NIKOLAOS GALATOS Equational Bases for Joins of
Residuated-lattice Varieties

Abstract. Given a positive universal formula in the language of residuated lattices, we
construct a recursive basis of equations for a variety, such that a subdirectly irreducible
residuated lattice is in the variety exactly when it satisfies the positive universal formula.
We use this correspondence to prove, among other things, that the join of two finitely
based varieties of commutative residuated lattices is also finitely based. This implies that
the intersection of two finitely axiomatized substructural logics over FL* is also finitely
axiomatized. Finally, we give examples of cases where the join of two varieties is their
Cartesian product.

Keywords: residuated lattices, positive universal formulas, joins of varieties, basis of equa-
tions

1. Introduction

A residuated lattice, or residuated lattice-ordered monoid, is an algebra
L = (L,A,V,-\,/,e) such that (L,A,V) is a lattice; (L,-,e) is a monoid,;
and for all a,b,c € L,

a-b<c<e a<c/b & b<a\c

It is not hard to see that RL, the class of all residuated lattices, is
equationally definable. Equivalently, it is a variety, i.e., a class of algebras
closed under the formation of homomorphic images, subalgebras, and direct
products.

Residuated lattices were first introduced by M. Ward and R. P. Dilworth,
in [11], in an attempt to generalize properties of ideal lattices of rings. In
their original definition they stipulated that multiplication is commutative
and the multiplicative identity is the top element of the lattice reduct. The
definition that we follow is due to K. Blount and C. Tsinakis (see [4]), who
first studied the structure theory of residuated lattices in their generality.
For a survey of residuated lattices, see [8].

Residuated lattices include many well-studied and diverse classes of al-
gebras, such as lattice-ordered groups, Brouwerian algebras and generclizesd
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MV-algebras; see [7] for the latter. Moreover, they constitute algebraic se-
mantics for the positive (without negation and 0) fragment FL™ of the full
Lambek calculus FL. Substructural propositional logics that contain FL™
are in a one-to-one correspondence with subvarieties of RL; for connections
between substructural logics and residuated lattices, see [10], [9] and [6].

A variety V is called a discriminator variety, if there exists a term
t(z,y,2) in the language of V such that, if an algebra A of V is subdi-
rectly irreducible, then t(a, a,c) = c and t(a, b, c) = a, for all a,b,c € A with
a # b. If V is a discriminator variety, to every first order formula corresponds
a variety with the property that a subdirectly irreducible algebra is in the
variety iff it satisfies the first order formula. In this case it is easy to con-
struct an equational basis for the variety generated by the class of all models
of a first order formula. Moreover, all subdirectly irreducible algebras are
simple. Residuated lattices do not form a discriminator variety, since e.g.
not all subdirectly irreducible residuated lattices are simple. Nevertheless,
a similar correspondence can be developed for positive universal first order
formulas.

We begin with some preliminary definitions about residuated lattices and
a number of basic facts about their structure theory.

In section 3, we construct an equational basis for the variety generated by
an arbitrary positive universal class of residuated lattices, in a recursive way.
The main tool in the proof is the lattice isomorphism between the congruence
relations of a residuated lattice and its convex normal subalgebras, developed
in [4]. Even though the basis produced is infinite, it reduces to a finite one
for certain classes of residuated lattices.

In section 4, we apply the above correspondence to obtain an equational
basis for the join of two residuated lattice varieties. In particular, we provide
varieties, including the variety of commutative residuated lattices, such that
the join of any two of their finitely based subvarieties is also finitely based.
This translates, on the logic side, to the fact that the intersection of two
finitely axiomatized substructural propositional logics that include FLe* is
also finitely axiomatized. See [6] for the precise connection.

Finally, in section 5, we give examples where the join of two varieties is
their Cartesian product.

