

and suffixes, normalizing terms to its root form. This process can greatly reduce

vocabulary of the collection without much semantic loss. The stemmed terms are

linked to its original form, which are preserved to be used in subsequent phases (i.e.

labels generation).
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Stop-words elimination A stop-word itself doesn’t bring any semantic meanings

but in connection with other words can form meaningful phrases. Therefore, terms

that occur in stop-word list are specially marked to be ignored from document index

terms, but not removed (so it can uses in phrases extraction in label generation

phase). Due to special nature of web document, some words like ”web”, ”http”,

”site” appear very frequently, thus a stop-word list adapted to web vocabulary from

[21] is used.

5.2 Document corpus building

As TRC utilizes Vector Space Model for creating document-term matrix representing

documents.

Index terms selection Index terms are selected from all unique stemmed terms

after stop-words elimination and with regards to the following rules:

– digits and terms shorter than 2 characters are ignored

– terms contained in the query are ignored (as we are operating on the top search

results for a query, terms from query will occurs in almost every snippet)

– Minimum Document Frequency filtering - term that occurs in less given threshold

(e..g less than 2 snippets) are ignored as they will doubly contributes to document

characterization

Selected index terms used to characterize documents are enumerated and a document-

term frequency matrix is built. Let N be a number of document – search results

snippets, and M is the number of selected index terms. The document-term fre-

quency matrix is defined as follows:

TF = [tfi,j]N×M
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where tfi,j — number of occurrences of term j in document j. Each row TF [i] of

TF matrix is a characterization of the i-th document by means of term frequencies.

Term weighting The TF*IDF term weighting scheme is applied for document-

term matrix to create document-term weight matrix:

W = [wi,j]N×M

where wi,j — weight of term j in i-th document. Each row W [i] in the W matrix

represents a characterization of the i-th document by means of weighted terms.

5.3 Tolerance class generation

This phase exists for the computational optimization purpose. It ensures that the

calculation of the upper approximation for a set of terms can be done quickly.

Let us define term co-occurrence matrix as

TC = [tcx,y]M×M

where tcx,y is a co-occurrence frequency of two terms x, y — number of documents in

the collection in which terms x and y both occur. Let tolerance relation R between

terms be defined as

xRy ⇐⇒ tcx,y > θ

where θ is called co-occurrence threshold. Having term co-occurrence matrix

calculated we can define tolerance relation with different granularity by varying

co-occurrence threshold.

Figure 2 presents the main steps of the tolerance class generation phase. The

computation cost of step 1 is O(N ×M), step 2 and 3 are both O(M2), altogether

is O(N ×M2).
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The detail implementation of this phase is presented in Algorithm 5.3.

Fig. 2. Process of generating tolerance classes

5.4 K-means clustering

TRC adapts a variation of K-means algorithm for creating groups of similar snip-

pets. Several main steps of the algorithm are described below (see pseudo-code in

Algorithm 3):

Initial cluster forming: Selected documents serve as initial cluster representa-

tives

R1, R2, ..., RK .

Stop condition: The fact that the clustering algorithm is used as a post-retrieval4

process puts a strict constraint on execution time, as users are not willing to wait

more than a few seconds for a response. We decided to set a limit of maximum

number of iteration for the K-means algorithm. Due to the nature of quick

convergence of K-means algorithm, this limit allows us to reduce the response

time of the clustering engine with insignificant lost in clustering quality.

4 Results returned from search engine is processed on-the-fly by the clustering algorithm and presented
to the user

18



Algorithm 2 Tolerance class generation (Figure 2)

Input: TF – document-term frequency matrix, θ – co-occurrence threshold
Output: TOL – term tolerance binary matrix defining tolerance classes of term

1: Calculate a binary occurrence matrix OC based on document-term frequency
matrix TF as follows: OC = [oci,j]N×M where

oci,j =

{
1 if tfi,j > 0
0 otherwise

Each column in OC is a bit vector representing term occurrence pattern in a
document — bit is set if term occurs in a document.

2: Construct term co-occurrence matrix COC = [cocx,y]M×M as follows: for each
pair of term x, y represented as pair of columns OC[x], OC[y] – bit vectors – in
the OC matrix

cocx,y = card(OCxANDOCy)

where AND is a binary AND between bit vectors and card return cardinality –
number of bits set – of a bit vector. bocx,y is the co-occurrence frequency of term
x and y3.

