NIKOLAOS GALATOS Adding Involution to
JAMES G. RAFTERY Residuated Structures

Abstract. Two constructions for adding an involution operator to residuated ordered
monoids are investigated. One preserves integrality and the mingle axiom ¢ < & but fails
to preserve the contraction property < 2. The other has the opposite preservation prop-
erties. Both constructions preserve commutativity as well as existent nonempty meets and
joins and self-dual order properties. Used in conjunction with either construction, a result
of R.T. Brady can be seen to show that the equational theory of commutative distributive
residuated lattices (without involution) is decidable, settling a question implicitly posed by
P. Jipsen and C. Tsinakis. The corresponding logical result is the (theorem-) decidability
of the negation-free axioms and rules of the logic RW, formulated with fusion and the
Ackermann constant {. This completes a result of S. Giambrone whose proof relied on the
absence of £.

Keywords: Residuation, residuated lattice, involution, negation, contraction, mingle, ex-
pansion, RW

1. Introduction

We develop here two simple constructions for extending any residuated or-
dered monoid to a bounded one with an involution, in such a way that if
the original structure is a residuated lattice then so is the containing in-
volutive structure. Both constructions preserve finiteness, commutativity,
existent meets and joins of nonempty subsets, distributivity and the semi-
contraction and semi-expansion properties 2 < z3 and z® < z2. The first
construction, which also preserves integrality, greatest elements (if they ex-
ist) and the mingle axiom z? < z, fails to preserve the contraction axiom
x < x?, while the second has just the reverse properties.

The first construction generalizes one that appears in A. Wrorniski’s work
on BCK-algebras. The second generalizes a construction from relevance logic
that is due to R.K. Meyer.

Either of the constructions given here can be used to show that the
relevant logic RW is a strongly conservative extension of its positive axioms
and rules. This allows us to deduce from a theorem of R.T. Brady that the
variety CDRL of commutative distributive residuated lattices has a decidable
equational theory, filling a gap in the table of decidability results displayed in
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[18]. This contrasts with the fact, obtained in [14], that the quasi-equational
theories of a range of varieties including CDRL are undecidable, as well as
with some undecidability results of A. Urquhart [37] for the theorems of
logics with a weak form of contraction.

2. Residuated Pomonoids

A pomonoid is a structure (4;-,¢; <) such that (4;-,t) is a monoid, < is a
partial order of A and for all a,b,¢,d € A,ifa <bandc < dthena-c<b-d.

Given a monoid (A;-,t) and a partial order < of A, we say that the
structure (A4;-,t;<) is right residuated provided that whenever a,c € A,
then the set

{beAd:a-b<c}

has a greatest element. This element is usually denoted by a\ ¢ and the
binary operation \ on A is called right residuation. Dually, (4;-,¢; <) is
left residuated if for any a,c € A, the set {b € A:b-a < ¢} has a greatest
element, which we then denote by ¢/ a. Let us call (4;-,t; <) residuated if it
is both right and left residuated. In this case, it is necessarily a pomonoid.

Accordingly, from now on, by a right [or left] residuated pomonoid — or
briefly, a RRP [or a LRP] — we mean a structure A = (4;-,\ [or /], t;<)
such that (A4;-,¢; <) is a pomonoid and for all a,b,c € A,

a-b<c iff b<a\c (right residuation)
[or bea<c iff b<c/a (left residuation)].

And by a residuated pomonoid — or briefly, a RP — we mean a structure
A = (A;-\,/,t <) whose {/}-free and {\}-free reducts are a RRP and a

LRP, respectively.
For any elements a, b, ¢ of a RP, the statements
a<b iff t<a\bifft<b/a;
t\a=a=ua/t;
t<a iff a\a<a iff a/a<a;
a\(B\ ) = (b-a)\ ¢ and (¢/b) /a = c/(a-b);
(b\a)/c=b\(a/0);
a<b\(b-a) anda < (a-b)/b;
a\b< (c\a)\(c\b) and b/a < (b/c)/(a/c)
a/b<(c/a)\(c/b) and b\a < (b\c)/(a\c)
a<(b/a)\b and a <b/(a\b)

7
i
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are true and the binary operation \ is isotone in its second argument and
antitone in its first, while the reverse is true for /. A RRP satisfies all of the
above properties (and their parts) that do not mention /.

In fact, every right residuated pomonoid is a substructure of the right
residuation reduct of a residuated pomonoid: see, e.g., [13]. By symmetry
we get a similar statement for LRPs. The symmetry just mentioned can be
used to get analogues for LRPs of any statements about RRPs made in the
sequel.

A RP or RRP is called commutative if its monoid operation - is com-
mutative. In a commutative RP we denote the common value of a\ b and
b/a by a — b. We regard a commutative RP as a structure with signature
<'7 -, S> :

The least and greatest elements of a RP or RRP, if they exist, are usually
denoted by 1 and T, respectively. In fact, if L exists for a RRP A then
(extending our language temporarily to include L, T, for convenience), we
find that A must satisfy L < z\ L1, ie, z-1 < 1, whence also z- L ~ L.
This forces A to have a greatest element T also, with T- L = |. Accord-
ingly, let us call a RP or RRP A upper bounded or bounded if (A; <) has a
greatest element or both a least and a greatest element.

An upper bounded RP or RRP is called integral if ¢ is its greatest element.
Let us define 2° = ¢ and, for nonnegative integers n, also "1 = z" . z. Note
that a RP need not satisfy any of the inequalities

" < 2™ (n-expansion) (1)
g™ < " (n-contraction). (2)
A O-contractive RP is trivial (since ¢ < a\ b forces a < b). 0-expansion is
just integrality. The law z? < x of 1-expansion is abbreviated as expansion,
but it is better known as the mingle axiom. It may be recast as z\y <
z\(z\ y). Likewise, 1-contraction z < z? is abbreviated as contraction and

is equivalent to the law z\(z\y) < z\ y. An integral contractive RP must
be commutative — in fact, it is a Brouwerian semilattice.