2. Preliminaries

We assume familiarity with basic definitions and results from universal
algebra; a standard reference on the subject is [3]. We will use the same
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symbol, V, for the join operation in a residuated lattice, the disjunction of
two first order formulas in the language of residuated lattices, and for the
join of two residuated-lattice varieties in the subvariety lattice. This multiple
usage will cause no confusion since it will be clear from the context which
interpretation will be intended.

To reduce the number of parentheses in a residuated-lattice term, we
assume that multiplication has priority over the other operations and that
the division operations have priority over the lattice operations. So, for
example, z/yz A u\v means [z/(yz)] A (u\v).

We start with some definitions and facts about the structure of residuated
lattices, given in [4].

LEMMA 2.1. [4] Residuated lattices satisfy the following identities:

(1) z(yVz)mzyVez and (yV 2)z R yx V 2z

(2) z\(y A 2) = (2\y) A (2\2) and (y A z)/z ~ (y/z) A (2/)
(3) z/(yV 2) ~ (z/y) A (z/2) and (y V 2)\z = (y\z) A (2\z)
(4) (z/y)y <z and y(y\z) <z

(5) z(y/z) < zy/z and (2\y)z < 2\yz

(6)

)

ot

6) (z/y)/z = z/zy and 2\(y\z) ~ yz\z
7) z\(y/2) = (2\y)/2

(8) z/e~z =~ e\x

(9) e<z/x ande < z\z

—~~

Let L be a residuated lattice and Y a set of variables. For y € Y and
x € LUY U{e}, where e is the constant in the language of residuated lattices,
we define the polynomials

02 (y) = zy/x Ae and Ay (y) = z\yz Ae,

the right and left conjugate of y with respect to x. An iterated conjugate
is a composition of a number of left and right conjugates - we consider
composition of conjugates with respect to their arguments. For X, A subsets
of LUY U {e}, and for m € N, we define the sets I'% = {)},

% = {'Yan O Yzg O« VYam |'Yzi € {Ami’pmi}’ i€ XU {6}7 i € N}7
I'R(A) = {v(a) |y €TR, a € A},
I'x = J{T% In e N},
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Ix(4) = J{I%(4) |n e N}.

Note that, if L is a residuated lattice, then A(z) = pe(x) = z Ace,
v(z) < e and y(e) = e, for all z € L and for every iterated conjugate v € I'r.
In particular, if z is negative, i.e., x < e, then Ae(z) = pe(x) = z. If L is
commutative, i.e., it has a commutative monoid reduct, then z A e < v(z),
forallz € L and vy €I'y.

A subset N of L is called normal in L, if it is closed under conjugation,
ie., 7(N) C N, for all y € I',. A subset X of L is called convez in L, if for
every z,y in X and z in L, z < z < y implies that z is in X.

The negative cone of a residuated lattice L = (L,A,V,-,\,/,e) is the
algebra L™ = (L™ ,A,V,,\1-, /L-,€), where L~ = {z € L|z < e}, 2\p-y =
z\yAeand z/1-y = z/yAe. It is easy to see that L~ is a residuated lattice.

THEOREM 2.2. [{], see also [6].

(1) The convex normal subalgebras of a residuated lattice L form a lattice
CNS(L), which is isomorphic to the congruence lattice of L, via S —
0s = {(a,b) € L?| (a/bAe)(b/ane) € H} and 0 — [e]g, where [e]g is
the 0-class of e. Moreover, the principal congruence generated by (a,e€)
corresponds to the conver normal subalgebra generated by a.

(2) The convez, normal in L submonoids of the negative cone of a residu-
ated lattice L form a lattice isomorphic to CNS(L), via S — S~ and
M~ Sy ={z|m<z<e/m,me M}. The convex normal submonoid
generated by a negative element corresponds to the conver normal sub-
algebra generated by that element.

(3) If A C L, then the convex normal submonoid M(A) of L~ generated
by A is given by M(A) = {r|g192---gn <z <, gi €'L(A),n € N}.

Let RLS be the variety generated by the class of all totally ordered
residuated lattices.