3: Given a co-occurrence threshold θ, a term tolerance binary matrix TOL =
[tolx,y]M×M ] can be easily constructed by filtering out cells with values smaller
than threshold θ :

tolx,y =

{
1 if cocx,y ≥ θ
0 othewise

Each row in the resulting matrix forms a bit vector defining a tolerance class for
given term: tolx,y is set if term x and y are in tolerance relation.
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Algorithm 3 Clustering phase of TRC algorithm

Input: D – set of N documents, K – number of clusters, δ – cluster similarity
threshold

Output: K overlapping clusters of documents from D with associated membership
value

1: Randomly select K document from D to serve as K initial cluster C1, C2, ..., CK .
2: repeat
3: for each di ∈ D do
4: for each cluster Ck, k = 1, .., K do
5: calculate the similarity between document’s upper approximation and the

cluster representatives S(UR(di), Rk)
6: if S(UR(di), Rk) > δ then
7: assign di to Ck with the similarity taken as cluster membership:

m(di, Ck) = S(UR(di), Rk)
8: end if
9: end for

10: end for
11: for each cluster Ck do
12: determine_cluster_representatives(Rk)

13: end for
14: until stop condition()
15: post-process unassigned documents
16: if necessary determine_cluster_representatives(Rk) for changed clusters

Ck

Determining cluster representatives: Cluster representatives is determined as

described in Section 4.1

Nearest neighbor assignment: As a result of the restriction set by cluster sim-

ilarity threshold, after all iterations there may exist document that has not

been assigned to any cluster. In TRC, there are two possible options:

– create a special ”Others” cluster with unassigned documents as proposed by

[8]

– assigns these documents to their nearest cluster

For the later options, we have decided to assign document to its nearest neigh-

bor’s cluster.

Cluster label generation: As already pointed out, when evaluating clustering al-

gorithms for search results, the quality of cluster label is as much important
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as the quality of the cluster itself. For labelling cluster we have decided to em-

ploys phrases because of its high descriptive power [23, 8]. We have adapted an

algorithm for n-gram generation from [18] to extract phrases from contents of

each cluster. Most descriptive phrases are chosen to serve as labels for cluster.

Descriptiveness of phrases is evaluated by taking into consideration following

criteria:

– frequency of the phrase in the whole collection

– frequency of the phrase inside a cluster

– length of the phrase, measured as number of words it is made from

Following the intuition of TD*IDF scheme, we hypothesize that phrases that are

relatively infrequent in the whole collection but occurs frequently in clusters will

be good candidate for cluster’s label. We also prefer long phrases over shorter

one.

Algorithm 4 Assignment of document to its nearest neighbor’s cluster

for each unassigned document du do
Find the nearest neighbor document NN(du) with non-zero similarity;
Amongst clusters which NN(du) belongs to; choose the one Ck that NN(du)
has strongest membership with;
Assign du to Ck and calculate its cluster membership as m(du, Ck) =
m(NN(du), Ck) · S(UR(du),UR(NN(du)));

end for

6 Experimental Results

Due to aforementioned lack of standard collection for testing web search results

clustering, we had to build a small test collection. For this purpose, we have defined

a set of queries for which results were collected from major search engine Google to

form test data collection.
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6.1 Test queries

The test set is composed from queries representing subjects of various degree of

specificity, in order to test algorithm behavior on data with different vocabulary

characteristic.

Results Terms per snippet
Query count Specificity Snippets Terms Ave. Min Max

java 23400000 low 200 332 7.280 0 15
clinton 4270000 low 200 337 7.305 0 13
jaguar 2580000 low 200 339 6.595 0 13
”data min-
ing”

1080000 medium 200 319 8.815 0 16

wifi 864000 medium 200 340 6.915 1 19
clustering 810000 medium 195 319 7.456 0 16
voip 916000 high 200 355 8.235 0 17
”rough
sets”

748 high 146 244 9.089 1 18

”search
results
clustering”

105 high 68 149 12.279 2 19

Table 3. Queries used to generate test collection and characteristics of retrieved
snippets from Google for those queries.