3. Bounds and Rigorous Compactness

We have seen that a bounded (not necessarily integral) RP must satisfy
z-lrl.x~ L. (3)

If A is an upper bounded RRP then, for all a € A, clearly a\ T = T; if A
is a bounded RP then also 1L\ a = T. By symmetry, an upper bounded RP
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A must satisfy
e\TxaT/z=T (4)

and if it is bounded, also
I\z=~z/1l~T. (5)

Note that if a RRP A is upper bounded and not lower bounded, we can
extend it by a new least element 1, using the necessary identity z- L ~ 1
as well as the special one 1 -x = | to extend - to the enlarged structure,
in which we must now have a\ L = 1 whenever a # L. If A was a RP, the
enlarged structure satisfies

z¥l = z\l~Ll/z~L1. (6)

Obviously this construction preserves integrality.

Regardless of whether a RRP A is upper bounded or bounded, we can
extend it by two new extreme elements 1, T, defining the extension of - for
1 as above and using in addition the definition

z#l => - TaTzxT. (7

In the resulting structure, in addition to the above residuation properties,
we also have T \ @ = L whenever a # T and, in the case of RPs,

zET = T\zrz/Trl (8)

is satisfied. This construction obviously does not preserve integrality. Both
constructions evidently do preserve commutativity, existent nonempty meets
and joins, n-expansion and n-contraction for any n > 1.

It is convenient to re-state what we have just noted a little more generally.

LEMMA 3.1. A bounded pomonoid A with partial right and left residuation
operations must satisfy (4), (5), (6) and (8) if it satisfies (3) and (7).

PROOF. We used nothing but (3) and (7) in proving (4), (5) and (8) but
(6) requires fresh proof in the more general setting the present lemma. Note
first that T- L = L, by (3). Let L # a € A. Of course, this forces L # T
and we also have a- L = L, by (3). Suppose L #b€ Aanda-b= 1. Then
T-b=T:a=T, by (7). Using associativity of -, we find that

T:T.b:(T.a).b:T.(a.b):T._L:_L,

a contradiction. It follows that a\ L = L and, by symmetry, L /a=1. =
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Extending the terminology of R.K. Meyer [22] to the (fully) residuated
case, we say that a bounded RP is rigorously compact if it has at least two
elements and it satisfies (3)—(8). (Meyer’s definition applies to RRPs as well
as some weaker structures and requires exactly the properties from (3)—(8)
that don’t mention /. In our context this could naturally be called right rig-
orous compactness.) The above discussion can be construed as saying that
every RP has a rigorously compact 2-point extension. Not every rigorously
compact RP arises as the bounded 2-point extension of another RP, how-
ever. As Meyer observes, the {A, V}-expansion of a lattice ordered rigorously
compact RRP may be mapped homomorphically onto the {~}-free reduct
of the 3-element Sugihara algebra, where \ corresponds to the customary —
of this algebra.

4. Residuated Lattices

A residuated lattice — briefly, a RL — is an algebra A = (A;-,\,/,A,V,t)
whose {A, V}-reduct is a lattice and whose {, \, /, ; <}-reduct is a RP (where
< denotes the induced lattice order). In this case A is first order definition-
ally equivalent to the structure (A; <), since x < y is equationally definable
as Ay~ x. A RL is called distributive if its lattice reduct is a distributive
lattice.

Right and left residuated lattices (RRLs and LRLs) are defined similarly.
It is important for most of what follows to note that the bounds 1L and T
are not included as constant symbols in the signature of a bounded RRP or
RRL or RP or RL as defined here (despite the formal liberties taken in the
previous section). The {L, T, f}-expansion of a bounded RRL, where f is
an arbitrary distinguished element about which nothing is postulated, is the
same thing as a full Lambek algebra in the terminology of [27].

For recent accounts of the algebraic theory of residuated lattices, see [8]
and [18].

We shall present in Sections 6 and 9 two constructions for embedding
RPs and RLs into richer structures. Readers working with structures that
are residuated on one side only can still make some use of these results by
combining them with the known facts contained in the next two results. (We
shall make no further use of these results, except in our concluding remarks.)

PROPOSITION 4.1. A right residuated lattice A can be embedded into the
{,\s A, V, t}-reduct of a residuated lattice iff A satisfies

(@Vy)z=(z-2)V(y:2). ©)



186 N. Galatos and J. G. Raftery

This can be proved by generalizing to the non-integral case an embedding
procedure developed by H. Ono and Y. Komori in [30] and noting that the
procedure yields not only a RRL (as reported there) but actually a RL.
(This was drawn to our attention by C.J. van Alten.) A finite integral RRL
that fails to satisfy (9) appears in [38, p.295] (in a dual notation). The next
result is implicit in [26] and [13]:

PRrROPOSITION 4.2.

(i) Every RRP is a subreduct (i.e., it is a substructure of the appropriate
reduct) of a RL that is a distributive lattice.

(ii) Fwvery contractive RRP is a subreduct of a contractive RL.

In both cases, if the original RRP is finite or commutative or integral or has
any combination of these properties then the containing RL can be chosen
to have the same attributes.

5. Involution

A (cyclic) involutive RP [or RL] is a structure [or algebra] A with a fun-
damental unary operation ~, whose {~}-free reduct is a RP [or RL], and
which satisfies

~vxrr o and z\~y R (~x)/y. (10)

We call the operation ~ a (cyclic) involution. In an involutive RP let us
define
f=~t

Evidently, such a structure must satisfy
z\fr (vz)/tr~a
and, similarly, f /z ~~ x, as well as
z<y iff t<z\y ff t<z\r~~nvy iff t<(~va)/~y iff ~y<~a.

We call f the (cyclic) involution constant.

Note that the involution constant and the involution operation are inter-
definable. An RP or RL is the reduct of an involutive RP or RL if and only
if it contains an element f for which its {f }-expansion satisfies z\ f~ f /z
and f /(f /z) = x. The involution may then be defined as ~ z =z \ f.
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The {f, L, T }-expansions of involutive RLs are called cyclic Grishin alge-
bras in [19]. Up to first order definitional equivalence, the involutive integral
commutative RPs coincide with the ‘Lg-algebras’ studied by V.N. Grishin
in [17], while, up to term equivalence, C.C. Chang’s MV-algebras [10] are
examples of involutive integral commutative distributive RLs.

The following lemma establishes the connection between . and ~.