THEOREM 2.3. [{4] The equation \,(x/(xVy))V pw(y/(zVy)) ~ e constitutes
an equational basis for RLC .

Let CanRL be the class of residuated lattices that have a cancellative
monoid reduct. It is easy to see that CanRL is a variety and it is axiom-
atized, relative to RL, by the equations y\yz ~ x ~ zy/y. For a study of
cancellative residuated lattices, see [2].

The variety of lattice-ordered groups (£-groups) is term equivalent to
the subvariety £G of residuated lattices defined, relative to RL, by the
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equation z(e/z) ~ e. The term equivalence is given by z—! = e/x and

z/y = xy~!, z\y = 2~ ly. Obviously, every ¢-group, as well as its negative
cone, is a cancellative residuated lattice. For basic properties of ¢-groups,
see [1].

A residuated lattice is called integral, if it satisfies the equation zAe =~ z,
or, equivalently, if the multiplicative identity is the top element of the lattice
reduct. We denote the variety of integral residuated lattices by ZRL.

3. Varieties of residuated lattices generated by positive
universal classes

An open positive universal formula in a given language is an open first
order formula that can be written as a disjunction of conjunctions of equa-
tions in the language. A (closed) positive universal formula is the universal
closure of an open one. A positive universal class is the collection of all
models of a set of positive universal formulas.

LEMMA 3.1. Every open (closed) positive universal formula, ¢, in the lan-
guage of residuated lattices is equivalent to (the universal closure of) a dis-
junction ¢’ of equations of the form e = r, where the evaluation of the term
r is negative in all residuated lattices.

PROOF. Every equation t ~ s in the language of residuated lattices, where
t,s are terms, is equivalent to the conjunction of the two inequalities ¢t < s
and s < ¢, which in turn is equivalent to the conjunction of the inequali-
ties e < s/t and e < t/s. Moreover, a conjunction of a finite number of
inequalities of the form e < ¢;, for 1 < i < n is equivalent to the inequality
e <t; A...Aty. So, a conjunction of a finite number of equations is equiv-
alent to a single inequality of the form e < p, which in turn is equivalent to
the equation e ~ r, where r = p A e. [ |

Recall the definition of the set of conjugate terms I'{*. For a positive
universal formula ¢(Z) and a countable set of variables Y disjoint from Z,
we define the sets of residuated-lattice equations

BY(#' (7)) = {e=~n(ri(@) V... VYu(ra(2) | v € TV}
and

By(¢' (@) = | J{BY(¢(2)) Im e N},

where m € N and
¢(Z)=(r(Z)=e) V...V (rp(T) =€)

is the formula equivalent to ¢(Z), given in Lemma 3.1.
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It is clear that BJ*(¢'(Z)) is an infinite set for m > 1. Nevertheless, if
we enumerate Y = {y; | i € I} and insist that the indices of the conjugating
elements of Y in 71,79,...,7, appear in the natural order and they form
an initial segment of the natural numbers, then we obtain a finite subset of
B¥(¢'(Z)), which is equivalent to the latter. In that respect BJ*(¢'(Z)) is
essentially finite.

LEMMA 3.2. Let L be a residuated lattice and A1, ..., A, finite subsets of L.
Ifa1V...Vay, =e, foralla; € A;, 1 € {1,...,n}, then for alli € {1,...,n},
n; € N, and for all a;1,a49,...,0in, € Ai, we have p1 V...V p, = e, where
Pi = Qi1G42 * - * Qin,; -

PRrROOF. The proofis a simple induction argument. For the basis of induction
and for the induction step we use Lemma 2.1(1). If aVb=a V¢ = e, then
e=(avb)(aVec)=a?VacVbaVbc<aVbc<aVb=e. So,aVbc=ec. m

THEOREM 3.3. Let ¢ be an open positive universal formula in the language
of residuated lattices and L a residuated lattice.

(1) IfL satisfies (VI)(¢(Z)), then L satisfies (VZ,7)(e(Z, 7)), for all e(Z,7)
in By (¢'(Z)) and § € Y, for some appropriate | € N.

