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Abstract. It is well known that classical propositional logic can be
interpreted in intuitionistic propositional logic. In particular Glivenko’s
theorem states that a formula is provable in the former iff its double
negation is provable in the latter. We extend Glivenko’s theorem and
show that for every involutive substructural logic there exists a minimum
substructural logic that contains the first via a double negation interpre-
tation. Our presentation is algebraic and is formulated in the context of
residuated lattices. In the last part of the paper, we also discuss some
extended forms of the Kolmogorov translation and we compare it to the
Glivenko translation.

1. Introduction

The following theorem, due to Glivenko [13], shows that classical propo-
sitional logic can be interpreted in intuitionistic propositional logic.

Theorem 1.1 (Glivenko). A formula φ is provable in classical propositional
logic iff the formula ¬¬φ is provable in intuitionistic propositional logic.

Extensions of this theorem can be found in [5] and [6].

Theorem 1.2.

(1) A formula φ is provable in classical propositional logic iff the formula
¬¬φ is provable in the extension SBL of Hájek basic logic by the
axiom (χ ◦ (χ→ ¬χ)) → ψ.

(2) A formula φ is provable in  Lukasiewicz infinite-valued logic iff the
formula ¬¬φ is provable in Hájek basic logic.

(3) Let L be an extension of FLew – the full Lambek calculus with ex-
change and weakening, and 0 → ψ among its axioms – that contains
the axiom ¬¬(¬¬ψ → ψ) and let In(L) be the extension of L by
the axiom ¬¬ψ → ψ. Then a formula φ is provable in In(L) iff the
formula ¬¬φ is provable in L.
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All the logics mentioned above are special cases of substructural logics
over FL; see [11] for a study of these logics. Moreover, the above theo-
rems establish the interpretability of an involutive logic in another logic. A
(commutative) logic with negation is called involutive, if the double negation
formula ∼∼φ ↔ φ is provable in it; we use the notation ∼φ for φ → 0,
rather than ¬φ, if 0 → ψ is not assumed to be an axiom. Observe that
the previous results are limited to the case, where the rules of exchange and
weakening are present. In FL neither of these rules is assumed and two
negations ∼φ and −φ are considered. In general, a substructural logic is
called involutive, if the formulas −∼φ↔ φ and ∼−φ↔ φ are provable.

If K and L are substructural logics, we say that the Glivenko property
holds for K relative to L iff, for all formulas φ over the language of FL,

`L φ iff `K −∼φ iff `K ∼−φ,
where `M denotes the consequence relation associated with the logic M.

We will base our study on results of [11] that are reviewed in the next
section. In view of the fact that the subvarieties of the variety FL of pointed
residuated lattices serve as equivalent algebraic semantics for substructural
logics over FL – see Theorem 2.5 – the Glivenko property can also be refor-
mulated in algebraic terms. If W and V are subvarieties of FL, we say that
the Glivenko property holds for W relative to V iff, for every term t over the
language of FL,

|=V 1 ≤ t iff |=W 1 ≤ −∼ t iff |=W 1 ≤ ∼− t,
where |=K denotes the semantical consequence relation relative to the class
of algebras K; e.g., see section 3.2 of [11]. It follows from the algebraization
of FL that the Glivenko property holds for K relative to L iff it holds for
V(K) relative to V(L).

It is natural to consider the following strengthening of the Glivenko prop-
erty. If W and V are subvarieties of FL, we say that the equational Glivenko
property holds for W relative to V iff, for all terms s, t over the language of
FL,

|=V s ≤ t iff |=W −∼ s ≤ −∼ t iff |=W ∼− s ≤ ∼− t.
On the other hand, staying within the setting of logic, we can strengthen

the Glivenko property in a different direction. We say that the deductive
Glivenko property holds for K relative to L iff, for every set of formulas
Σ ∪ {φ} over the language of FL,

Σ `L φ iff −∼Σ `K −∼φ iff ∼−Σ `K ∼−φ,
where −∼Σ = {−∼σ | σ ∈ Σ}. In algebraic terms, the deductive Glivenko
property holds for W relative to V iff, for all sets of terms {ti | ∈ I} ∪ {t}
over the language of FL,

D |=V 1 ≤ t iff −∼D |=W 1 ≤ −∼ t iff ∼−D |=W 1 ≤ ∼− t,
where D = {1 ≤ ti | ∈ I} and −∼D = {1 ≤ −∼ ti | i ∈ I}.