LEMMA 5.1. Every involutive RP satisfies

oy o~ (y\vo) =~ (vy)/2)

ProoOF. Let A be an involutive RP and let a,b € A. We have:

~(a-b) = (a-H)\f =b\(e\f) =b\~a

so a-b =~~ (a-b) =~ (b\ ~ a). The other equation follows by our
definition of involution. ]

6. Adding Involution (I): Preserving Expansion

We shall now give a simple construction for embedding an arbitrary upper
bounded RP into a bounded involutive RP. (We shall then discuss its an-
tecedents in the literature.) The construction will preserve, among other
properties, commutativity, the mingle axiom 2? < z and integrality, but not
the contraction axiom z < x2. The assumption of upper boundedness is
merely a convenience in the proof; it can be dispensed with in view of Sec-
tion 3, without sacrificing preservation of any of the properties mentioned
above.

Let A = (4;-,—, ;<) be a residuated pomonoid that is upper bounded.
Let A" = {a’ : a € A} be a disjoint bijective copy of A, and let A* = AU A'.
We extend < to a partial order of A*, also denoted by <, by defining that
for any a,b € A,

(i) a <b and (ii) o/ <V iff b<a.

Thus, (A*; <) is order isomorphic to the ordinal sum of the dual poset of
(A; <) and (A4; <) itself.

Let T be the greatest element of (A;<). We define L = T’, and f = ¢/,
so L is the least element of (A*; <). For each a € A, we define a” = q, so
that / becomes a total unary operation on A* and A* satisfies z”/ ~ z.
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We define an extension to A* of the monoid operation - of A, which we
also denote by -, as follows: if a,b € A then

a-t/=(b/a); V-a=(a\b) and o -0 =L1.

In fact, since we hope to turn A* into an involutive RP, the first two equations
in this definition of - are forced on us, because Lemma 5.1 implies that every
such structure must satisfy - ~y~~ (y/z) and (~y) -z =~ (z\y).

It follows immediately that t-a’ = (a/t) = d = (t\a) = da’ -t for all
a € A, sotis an identity element for - on all of A*.

Note that whenever a € Athena-1l =a-T' = (T /a) =T = L and,
symmetrically, L.a = L. It follows that the associative law (z-y)-2 =
z-(y-z) will hold in A* whenever at least two of z,y,z are elements of
A’. To prove the full associative law for A*, therefore, the following three
calculations suffice. Let a,b,c € A.

(@-b)-=(c/(a-b))=((c/b)/a) =a-(c/b) =a-(b-);
(@-b)-c=(b/a)-c=(c\(b/a)) =((c\b)/a) =a-(c\b) =a-(V-c);
(@’-b)-c=(b\a) -c=(c\(b\a)) = ((b-c)\a) =a’-(b-c).
It is easy to see that (A*;. ;<) is a pomonoid. Because all elements of
A dominate all elements of A’ in A*, left and right residuals calculated in A
continue to function as such in (4*;. ¢; <), so there is scope to extend our

use of the symbols \ and / unambiguously to A*. We claim that (4*;. ¢; <)
is residuated as follows, where a,b € A:

/
!

a\V =ad /b= (b-a); V\a=a/b =T;
a\b =a/b; b /d =b\a.

[Again, note that if (A*; -,/ t; <) is to become an involutive RP then all but
one of these equations will be forced to hold, by Lemma 5.1 and the definition
of involution.] To see that the equations are indeed true, let a,b € A.

To show that a\bV' = (b-a), let c € A*. Ifc € Athena-c £ V. If
c=d € A*, where d € A, then a-d <V iff (d/a) <V iff b < d/aiff
b-a<diff d <(b-a), as required.

To show that b’ \ @ = T, note that ' - T = (T \ b)’ < a, because (T \ b)’ €
A’. Since T is the greatest element of A*, we are done.

To show that o’ \b' =a /b, let c € A*. If c=d' € A’, where d € D, then
o -d =1 <b. Suppose c € A. Thena'-c <V iff (c\a) <V iff b<c\a
iff c-b < aiff c<a/b, sothe desired equation follows. The claims about
left residuation follow symmetrically.
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This shows that (A*;-,\,/,t;<) is a bounded RP of which A is a sub-
structure. The embedding preserves greatest elements but not least ele-
ments (if such exist). It clearly also preserves commutativity, integrality,
n-expansion for all n, and n-contraction for n > 2. In particular, mingle
is preserved. Trivially, all existing (even infinitary) nonempty meets and
joins in A are preserved in A*, as are all self-dual order properties, so if A
was the reduct of a RL C then the order < on A* is a lattice order and
if A,V denote its induced meet and join operations then C is a subalgebra
of (A*;-,\,/,\,V,t). Moreover, if C was a distributive or complete RL (or
both) then the same is true of (4*;-,\,/, A, V,t). Of course if C was merely
semilattice-ordered then (A*; <) will not be semilattice-ordered.

Note that the construction does not preserve contraction. For example,
if T>a€ Athena > 1 =d.d.

The above characterizations of \ and / already show that for all a, b € A%,
we have a\¥ = b/a’. For each a € A, we define ~ a = a/. The algebra
A* = (A*;-)\,/,~,1t) is thus an involutive RP. Note that it is not rigorously
compact. The property

f<t

of. A* is not a necessary property of (even finite) bounded commutative
distributive involutive RLs. [It is true in all involutive RPs that satisfy the
mingle axiom: in such RPs we get from f.f < f and Lemma 5.1 that
t=~f<~(f-f)=f\~f=Ff\t,s0f<t]

We conclude:
THEOREM 6.1.

(i) Every RP or RL is a subreduct of a bounded involutive one satisfying
f<t

(ii) For each nonnegative integer n, every n-expansive RP or RL is a sub-
reduct of a bounded involutive n-expansive one satisfying f <t.

(iii) If the initial structure in (i) or in (ii) s finite or complete or com-
mutative or distributive or m-contractive for some m > 2, or has any
combination of these properties then the involutive structure can be
chosen to have the same combination of properties.

The above construction was inspired by one of A. Wronski which was
formulated in [41] for ‘BCK-algebras with condition (S)’. These algebras
are, it turns out, just the {—,t}-reducts of integral commutative RPs. The
algebra (A*; —,t) constructed as above from the {—,t}-reduct A~ of an
integral commutative RP A is called in [41] the reflection of A™, except
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that Wroriski’s notation is dual to that used here. In [31] M. Palasinski
noted that the class of BCK-algebras with condition (S) is closed under
reflection.