(2) If L is subdirectly irreducible, then L satisfies (VZ)(¢(Z)) iff L satisfies
the equation (VZ,§)(e(Z,9)), for all £(Z,y) in By (¢'(Z)) and g € YL

PROOF. 1) Let L be a residuated lattice that satisfies (VZ)(#(z)). More-
over, let £(Z, %) be an equation in By (¢'(Z)), € € L* and d € L', for some
appropriate k,! € N. We will show that (¢, d) holds in L. Since L satisfies
(VZ)(¢(Z)), ¢'(¢) holds in L. So, r;(¢) = e, for some i € {1,2,...,n}; hence
v(r;(€)) = e, for all v € I'y. Consequently, (¢, d) holds.

2) Let L be a subdirectly irreducible residuated lattice that satisfies
By (¢/(Z)), and let ¢ € L* and a; = r;(¢). We will show that a; = e for some
1.

Let b€ M(a1)N---NM(ayn), where M (z) symbolizes the convex normal

submonoid of the negative cone generated by x. Using Theorem 2.2(3), we
si

have that for all 7 € {1,2,...,n}, Hgij < b< e, for some s1,89,...,8, €N
j=1
and gi1, gi2, - - - » 9is; € ['n(ai). So,

s1 82 Sn
HgleHQQjV...VHggj <b<e.
j=1 j=1 j=1
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On the other hand,

yi(a1) Vye(az) V... Vyn(an) = e,
for all v; € I'L, since every equation of By (¢'(Z)) holds in L. So, for all
i € {1,2,...,n} and g; € I'1(a;), we have g1 Vg2 V...V g, = e and, by

Lemma 3.2, o o .
HgleHQQ'jV...VHggj =e.
j=1 j=1 j=1

Thus, b = e and M(a;)N---N M(a,) = {e}.
Using the lattice isomorphisms of Theorem 2.2, we obtain

O©(a1,e) NO(ag,e) N---NO(an,e) = A,

where ©(a,e) denotes the principal congruence generated by (a,e) and A
denotes the diagonal congruence. Since L is subdirectly irreducible, this
implies that ©(a;,e) = A, i.e., a; = e, for some i. Thus, (VZ)(¢'(Z)) holds
in L. n

COROLLARY 3.4. Let {¢;|i € I} be a collection of positive universal formulas.
Then, | J{B(#})|i € I} is an equational basis for the variety generated by the
(subdirectly irreducible) residuated lattices that satisfy ¢;, for every i€ I.

PROOF. By the previous theorem a subdirectly irreducible residuated lattice
satisfies ¢; iff it satisfies all the equations in B(¢}), so

(Mod(U{¢i [i € I})sr =W (Mod(¢))sr | i €I}
= {(Mod(B(¢)))s1 | i € I}
= (Mod(U{B(¢;) | i € I}))s1,
where for every variety V and every set of equations £, Vsr denotes the class

of all subdirectly irreducible algebras of V and Mod(€) denotes the variety
of all models of £. Consequently,

V((Mod(U{¢i i € I}))sr) = V(Mod(U{B(¢7) | i € I}))sr)
= Mod(U{B(#}) |7 € I}),

where V(K) denotes the variety generated by a class of algebras K. [

Note that the equational basis for the variety generated by the models of
a recursive positive universal class is recursive. In particular, the equational
basis is recursive if the positive universal class is defined by a single formula.

The basis given in Theorem 3.3 is by no means of minimal cardinality.
It is always infinite, while, as it can be easily seen, for commutative subva-
rieties it simplifies to the conjunction of commutativity and the equation of
BY(¢'). So, for example, the variety generated by the commutative residu-



234 N. Galatos

ated lattices, whose underlying set is the union of its positive and negative
cone, is axiomatized by zy ~ yr and e = (z A e) V (e/z Ae).