The first three queries represent very general concepts and are frequently used as

a test by authors [23, 20] of search results clustering algorithm. Next three queries

are more specific subjects but broad enough to have interesting subclasses. Last

three queries are about relatively specific topics and were chosen to test algorithm

on highly cohesive vocabulary. In Table 3, figures in the second column are the

approximated number of results for a queries retrieved from Google. Looking at

these figures gives us some additional intuition about generality (or specificity) of

concepts represented by query, or just popularity of each subject on the web.

Table 3 shows some statistics of snippet collection retrieved from Google search

engine for set of test queries. Both stemming and stop-word list were used to filter out

unnecessary terms. Additionally Minimum Document Frequency filter was used to
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remove terms that occurs in less than 2 documents. Thus, the indexing vocabulary

could be reduced by about 70%. On average, any snippet is indexed by 6 to 10

terms, which is about 2-3% of total vocabulary. Worth noticed in the results of term

filtering, some document may be left represented by none terms.

6.2 Inter-document similarity enrichment

The main purpose of using upper approximation in our TRC algorithm is to enhance

the association between documents, i.e., to increase the similarity between related

documents. To measure that enhancement, we compare the density of similarity

functions created by standard document representation and the one using upper

approximation (for all collections of snippets). In our experiments, the similarity

between two documents di and dj , also called inter-document similarity, is calculated

by using cosine similarity measure (see [15]), and denoted by sim(di, dj). The density

of a given similarity function sim : D×D → [0, 1] over a collection D of documents is

calculated as a number of pairs (di, dj) ∈ D×D of documents such that sim(di, dj) >

t, where t ∈ [0, 1] is called a similarity level.

For a given collection D of snippets and the similarity level t, the relative density

improvement of similarity function, denoted by improvet(D), is measured by

denset(simTRSM)− denset(sim)

denset(sim)

where denset(sim) and denset(simTRSM) are densities of two similarity functions

defined by two document representations: the standard and the one based on TRSM.

In Figure 3 (up), the relative density improvement of similarity function for tested

snippet collections in different similarity levels are presented.

It can be observed that the enrichment of upper approximation had indeed im-

proved inter-document similarities for all queries. The level of improvement varies

with different queries depending on the co-occurrence threshold. Some queries like
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”java”, ”clinton”, ”voip”, achieved significantly better level of improvement than

others (”jaguar”, ”clustering”). It is promising that improvement has been hap-

pened in all similarity levels (the improvement in level t = 0.67 were significantly

improved). This is very important for clustering quality as this could forms bet-

ter clusters. The representation enrichment technique results in improvement of the

clustering process as it is presented in Figure 3 (bottom).

6.3 Comparison with other approaches

The TRC algorithm was implemented entirely in Java programming language, as

a component within the Carrot2 framework [6]. Carrot2 is an open-source, data

processing framework developed by Weiss [9]. It enables and ease experimentation

of processing and visualization of search results. The Carrot2 architecture is based

on a set of loosely-coupled but cooperating components that exchanges information

with each other using XML messages.

Such implementation of TRC makes the comparison of TRC with other algo-

rithms like LINGO [8], AHC [22], STC [20] possible, because all algorithms (included

our own TRC) were developed within the Carrot2 Framework [9]. This makes pos-

sible to compare different algorithms running in the same environment.

7 Conclusions

This paper was thought as a proof-of-concept demonstration of Tolerance Rough Set

application to web mining domain. We wanted to investigate how rough set theory

and its ideas, like approximations of concept, could be practically applied in a task

of search results clustering. The result is a design of a TRC — a Tolerance Rough

Set Clustering algorithm for web search results and implementation of the proposed

solution within an open-source framework, Carrot2.
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Fig. 3. Top: Relative improvement of inter-document similarity matrix measure with
co-occurrence threshold = 5 and various similarity levels t = 0, 0.33, 0.5, 0.67. Bot-
tom: Example of clustering results produced by TRC for query ”jaguar” with dif-
ferent similarity thresholds
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Fig. 4. Data flow in Carrot2 framework

The experiment we have carried has been showed that Tolerance Rough Set and

upper approximation it offers can indeed improve the representations, which have

positive effects on clustering quality. The results are promising and encourage further

work on its application. This research is a step forward to make the application of

Computing with Words (CW) in the internet possible.
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