By a congruence of a RP we shall mean a congruence of the algebra reduct
of the RP. We denote by Con A and by Con A, respectively, the set and
the lattice of congruences of a RP or RL A. When A is an upper bounded
RP or RL and 0 € Con A, we set 8’ = {{(a’,V/) : {(a,b) € 0} and 0* =0 U ¥,
where the elements a’, b’ are calculated in the structure A*, constructed as
above.

PROPOSITION 6.2. Let A be an upper bounded RP or RL.

(i) If B is a substructure (or subalgebra) of A which contains the top
element of (A;<) then the set BU{b : b € B} C A* is the universe
of a substructure (or subalgebra) of A* which is isomorphic to B*.

(i) If 6 € Con A then 6* € Con A*.

(ili) The map 0 — 6* defines a lattice isomorphism from Con A onto an
interval sublattice of Con A*.

(iv) If A is a RL (or more generally, if the equivalence classes of all con-
gruences of A* are convex sets) then Con A* is isomorphic to the
ordinal sum of Con A and a one-element lattice.

The proof is straightforward. With regard to (iv), use the fact that if
a,b € A and a congruence of A* identifies ¢ with ', and therefore a’ with
b, it must identify L = o' -b with b-a € A and also T = (a’-¥') with
(b-a) € A*.

Some applications of this proposition for integral commutative RPs ap-
pear in [32].

7. Commutative Distributive Residuated Lattices

A CDRL shall mean a commutative distributive residuated lattice. In this
section and the next we shall be concerned almost entirely with CDRLs.
The class of all CDRLs and the class of all involutive CDRLs are clearly
varieties. Recall that in any CDRL we use ¢ — b to denote the common
value of a\ b and b /a. The particular case of Theorem 6.1 (i), (iii) that we
need here is:

COROLLARY 7.1. The class of involution-free subreducts of involutive CDRLs
is exactly the variety of all CDRLs.
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Consequently, a {~}-free universal first order sentence — in particular
a {~}-free quasi-identity — in the language of CDRLs holds in every CDRL
iff it holds in every involutive CDRL.

N. Galatos proved in [14] the undecidability of the quasi-equational the-
ories of a range of varieties of (not necessarily commutative) distributive
residuated lattices, including the class of all CDRLs. Combining this result
with the above, we have:

COROLLARY T7.2. The quasi-equational theory of the variety of involutive
CDRLs is undecidable.

The same clearly applies to the subvariety of involutive CDRLs satisfying
f < t, and to the variety of { L, T }-expansions of bounded involutive CDRLs,
in view of the full statement of Theorem 6.1.

The survey paper [18] contains a table indicating the status of various
kinds of decision problem for selected varieties of residuated lattices. In this
table the entry corresponding to the decision problem for the equational the-
ory of CDRLs is blank. We shall fill this gap here by combining Corollary 7.1
with some results from logic, which we explain below.

8. The Formal System RW

Throughout this section assume that a fixed infinite set of variables is given.
The formal system RW has signature L = (-, —,¢,A,V,~). The ranks of
these symbols are just as for involutive CDRLs. For convenience we define
also a derived binary connective < by

Toy= (=Y A(Yy— ).

The axioms (A1)-(A14) and postulated rules (R1), (R2) of RW, taken from
[9], are as follows, where z,y, z denote three distinct variables.

(Al) z—-x

(A2) (@—=y) = ((y—2) —(z—2)
(A3) z—((z—y)—y)

(Ad) (zAhy) —z

(A5) (zAy)—y

(A6) ((z—=y)A(z—2)) = (z— (YN 2))
(A7) z—(zVy)
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(A8) y—(zVy)

(A9) (z—=2)A(y—2)—((zVy) —2)
(A10) (zA(yV2) = ((zAy)V(zA2)
(All) (~~z) —

(A12) (z—=~y)—=(y—~7)

(AL3) (z—(y—2) < ((z-y) = 2)

(Al4) z - (t — x)

(R1) z,z—y >y (modus ponens)

(R2) z,yrzAy (adjunction)

To be accurate, the system we are calling RW here is called RW® in [9].
R.T. Brady’s o is our + and he reserves the name RW for the subsystem of
our RW got by deleting -,t and the axioms (A13) and (Al4).

In this logical context, it is natural to use the expression L-formula (or
formula of RW) for what algebraists working with involutive CDRLs would
call L-terms. For similar reasons, we refer here to ~ as ‘negation’, etc. A
substitution shall mean an endomorphism of the absolutely free L-algebra
freely generated by our set of variables. For an L-formula ¢, a substitution
instance of ¢ shall mean an L-formula of the form o () for some substitution
.

Recall that a proof of an L-formula ¢ in RW is a finite nonempty se-
quence @g, 1, - - -, Pn—1 = @ such that for each i < n, one of the following
is true:

(i) ;s is a substitution instance of one of the axioms (A1)—(A14) above;
(ii) for some j,k <1, @i is @; — ©y;
(iii) s is @ A @y for some j, k < .
Recall that ¢ is called a theorem of RW if it has a proof in RW. The
intended interpretation of (R1) is: whenever ¢ and ¢ — 1 are theorems of
RW then so is v; similarly for (R2).
It is well known that

(A3 (@—(y—2)— (- (z—2)

is a theorem of RW.! In fact (A3) is interchangeable with (A3) in the
presence of (Al), (A2) and (R1).
We shall make use of the following result of Brady.
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THEOREM 8.1. (Brady) [9, Theorem 3] RW is decidable.

This means that there is an algorithm which decides whether arbitrary L-
formulas are theorems of RW. Brady’s proof of this result makes sophisti-
cated use of sequent methods.

To clarify the relationship between RW and CDRLs, we need to consider
also the deducibility relation of RW, which is the relation gy between sets
of L-formulas and single L-formulas defined as follows: (I, ¢) € g iff there
is a finite nonempty sequence g, Y1, ..., ¥n_1 = @ such that for each ¢ < n,
either ¢ € I" or one of the conditions (i), (ii), (iii) in the earlier definition of
proofs and theorems is true. We abbreviate (I', ) € Frw as I' Frw @ and if
this is true we call (T, p) a derivable rule of Fry (or of RW).

For any formal system 8, i.e., any selection of axioms and postulated
rules (with finitely many ‘premisses’ and a single ‘conclusion’) in a specified
signature, we can define the deducibility relation of S in the obviously anal-
ogous way, allowing the axioms and postulated rules of S to play the roles
of the RW-axioms, (R1) and (R2) in the definition.