4. Equational basis for joins of subvarieties

In what follows, we apply the correspondence established above to obtain
an equational basis for the join of a finite number of residuated lattice vari-
eties. Moreover, we provide sufficient conditions for a variety of residuated
lattices, in order for the join of any two of its finitely based subvarieties to
be finitely based, as well.

COROLLARY 4.1. If the varieties V1,Vs,...,Vy are aziomatized by the sets
of equations By, Bs,..., By, where the sets of all variables in each B; are
pasrwise disjoint, then | J{B(¢}) |i € I} is an equational basis for the join
ViVWaV...VV,, where ¢; ranges over all possible disjunctions of n equations,
one from each of By, Bs,...,By.

PROOF. The variety RL is congruence distributive, because its members
have lattice reducts. So, by Jénsson’s Lemma, a subdirectly irreducible
residuated lattice in the join of finitely many varieties is in one of the vari-
eties. Moreover, by the definition of ¢;, it is clear that a subdirectly irre-
ducible residuated lattice satisfies ¢;, for all i € I, if and only if it is in one
of the varieties V1, Vs, ..., V,. So,

ViVVeV...VV, =V(ViV W V...V Vy)sr)
= V((Vl UV U---u Vn)s[)
= V(Mod(U{¢: | i € I})s1)
— Mod(L{B(g}) | € I}). .

COROLLARY 4.2. The join of finitely many recursively based varieties of

residuated lattices is recursively based.

In the case of the join of finitely based varieties the situation is simpler.

COROLLARY 4.3. If By, Bo, ..., B, are finite equational bases for the vari-
eties V1,Va, ..., Vn, then B(¢') is an equational basis for the join Vi V Vo V
...V Vy, of the varieties, where ¢ = (A B1V A B2 V...V A By) and for every
i €{1,2,...,n}, A\ B; denotes the conjunction of the equations in B;.

PROOF. Retaining the notation of Corollary 4.1, we see that | J{¢; | i € I}
is equivalent to ¢ and | J{B(¢}) | i € I} is equivalent to B(¢'). ]
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We define the varieties
C, RL = Mod((z A e)ky ~ y(z A e)k),
for all £ € N and the variety
CanC{ RL = CanRLNC] RL.

For all natural numbers m, n, we set B = B™(¢),), where ¢, = (z1 ~
e)V(za~e)V...V(z, ~ e). We say that a residuated lattice L satisfies the
implication B™ — BY iff, for all @ € L™, if e = r(a) for all (e = r) € BT,
then e = r(a) for all (e ~ ) € BE.

THEOREM 4.4.

(1) If Vi, Vo are finitely based varieties of residuated lattices that satisfy the
implication By* — Bg”“, for some natural number m, then their join

is also finitely based.

(2) The join of any pair of finitely based subvarieties of the varietey LG V
CanCy RLV RLE v C, RL is also finitely based, for every k > 1.

PRrROOF. 1) First note that, since B is equivalent to a finite set of equations
and since the conjunction of a finite set of equations is equivalent to a single
equation, BJ" is equivalent to a single equation. All subdirectly irreducible
algebras in the join V; V'V, coincide with the subdirectly irreducible algebras
in the union V; U Vs, so they satisfy the implication Bj* — B;nﬂ. Since all
residuated lattices in the join V; V Vs are subdirect products of subdirectly
irreducible algebras, and quasi-equations are preserved under products and
subalgebras, the join satisfies the implication. Moreover, if By, By are finite
equational bases for Vi, Vs, respectively, then B(¢') is an equational basis
for V1 V Vs, where ¢ = A By V A Bs. So, the implication is a consequence of
a finite subset B of B(¢'), by compactness. It is clear then, that BUB™(¢')
is a finite equational basis for V; V Vs.