A common strengthening of all these three types of Glivenko property is
the following. If W, V are subvarieties of FL, we say that the deductive
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equational Glivenko property holds for W relative to V iff, for all sets of
equations E ∪ {s ≈ t} over the language of FL,

E |=V s ≤ t iff −∼E |=W −∼ s ≤ −∼ t iff ∼−E |=W ∼− s ≤ ∼− t,

where −∼E = {−∼u ≈ −∼ v | (u ≈ v) ∈ E}.
We will prove that the equational Glivenko property and the deductive

equational Glivenko property are equivalent and they imply that L (or V) is
involutive; a variety V is called involutive, if it satisfies ∼−x ≈ x ≈ −∼x.
The other properties are not equivalent in general – see Proposition 4.9 and
Proposition 4.10 – but under the assumption that L (or V) is involutive all
of the properties mentioned above are equivalent.

We show that for every involutive substructural logic L, there exists a
substructural logic G(L) such that some/any Glivenko property holds for
a substructural logic K relative to L iff G(L) ⊆ K ⊆ L, see Corollary 4.7.
Given an axiomatization of a logic L, we provide an axiomatization for the
logic G(L), see Corollary 4.12, which is finite if L is finitely axiomatized,
see Corollary 4.13, and show that G is an interior operator on the lattice of
substructural logics, see Lemma 3.3(1). This answers the question: Given an
involutive substructural logic L, for which logics does some Glivenko property
hold relative to L?

We continue by addressing a question in the other direction: Given a
substructural logic K, when and relative to which logics does a Glivenko
property hold for K? We call two substructural logics (or subvarieties of FL)
Glivenko equivalent if they contain the same negated formulas (equations,
respectively), see Lemma 3.1. The equivalence classes are intervals of the
lattice of substructural logics (the lattice of subvarieties of FL) of the form
[G(K),M(K)] (or [M(W),G(W)]). It turns out that two logics K1 and
K2 are Glivenko equivalent iff G(K1) = G(K2); see Lemma 3.3(3). In this
case, any of the Glivenko properties holds for K2 relative to some logic iff
the property holds for K1 relative to the same logic. Additionally, any of
the Glivenko properties above holds for K relative to some substructural
logic iff it holds relative to M(K); see Propositions 4.1, 4.4 and 4.6.

For each of the three Glivenko properties, we describe different degrees
of involutiveness that M(K) has to possess. The existence of an involutive
substructural logic (or subvariety of FL) relative to which some/any of the
Glivenko properties holds for K (or W) is equivalent to the condition that
K contains the Glivenko logic G (or W being contained in the Glivenko
variety G); see Theorem 5.7 and the comments following it.

In each of the three Glivenko properties discussed above, there are three
statements involved, which are stipulated to be equivalent. For example, we
have

|=V s ≤ t iff |=W −∼ s ≤ −∼ t iff |=W ∼− s ≤ ∼− t.
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in the equational Glivenko property. One can consider finer versions of the
properties by stipulating that the first two statements (left version) or the
first and the last statement (right version of the property) are equivalent.
So, for example, the left equational Glivenko property holds for W relative
to V iff, for all terms s, t over the language of FL,

|=V s ≤ t iff |=W −∼ s ≤ −∼ t.
Our analysis respects these more detailed considerations and provides left
and right versions of each of the results that we show. For simplicity we state
most of the results in their left versions, but the opposite statements, where
“left” is replaced by “right” and the terms and equations in the statement
are replaced by their opposite, hold, as well.

In Section 6, we present some special cases. In particular, we show that
Theorems 1.1 and 1.2 follow from our analysis. Moreover, we obtain sim-
plified axiomatizations for the largest integral subvariety of FL for which
Glivenko’s theorem holds with respect to a given integral involutive vari-
ety. Also, we study the case where a Glivenko property holds relative to the
variety of Boolean algebras and the case of the subvarieties of GBL-algebras.

Finally, in Section 7, we discuss briefly a translation that generalizes
the Kolmogorov translation to substructural logics and compare it to the
Glivenko translation.

2. Preliminaries

Our approach, presentation and proofs of most of the results are algebraic.
Therefore, we begin by reviewing the definitions and results of [11] needed
for this paper, pertaining to the connection of substructural logics to their
algebraic counterparts: residuated lattices. The reader is referred to [11] for
the proofs and for further results.

A residuated lattice-ordered monoid, or residuated lattice, is an algebra
A = 〈A,∧,∨, ·, \, /, 1〉 such that 〈A,∧,∨〉 is a lattice, 〈A, ·, 1〉 is a monoid
and multiplication is residuated with respect to the order by the division
operations \, /; i.e., for all a, b, c ∈ A,

a · b ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c.
A pointed residuated lattice, or FL-algebra, A = 〈A,∧,∨, ·, \, /, 1, 0〉 is an al-
gebra such that 〈A,∧,∨, ·, \, /, 1〉 is a residuated lattice and 0 is an arbitrary
element of A.