The formal system without the connective ~ which is axiomatized by
(A1)-(A10), (A13), (A14), (R1) and (R2) will be denoted here by RW™. Its
deducibility relation will be denoted by Fgy+. Our RW™ is essentially the
system called RW<! by S. Giambrone in [15], i.e. it can be shown that the
two systems have the same deducibility relation.?

The deducibility relations of formal systems such as RW and RW™ are
‘finitary and structural consequence relations’ in the sense, e.g., of [40]. That
is to say they are relations I from the set of all formulas of a signature to
single formulas of the same signature satisfying:

— @ el implies I' - ¢;

— Tk and I' C A implies A | ¢;

— 'y and At for all y € ' implies A F ¢;

— (finitariness) I' - ¢ implies I F ¢ for some finite IV C T’;

— (structurality) I' - ¢ implies o[['] F o(y) for every substitution o.

The positive fragment of Frw is the set of all pairs ([, ¢) € Fgw such
that T'U {¢} is a set of negation-free L-formulas.® It is easy to see that this
is again a finitary and structural consequence relation. By a theorem of J.
Los and R. Suszko [20], any finitary and structural consequence relation is
the deducibility relation of a formal system, although the problem of finding
a transparent axiomatization may be difficult and finite axiomatizability is
not guaranteed.
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The positive fragment of Fgryw obviously contains Fgw+ but in the litera-
ture on RW we have found no statement of the precise relationship between
these two consequence relations, no effective axiomatization of the former
and no indication of whether these relations have even the same theorems.*
These questions will be settled here.

The principal relevance logic R is defined in [3] as the formal system that
extends RW by the contraction axiom (z — (z — y)) — (z — y), which is
sometimes denoted by W. Thus RW really abbreviates R — W.5

The varieties of CDRLs and involutive CDRLs model the deducibility
relations of RW™ and RW in a sense that we shall now make precise. For
this purpose we adopt:

DEFINITION 8.2. A quasivariety K of algebras whose signature includes the
symbols —, ¢, A will be called a standard (algebraic) semantics for a finitary
and structural consequence relation I over the same signature provided that
for any finite set I' U {¢} of formulas and any finite set ¥ U {a =~ S} of
equations of this signature,

O 'ty Hf KE (Aegthrmt) = thpxt

(i) KEAS)=arp iff {{on:{~neX}t acp
i) z F tAx) >t and (tAz)eotF z.

In (ii), if X = @, we interpret the condition preceding the ‘iff” as asserting
that K satisfies @ &~ 3. The same convention applies to I" in (i).

The above definition is a specialization of the more abstract notion of
‘equivalent algebraic semantics’ given in [5]. Since quasivarieties are deter-
mined by the quasi-identities that they model, it is easy to see that when a
standard semantics K for - exists then it is unique.

The formal system got from RW™ by deleting the distribution axiom
(A10) shall be denoted by LL’. This notation is motivated by the system’s
connection with linear logic: see [36, p.67]. The following result is essentially
well known.

THEOREM 8.3. The variety of commutative residuated lattices is the standard
semantics for the deducibility relation of LL'.

A complete proof of Theorem 8.3, with some special features not needed
here, can be found in [39]. The argument used in [39] relies on the absence of
the distribution axiom (A10) in LL/, so it does not immediately provide us
with a standard semantics for gy +. Nevertheless, we can establish standard
semantics for both Fgw+ and Frw by putting Theorem 8.3 together with
the following result, which itself combines [5, Theorems 4.7, 2.17].
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LEMMA 8.4. Let K be a standard semantics for the deducibility relation of
a formal system S and let S’ be a formal system got by adding to S new
axioms — possibly involving new connectives — but no new postulated rules.

(i) The deducibility relation g of S’ also has a standard semantics, pro-
vided that for each new connective p, of rank n, say, we have

T1 YL, -y Tn o Un be p(x1, - 20) < p(Y1, -« Un)-

(ii) If the condition in (i) holds then the standard semantics for g is the
quasivariety in the signature of S’ aziomatized, relative to K, by the
equations t A a ~ t, where « ranges over all the new axioms.

We shall now denote the variety of all CDRLs as CDRL and the variety
of all involutive CDRLs as iCDRL.

Since RW™ is the extension of LL’ (in the same signature) by just the
distribution axiom (A10), it follows from the previous two results that the
unique standard semantics for Fgy+ is the variety of commutative RLs sat-
isfying t A ((z A (y V 2)) = ((x Ay) V (z A 2))) ~ t, ie., satisfying

zA(yVz) < (zAhy)V(zAz).

This is just the variety CDRL.
It is easy to show, using (A1l), (A12), (R1) and (R2), that

oy Faw (vy) o~

Since RW is the extension of RW™ by the connective ~ and the axioms
(Al1l) and (A12), the previous observation and Lemma 8.4 shows also that
Frw has a standard semantics, namely the variety of {~}-expansions of
CDRLs satisfying

tA((~v~vz) s z)xt and tA((z—o~y)— (Yo ~2)) =t
i.e., satisfying
~~wgp <z oand o~y < yo v

It is easy to see that this is just the variety iCDRL. In summary, we have
shown:

THEOREM 8.5. For any finite set I' U {¢} of L-formulas, we have
(A) I'Few ¢ iff ICDRL E (/\vel“ t<~) = t<p;
(A)Y Thpw+ ¢ iff CDRL | (A pt<q) = t<e.

In addition, for any finite set ¥ U {a = 8} of L-equations,
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(B) iICDRL E(AX) = a~f iff {{—n:frneX} Frw a« F;
(BYY CDRLE(AE)=axf iff {{on:6xnE} Fouw+ @ 6.

Note that in (A)1 and (B)™, the formulas or equations considered are under-
stood to be negation-free, since for expressions with negation, we can attach
no meaning to Fgw+ or.to ‘CDRL . Of course, expressions such as t < ¢
abbreviate formal equations t A p =~ t.

Putting Theorem 8.5 and Corollary 7.1 together, we infer that for any
finite set I'U{p} of negation-free L-formulas, we have I Fpyu+ @ iff T' Frw .
In other words, the deducibility relation of RW™ is equal to the positive
fragment of the deducibility relation of RW. It is customary to express this
as:

COROLLARY 8.6. RW is a strongly conservative extension of RW .