2) Note that LG satisfies A, (Ay(z)) & Az (z) and p,(x) = A,-1(x), where

2z~ = 2\e since

A:(Aw(x)) =2\(w\zw Ae)zAe
=z Y wlzwAe)zAe
=z lwlzwz Az7tz Ae
= (w2) lzwz Ae
= wz\zwz N e
= Auwz(z)

and
po(z) =2z/zNe=z2zz"  ANe=zN\zz  Ae = A,-1(2).
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So, A;(Aw(z Ae)) = Ayz(z Ae) and p,(x Ae) = A,-1(z Ae) hold in LG. The
same two equations hold in CanC; RL, since for any negative element a and
any element b,

Mp(a) =b\abhe=b\baANe=aANe=a

and py(a) = a A e = a. Thus, £G and CanC; RL satisfy B3 — B2.
On the other hand, the variety RLC satisfies the implication

xVy=e = )\z(m)va(y):e>

by Theorem 2.3. We will show that the same implication holds in C;;/ RL.
If zVy = e, then, by Lemma 3.2, z¥ V ¢¥ = e. Since, z < e, we have
¢ <z < e; so, for all z, ¢z = zxk, hence z¥ < z\xkz and zF < zack/z
Since z* < e, this implies

a* < 2\z*z Aeand 2F < 22k /2 A,

ie., zF < X\ (z%) and z*F < p,(zF), for all z. Thus, \,(zF) V pu(¥*) = e.
Moreover, left and right conjugates are increasing in their arguments, so
A2(z) V pu(y) = e. So, RLC and C; RL satisfy the implication B — B},
hence also the implication B — B2.

Using the same argumentation as in the proof of (1), it is easy to see that
the join LGV CanC; RLV RLE v Ck_ RL of the four varieties satisfies the
implication B} — B32. Consequently, every subvariety of the join satisfies
the implication, as well. Statement (2) then follows from (1). ]

COROLLARY 4.5. The join of two finitely based commutative varieties of
residuated lattices is finitely based.

It is an open problem whether the join of two finitely based varieties of
residuated lattices is finitely based.

COROLLARY 4.6. The intersection of two finitely aziomatized substructural
logics over FLe T or FLg is finitely aziomatized, as well.

5. Direct product decompositions

Certain pairs of subvarieties of RL are so different that their join decom-
poses into their Cartesiasn product - the clrss of all Cartesian products of
algebras of the two varieties up to isomorphism. Such a pair is the variety of
£-groups and the variety of their negative cones. The following proposition
is in the folklore of the subject and allows us to obtain such decompositions
given two projection terms.
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PROPOSITION 5.1. Let V1, Vs be subvarieties of RL with equational bases
By and Bs, respectively, and let w1(z), mo(x) be unary terms, such that Vq
satisfies m1(x) = z and mo(z) ~ e and Vs satisfies m1(x) = e and mo(z) ~ .
Then V1 V Vo = Vi X Vs and the following list, By * Ba, of equations is an
equational basis for the variety V1V Va.

(1) m(z) - ma(z) ~ =
(2) mi(mi(z)) ~ mi(z) and mi(mj(z)) ~ e, fori# j;i,5 € {1,2}
(3) mi(zxy) ~ mi(z) * m(y), where x € {A,V,-, /,\} and i € {1,2}
(4) e(m(z1),...,m1(zn)), for all equations e(x1,...,zn) of Bi
)

(5) e(ma(z1),...,m2(zy)), for all equations e(x1,...,zn) of By

The same decomposition holds for the join of any pair of subvarieties of
V1, Vs. Note that if B1, By are finite, then so is By * Bs.

PROOF. It is easy to see that the equations in Bj * By hold both in V; and
Vs, hence they hold in V; V Vs, also. Moreover, V; X Vo C V; V V,. Finally,
suppose that the residuated lattice A satisfies the equations By % Bg; we will
show that A is in V; X V.

Define A; = {z € A| m(x) = e} and Az = {z € A| m1(z) = e}. Using
(3) and (1), it is easy to see that A; and A are subalgebras of A. Define
the map f : A — Aj x Ay, by f(z) = (m(z),m2(x)). It is easy to check
that f is well defined, using (2); that it is a homomorphism, using (3); one-
to-one, using (1); and onto, using (3) and (1). Thus, A is isomorphic to
Ay X Ay € V| X V. |

The first example of a pair of two varieties whose join is their Cartesian
product is the variety of /-groups and the variety of integral residuated
lattices.