We assume that, among the operations for residuated lattices, multipli-
cation is performed first followed by the division operations and the lattice
operations. So, for example, x/yz ∧ u\v simplifies [x/(yz)] ∧ (u\v). We
denote by FmL the set of terms over the language L of residuated lat-
tices. By t ≤ s we denote both the equality t = t ∧ s, if t, s are elements
of a (pointed) residuated lattice, and the equation t ≈ t ∧ s, if t, s are
terms. It is easy to see that in a (pointed) residuated lattice the equality
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s = t is equivalent to the inequality 1 ≤ s\t ∧ t\s. The opposite top of a
(pointed) residuated lattice term t is defined inductively on the complex-
ity of t. For all terms s, t, we define 1op = 1, 0op = 0, (s · t)op = t · s,
(s\t)op = t/s, (t/s)op = s\t, (s ∧ t)op = t ∧ s, and (s ∨ t)op = t ∨ s. Essen-
tially, the opposite of a term is its “mirror image”. We extend the definition
to equations, by (s ≈ t)op = (top ≈ sop), and to metalogical statements
in the obvious way. Note that (s ≤ t)op = (top ≥ sop). Examples of mu-
tually opposite equations can be seen in each statement of the following
lemma. If A = 〈∧,∨, ·, \, /, 1, 0〉 is a pointed residuated lattice, the algebra
Aop = 〈∧,∨, ·op, /, \, 1, 0〉, where x ·op y = y · x, is also a pointed residuated
lattice that is called the opposite of A.

Lemma 2.1. [3], [11] The following identities hold in all (pointed) residu-
ated lattices.

(1) x(y ∨ z) ≈ xy ∨ xz and (y ∨ z)x ≈ yx ∨ zx;
(2) x\(y ∧ z) ≈ (x\y) ∧ (x\z) and (y ∧ z)/x ≈ (y/x) ∧ (z/x);
(3) x/(y ∨ z) ≈ (x/y) ∧ (x/z) and (y ∨ z)\x ≈ (y\x) ∧ (z\x);
(4) (x/y)y ≤ x and y(y\x) ≤ x;
(5) x(y/z) ≤ (xy)/z and (z\y)x ≤ z\(yx);
(6) (x/y)/z ≈ x/(zy) and z\(y\x) ≈ (yz)\x;
(7) x\(y/z) ≈ (x\y)/z;
(8) x/1 ≈ x ≈ 1\x;
(9) 1 ≤ x/x and 1 ≤ x\x;

(10) x ≤ y/(x\y) and x ≤ (y/x)\y;
(11) y/((y/x)\y) = y/x and (y/(x\y))\y = x\y;
(12) x/(x\x) = x and (x/x)\x = x;
(13) (z/y)(y/x) ≤ z/x and (x\y)(y\z) ≤ x\z.

Multiplication is order preserving in both coordinates; each division operation
is order preserving in the numerator and order reversing in the denominator.
Moreover, if a residuated lattice has a least element ⊥, then it has a greatest
element >, as well, and > = ⊥/⊥ = ⊥\⊥.

The classRL of residuated lattices and the class FL of pointed residuated
lattices are both varieties. We denote their subvariety lattices by S(RL) and
S(FL), respectively.

A (pointed) residuated lattice is called commutative, if its monoid reduct
is commutative; i.e., if it satisfies the identity xy ≈ yx. It is called integral,
if its lattice reduct has a top element and the latter coincides with the mul-
tiplicative identity 1; i.e., if it satisfies x ≤ 1. Finally, it is called contractive,
if it satisfies the identity x ≤ x2. It is easy to see that in a residuated lattice
commutativity is equivalent to x/y ≈ y\x; in this context we write x→ y for
x\y. We denote by CRL and CFL the varieties of commutative residuated
lattices and pointed commutative residuated lattices, respectively.

In a pointed residuated lattice we define two negation operations ∼x =
x\0 and −x = 0/x. A pointed residuated lattice is called left involutive
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(right involutive), if it satisfies the identity −∼x ≈ x (∼−x ≈ x, respec-
tively). It is called involutive, if it is both left and right involutive; it is called
cyclic, if it satisfies ∼x ≈ −x. Note that for every pointed residuated lat-
tice term t, (∼ t)op = − top and (− t)op = ∼ top and that every commutative
pointed residuated lattice is cyclic. We assume that the negation operations
have priority over all other operations; for example, −y/x means (−y)/x.