In Brady’s and Giambrone’s notation, this reads: RW® is a strongly con-
servative extension of RWZ’:. In particular (in our notation again), RW and
RW™ have the same negation-free theorems.

By Theorem 8.5, testing whether an equation a =~ ( holds in iCDRL
amounts exactly to testing whether o« < 3 is a theorem of RW. Similarly
for CDRL and RW™. Applying Brady’s Theorem 8.1 to the first of these
equation-theorem equivalences, we obtain part (i) of the next corollary. Part
(i) follows from (i) using Corollary 7.1, while (iii) follows from Corollary 8.6
and Brady’s Theorem.

COROLLARY 8.7.

(i) The equational theory of iICDRL is decidable.
(ii) The equational theory of CDRL is decidable.
(iii) RWT is decidable.

The second of these assertions fills the previously mentioned gap in the table
of decidability results in {18]. In Giambrone’s notation, the last assertion
reads: RWY' is decidable. Note that in [15], Giambrone did not claim or
prove the decidability of this system, although he did prove the decidability
of its {t}-free subsystem got by deleting our (A14) (i.e. his R3, R4).%

Over CDRL or iCDRL, all quasi-identities can be brought into the form of
the ones in Theorem 8.5 (A) and (A)" because each equation o ~ 3 is equiv-
alent to the (abbreviated) equation ¢ < a < 3. The parts of Theorem 8.5
that deal with iCDRL therefore combine with Corollary 7.2 — or with A.
Urquhart’s [37, Theorem 5.1] — to yield (in our notation) the following:
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COROLLARY 8.8. (Urquhart) The deducibility problem for RW is unsolvable.

In other words there is no algorithm that decides whether a given pair (T', )
(where I' U {p} is a finite set of L-formulas) belongs to Fgw or not. (To get
this from [37, Theorem 5.1], add as axioms enough theorems of Urquhart’s
‘L(V) involving f, — to force the desired definitions and properties of -, ~.)

The unsolvability of the deducibility problem for RW™ is also implied in
[37]. The task of extracting it from [37] is complicated, in comparison with
the case discussed above, by the absence of the connective - from Urquhart’s
formulation of ‘R, — W’ and the absence of f from (our) RW™. The result
can more easily be got directly from Theorem 8.5 and the undecidability
result in [14] from which we inferred Corollary 7.2.

Corollary 8.7 (iii) contrasts with another of Urquhart’s results in [37],
viz. that the extension of (our) RW™ by the axiom ((z — y) Az At) — y is
undecidable.

If a variety with equationally definable principal congruences (EDPC)
has a decidable equational theory then its quasi-equational theory must be
decidable also. Thus, although CDRL and iCDRL are congruence distributive
and have the congruence extension property, their decidability discrepancies
corroborate the well known fact that they lack EDPC. Equivalently, they
confirm that the deducibility relations of RW* and RW have no deduction-
detachment theorem in the general sense defined in [6] or [11].

9. Adding Involution (II): Preserving Contraction

A second construction for embedding an arbitrary (not necessarily com-
mutative) RP into a bounded involutive RP will be set out briefly in this
section. Unlike the construction in Section 6, the one given here preserves
the contraction axiom z < 22 and does not preserve integrality, mingle or
existent greatest elements. All of the other properties whose preservation
under the first construction was mentioned in Section 6 are preserved also
by the second construction. In addition, the second construction produces
a rigorously compact RP.

The method generalizes a construction called ‘relevant enlargement’ in
[22] that was used by Meyer in the more special context of relevance logic.
In Meyer’s construction, however, ¢ was omitted from the signature.

Let A = (4;-,\,/,t; <) be a residuated pomonoid. Let A’ = {a’ : a € A}
be a disjoint bijective copy of A, and let AT = AUA’U{L, T}, where L, T
are distinct non-elements of AU A’. Extend < to a partial order of Af, also
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denoted by <, by defining that for any a,b € A,
(i) L<a<?® <T and (i) o <V iff b<a.

Thus, (Af; <) is order isomorphic to the bounded 2-point extension of the
ordinal sum of (A4;<) and its dual poset. Define f =¢/, L' =T, T' = L
and for each a € A, @’ = a, so that ' becomes a total unary operation on
At. We define an extension to A! of the monoid operation - of A, which we
also denote by -, as follows: if a,b € A and ¢ € Af then

a-¥Y=(b/a) and bV-.a=(a\b);
ad =T,

ifc#ZLthenc- T=T-.c=T;
l.ec=c-L=1.

It follows that ¢ is an identity element for - on all of AT, that - is associative
on Af and that (Af;., ;<) is a pomonoid.

Note that if z € A’U{T} and a,b € A then a-z,2:-a € A U{T}, so
a+z,z-a £ b. It follows that a\ b and b/a (calculated in A) are, respec-
tively, the greatest elements z;, 2z of Al such that z;-a < b and such that
a-z <bin A'. So we can use \ and / unambiguously to denote right and
left residuals wherever they exist in Af. It can be checked that they exist
throughout A' and that the extensions of \ and / to A are determined by
(4), (5), (6) and (8) of Section 3, as well as

@D a\¥ =(b-a) =a'/b;
(I) ¥\a=1L=a/b;
(IIT) &’ \b' =a /b and b /a' =b\a,

where a,b denote elements of A. Note that (4), (5), (6) and (8) are already
justified by Lemma 3.1 together with the definitions of - and < on Af,
because (A';- t; <) is a pomonoid.

We have established that (Af;- \,/,#;<) is a bounded rigorously com-
pact RP of which A is a substructure. It is easy to see that if A is com-
mutative or n-contractive for some n > 1 or n-expansive for some n > 2
then (Af:. )\, /,t; <) has the same property. Trivially, all existing (even in-
finitary) meets and joins of nonempty sets in A are preserved in Af, as are
all self-dual order properties such as latticehood, complete latticehood and
distributivity, so if A was the reduct of a RL C then the order < on Af
is a lattice order and if A,V denote its induced meet and join operations
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then C is a subalgebra of (A';-)\,/,A,V,t). Note that the embedding pre-
serves boundedness but not bounds themselves (whereas the construction in
Section 6 preserved greatest elements also). Obviously, integrality is not pre-
served by the present construction. The mingle axiom is also not preserved:
ifac Athenad -a' =T £d.