COROLLARY 5.2. The join of LG and ITRL is equal to their product. More-
over, if By = {(e/z)x =~ e} and By = {e Az =~ z}, then By * By is an
equational basis for LGV IRL.

PROOF. Let m1(x) = e/(e/z) and mo(z) = (e/x)z. It is easy to see that LG
satisfies e/(e/z) ~ e(ex™!)™! ~ z and (e/z)r ~ ™'z ~ e. Moreover, TR’
satisfies e/ = e, so it also satisfies (e/z)z ~ ex ~ x and e/(e/z) ~ e. i@

It is shown in [2] that the class £G™, consisting of the negative cones of
£-groups, is a variety. As an application of the previous example we have

LGV LG = LG x LG™.



238 N. Galatos

Moreover, the class ZGMVY = Mod(z/(y\z) ~ z Vy = (z/y)\z) of
integral generalized MV-algebras is easily shown to be a subvariety of ZRL.
So, Corollary 5.2 provides an equational basis for LGV IGMYV = LG x
IGMV. In [7], generalized MV-algebras are studied and an alternative,
simpler equational basis is given for LGV ZGMV.

The second example involves certain finitely generated varieties, that
actually are in the variety RLC.

For every natural number n, set T, = {T,e} U {ux | k € N,}, where
N, ={1,2,...n}. Define an order relation on T;, by

up < iff k > 1, and up, < e < T, for all natural numbers k,! < n.
Also, define multiplication by
xT =Tz = z, for all z # e and ugu = Upmin{nkt1), for all k,1 € Np;
and the two division operations by
z/y =\{z € Tn|zy < z} and y\z = V{z € Tp, | yz < z}.
It is easy to verify that T,, = (T, A, V, -\, /, ) is a residuated lattice.
* T
e
Uy

U2

® U,

Figure 1. The residuated lattice Th.

The finitely generated varieties V(Ty,) are distinct atoms in the subva-
riety lattice of residuated lattices. For a discussion on minimal residuated-
lattice varieties we refer the reader to [5].

COROLLARY 5.3. Let V be a variety of residuated lattices that satisfies the
identities (e/(e/x))™ < x and (z Ae)” = (z A €)™, for some n € N. Then,
CanIRLVY =CanIRL x V.
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PROOF. Let m1(z) = ((e Az)""!/(e A z)") A e and ma(z) = (e/(e/z))" V .
Note that CanZRL satisfies
m(z) = ((eAz)" ™ /(eAz) ) Nem (eAx)Nem T

and
mo(z) = (e/(e/z))" Ve r e Ve

On the other hand, V satisfies
ma(x) = (e/(e/z))" Ve~
and
m(x) = ((eA2)" T (enz)) Aem ((eAz)*/(eAz)") Ae~e. ]

COROLLARY 5.4. The join of the varieties V = V(Ty,Ti,,...,T;,) and
CanIRL is equal to their Cartesian product, for all k,i1,...,5, € N.

PROOF. In view of the last corollary, we need only verify that V satisfies the
identities (z A e)" ~ (z A e)"*! and (e/(e/x))" < z, for some n € N.

If n > m, then (e Az)"t! = (e Az)™ = (e Ax)", for z € Ty,. Moreover,
(e/(e/T))" < T, (e/(e/e))" = e and (e/(e/))" = (e/T)" = u™ < x, for
z < e. If n > max{i1,...,i}, then V = V(T;,,Ty,,...,T;,) satisfies both
identities. ]

Note that ZRLVV(T1) # ZRLx V(Ty), since A is in S(2 x T) but not
in ZRL x V(Ty), where A = {(1,T),(1,e),(1,u1),(0,u1)} and 2 = {0,1}.
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