The above characterizations of \ and / show that for all a,b € A, we
have a\ b’ = a’ /b and therefore also 2’ ~ z\ f ~ f /z. For each a € A, we
now define ~ a = a/. The algebra AT = (A%;.,\,/, ~,t) is thus an involutive
RP, in which ¢ < f.7

In summary, we can claim:

THEOREM 9.1.

(i) Every RPis a {-,\,/,t; <}-subreduct of a bounded involutive rigorously
compact RP satisfying t < f.

(if) Fvery RL is a {-,\,/, A, V, t}-subreduct of a bounded involutive rigor-
ously compact RL satisfying t < f.

(iii) If the initial structure in (i) or in (ii) is finite or a complete lattice
or a distributive lattice or is commutative or n-contractive for some
n 2 1 or n-expansive for some n > 2, or has any combination of these
properties then the involutive structure can be chosen to have the same
combination of properties.

10. Functoriality

It is natural to ask whether either of the constructions in Sections 6 and 9
is functorial. Here we show first that the construction of Section 9 provides
a functor directly. We shall then deal briefly with the situation for the first
construction, which is more complex.

Denote by RP the category whose objects are just all RP’s and whose
morphisms are all order-preserving monoid homomorphisms between RP’s
that preserve the residuation operations. Also, let RL be the category of
RL’s and RL-homomorphisms. Similarly, we define the categories iRP and
iRL. We do not require the morphisms of these categories to preserve the
bounds L, T, where these exist.

Note, however, that when A is an object of RP or RL then the bounds
L, T of the structure A' are termwise definable: the construction of Af
imposes the relations T = f2and 1 =¢/T.

For A in RP (in RL, respectively), define F(A) = Af. Moreover, if
g: A — B is a morphism in RP (RL, resp.), define F(g) = gt : AT — BT,
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where g'(a) = g(a) and gf(a’) = (g(a))’, for all a € A, while g'(L) = L and
g'(T) = T. It is easy to see that g' is a morphism and that F is a functor
from RP to iRP (from RL to iRL, resp). Conversely, if A is in iRP
(iRL, resp.), define G(A) to be the involution-free reduct of A. Moreover,
if g: A — B is a morphism in iRP (iRL, resp.), let G(g) be the same map
as g, but considered as a morphism between G(A) and G(B). Then G is
a functor, known as the forgetful functor, between the categories iRP and
RP (iRL and RL, resp.).

Although the functor F' is not onto the objects of the target category,
it is both full and faithful. Recall that a functor F' : C — D is said to be
onto the objects of the category D, if for every object d of D there exists an
object ¢ of C such that F(c) = d. It is called full if for any pair of objects
a,c of C and any morphism h : F(a) — F(c) of D, there exists a morphism
g :a — cof C, such that F'(g) = h. Also, F'is called faithful, if for every pair
of objects a, ¢ and for any pair of morphisms g,h : a — c of C, F(h) = F(g)
implies h = g.

To see that F is full, let » : AT — B! be a morphism in iRP (iRL,
resp.). We will show that h[A] C B. First note that, since the bounds are
term definable, they are preserved under h. Assume that h(a) ¢ B, for some
a € A. If h(a) € B/, or h(a) = T, then h(a?) = (h(a))? = T. Moreover,
h(t/a%) = ¢t/ T = L. Thus, in all cases, there exists an element ¢ € A,
such that h(c) = L. Consequently, h(L /c) = L /1, hence h(L) =T, a
contradiction. Since G(h) is a morphism of RP (RL, resp.) between G(AT)
and G(BT), A is a substructure of G(A') and h[A] C B, we have that the
restriction of G(h) to A is a morphism of RP (RL, resp.) from A to B.
Clearly, the image under F' of this restriction is h.

On the other hand, the forgetful functor G is neither onto objects, nor
full, nor faithful. It is not faithful, because a lattice-ordered group can be
considered as an involutive RL in multiple ways (every element can serve
as the constant f), where z\y = 7'y, and y /z = yx~!. Consider such a
lattice-ordered group with two different involutions; the two structures have
the same RL-reduct. If G were faithful, it would be bijective on objects.

To see that G is not full, consider the same lattice-ordered group with
two different involutions. The identity map on the common involution-free
reduct is not induced by a morphism between the involutive structures. So,
if g: A — B is a morphism in RP (RL, resp.), G(C) = A and G(D) = B,
there may be no morphism h : C — D such that G(h) = g. Neverthe-
less, under the same assumptions, in case g is onto, there exist E in iRP
(iRL, resp.) and k : C — E such that G(E) = B and G(k) = g. This is true
because the image B of the reduct A of an involutive structure C, with invo-
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lution constant f, under a morphism g of RP (RL, resp.) is also the reduct
of an involutive structure E, such that g(f) is the involution constant of E.
We use here the fact that the conditions defining the involution constant are
equations (see Section 5), so they are preserved under homomorphisms.

The construction of Section 6 does not yield a functor directly. To obtain
functoriality we have to modify the construction and in the process, we must
give up the preservation of integrality and existent upper bounds. More
precisely, we first add new bounds to the original structure, i.e., we take
its rigorously compact 2-point extension as described in Section 3, even if
the original structure is already bounded; then we apply the construction of
Section 6. One may then argue similarly that the composition of these two
embeddings defines a functor that has the same properties as the functor
described above.

11. Concluding Remarks

The constructions leading to Theorems 6.1 and 9.1 make no essential use of
the existence of ¢ and work equally well for residuated ordered semigroups.
(Also, Lemma 5.1 can be proved without reference to f or ¢t.) Meyer’s rele-
vant enlargement construction in [22] applies to lattice-ordered commutative
residuated semigroups satisfying © < z - (y — y) and contraction and it pro-
duces an involution that also satisfies the contraction-implying condition
o~ <~

Notice that a general construction for embedding commutative RPs or
RLs into involutive ones cannot preserve both integrality and contraction,
for such a construction would allow us to embed arbitrary Brouwerian semi-
lattices into Boolean algebras. Of course this would be contradictory even
at the level of pure residuation, since Peirce’s Law

(z—y)—z<w

already serves to distinguish these classes. It would be of interest to find a
construction for adding involution to (at least commutative) RPs and RLs
that preserves both contraction and mingle (and therefore idempotence)
while necessarily not preserving integrality. It may be better here to develop
a construction that applies to residuated semigroups, since, for example, one
cannot embed all involutive idempotent residuated commutative semigroups
into monoids with all the same properties: see [21, Note 4], [4, p.710 and
Theorem 1.18].

On the other hand, not every idempotent CDRL can be embedded into
an idempotent involutive CDRL. This is shown by the following example.
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ExXaMPLE 11.1. It is known that every idempotent involutive CDRL satisfies

[(z=v)=y)—2) = 2] [(y22)—2)2y)—2z] <2z (11)

This inequality comes from a logical formula whose significance was discov-
ered in {25]: it holds in all Sugihara algebras, and the {t}-free reduct of
any idempotent involutive CDRL is a Sugihara algebra (see, e.g., [7] and its
references).

Now consider two total orders on the set F = {-1,0, %, %, 1}. The con-
ventional order is denoted by < and a second order < is given by

-1<1<3=<1%=0.

Let z - y denote the minimum of {z, y} with respect to <. This is necessarily
an idempotent commutative monoid operation with identity 0. Our use of
=< to define - made this otherwise tedious step immediate; < shall play no
further role in the example. The totally (conventionally) ordered pomonoid
(E; - ,t;<) is clearly residuated. Letting — denote the residuation, we ob-
tain an idempotent CDRL E on the same set. If we substitute z = %, y= %
and z = 0 into (11), however, we obtain 1-1 < 0, which is false. Thus E
cannot be isomorphic to a subalgebra of an idempotent involutive CDRL.

The method used in Section 8 to obtain the equational decidability of
CDRL is potentially applicable to other quasivarieties of RPs or RLs that
are not contractive and that are characterized by properties preserved in
the construction of Section 6, provided that a decidability result is for some
reason more accessible in the involutive than in the involution-free case.
If further useful applications of this kind exist, the corresponding logics
could be expected to include fragments of noncommutative linear logic or
the Lambek calculus FL. In view of the first construction presented here,
and Proposition 4.2 (i), Hilbert systems corresponding to several positive
logics in this family can be extended in a strongly conservative manner by a
single involutive negation (along with /), provided that the constants f and
1 are omitted from consideration and that the signature includes \, + and
both or neither of A, V. There are two options for the treatment of negation
in noncommutative linear logic: one may have a single involutive negation
or two negations. See, e.g., [42], [1].

The second construction extends these possibilities to (quasi) varieties
with contraction that do not satisfy the mingle axiom. The corresponding
logics include extensions of the logic FL¢, formulated without f, | and T.
For example, Proposition 4.2 (ii) and the second construction can be used



Adding Involution to Residuated Structures 203

to show that the Hilbert-style axioms and rules for FL. in the language
consisting of -,\ and possibly ¢ can be extended in a strongly conservative
manner by a single involutive negation (along with /). It seems that nothing
is known about the decidability of even the pure implication fragment of
FL.. For information about FL. and its neighbours, see [27], [28] and [29].

NOTES

1. The proof is difficult to find in the literature. The following proof was
extracted from [35]:

Definitions: D: (y — z) — z, E: z—(y— 2), F: y—(zx—2).
Proof: i. y— D [(A3)]

i (y=D)—=((D—(x—2)—F) [A2)]

iii. (D= (z-—2)—F [ii (R1)]

iv. E—>(D—>(z—2z2) [(A2)

v. (E=>D—=(@—2)->(D—-(—2)->F)—(E-F) [(A2)]

vii (D= (z—2)—>F)—>(E—>F) I|v,v, (Rl)]

viih. E— F (asrequired) [iii, vi, (R1)]

2. The superficial discrepancy between our (A13), (A14) and Giambrone’s A5,
R3, R4 does not affect the relation of derivability of formulas from other formulas
(that are not necessarily theorems).

3. The reader should be cautioned that in relevance logic (and elsewhere),
fragments of deducibility relations are often disregarded and that by the ‘positive
fragment of RW’, most relevance logicians would mean just the set of negation-free
theorems of RW.

4. Relevance logic contains several conservative extension results of the general
kind wanted here, most of which were proved by Meyer and appear in [22], [33],
[2] or [34]. Of the published results that deal with the problem of adding negation,
not all adopt the same signature: there is some variance over the inclusion of -
and ¢. Some assume the contraction axiom (x — (z — y)) — (¢ — y), others
weaken (Al2) to the form of a postulated rule: z -~y > y —~ z (see Note 6
below), while others again focus only on the conservation of theorems (as opposed
to derivable rules). Conservative extension results for theorems can be converted to
ones for derivable rules also if they were proved by suitable embedding arguments
or if the larger logic has a deduction-detachment theorem in the general sense of
[6] or {11}, which is formulated in the vocabulary of the smaller logic. RW has
(demonstrably) no deduction-detachment theorem of this kind: see the conclusion
of Section 8.
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5. Meyer’s result in [22], that R has the same negation-free theorems as the
system axiomatized by the negation-free axioms of R, can be extended to derivable
rules because R has a deduction-detachment theorem:

TU{p} Fr v iffT kg (pAt) — ¢ [23].
This last theorem relies on the presence in R of the contraction axiom. Making

some use of this deduction-detachment theorem, A. Urquhart proved that R’s set
of theorems — and even its set of negation-free theorems — is undecidable [37].

6. Giambrone and Meyer show in [16] that the {t}-free system got by deleting
(A14) from RW can be extended conservatively by a strong (‘classical’) negation —
for which

(_|_‘x) - x?

T = (y— (2V2)),

(zA-z) -y
are theorems, although only the ‘rule’ form £ — -y > y — —z of contraposition for —
holds. ‘Classical’ negation cannot be used to derive Corollary 8.7 (iii) from Brady’s
Theorem. [16] shows also that RW itself (with ¢ and (A14)) cannot be extended
conservatively by classical negation. According to [12, p.214], the corresponding

conservative extension of R by classical negation is not a strongly conservative
extension of R.

7. In logical terms this shows, for example, that the positive fragment of R,
formulated with - and ¢ in the usual way, can be extended in a strongly conservative
manner by the axiom ¢t — ~ ¢ (along with de Morgan negation). This axiom strains
the intuition that ¢ corresponds logically to the ‘least’ truth (i.e. the conjunction of
all truths) and f to the ‘greatest’ falsehood (i.e. the disjunction of all falsehoods).
This point is not discussed in [22], where Meyer formulates R traditionally, i.e.,
without ¢, but it is taken up in his later paper [24, pp. 469-70].
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