Lemma 2.2. If A is a pointed residuated lattice and x, y in A, then
(1) ∼(x ∨ y) = ∼x ∧ ∼ y and −(x ∨ y) = −x ∧ − y;
(2) if x ≤ y, then ∼ y ≤ ∼x and − y ≤ −x;
(3) x ≤ −∼x and x ≤ ∼−x;
(4) ∼−∼x = ∼x and −∼−x = −x;
(5) −∼x = −∼ y iff ∼x = ∼ y.
(6) ∼−x = ∼− y iff −x = − y.
(7) −∼(x/y) · y ≤ −∼x and y · ∼−(y\x) ≤ ∼−x.
(8) − y/x = −(xy) and x\∼ y = ∼(yx).
(9) x\− y = ∼x/y.

(10) x\− y = −∼x\− y and ∼ y/x = ∼ y/∼−x.
(11) −∼(x\y) ≤ −∼(−∼x\−∼ y) and

∼−(y/x) ≤ ∼−(∼− y/∼−x).
(12) −∼(−∼ y/x) = −∼ y/x and ∼−(x\∼− y) = x\∼− y.
(13) xy ≤ − z iff −∼x · y ≤ − z. Also, xy ≤ ∼ z iff x · ∼− y ≤ ∼ z.

Proof. The first statement is a direct consequence of Lemma 2.1(3); the sec-
ond statement follows from the first one. Statements (3) and (4) are conse-
quences of statements (10) and (11) in Lemma 2.1, for y = 0. Moreover, (5)
and (6) follow from (4). For (7), note that (x/y)y(x\0) ≤ x(x\0) ≤ 0, by (4)
of Lemma 2.1. We have successively, y(x\0) ≤ (x/y)\0 = [0/((x/y)\0)]\0,
by (4), [0/((x/y)\0)]y(x\0) ≤ 0, [0/((x/y)\0)]y ≤ 0/(x\0), and −∼(x/y) ·
y ≤ −∼x. Likewise, we prove the opposite identity. To obtain (8), note
that, by (6) of Lemma 2.1, we have − y/x = (0/y)/x = 0/xy = −(xy). For
(9), we use (7) of Lemma 2.1 to obtain x\− y = x\(0/y) = (x\0)/y = ∼x/y.
Using (9) and (4), we have x\− y = ∼x/y = ∼−∼x/y = −∼x\− y, so we
obtain (10). By (3) and (10), x\y ≤ x\−∼ y = −∼x\−∼ y; then, (11) fol-
lows by (2). For (12), we use (8) and (4) to obtain −∼(−∼ y/x) = −∼−(x·
∼ y) = −(x · ∼ y) = −∼ y/x. Finally, for (13) we have xy ≤ − z = 0/z iff
xyz ≤ 0 iff yz ≤ x\0 = −∼x\0 iff −∼x · yz ≤ 0 iff −∼x · y ≤ − z. �

Lemma 2.3. If A is a cyclic pointed residuated lattice, then for all x, y, z ∈
A, we have

(1) xy ≤ 0 iff yx ≤ 0,
(2) xyz ≤ 0 iff yzx ≤ 0 iff zxy ≤ 0,
(3) xyz ≤ 0 iff ∼∼x · ∼∼ y · ∼∼ z ≤ 0,
(4) xy ≤ ∼ z iff ∼∼x · ∼∼ y ≤ ∼ z.

Proof. For (1), if xy ≤ 0, then x ≤ 0/y = y\0, so yx ≤ 0. Condition (2) is
a direct consequence of (1).
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For (3), note that∼∼x·∼∼ y·∼∼ z ≤ 0 implies xyz ≤ 0, by Lemma 2.2(3).
Conversely, assume that xyz ≤ 0. Then, we have yz ≤ x\0 = ∼x = ∼∼∼x,
by Lemma 2.2(4). So, we obtain ∼∼x ·y · z ≤ 0 and y · z ·∼∼x ≤ 0, by (2).
By repeating the same argument twice, we obtain ∼∼x · ∼∼ y · ∼∼ c ≤ 0.

Finally, (4) follows easily from (3). �

Let L = {∧,∨, ·, \, /, 1, 0} be the language of pointed residuated lattices.
By FL we denote the full Lambek sequent calculus over L, as well as the
set of formulas provable in it; see [11] for the list of the rules of FL.

If Σ ∪ {φ} is a set of formulas, we write Σ `FL φ in case there is a
proof of the sequent ⇒ φ in the system obtained from FL by adding as
initial sequents the ones of the form ⇒ σ, for σ ∈ Σ. Clearly, `FL is a
substitution invariant and finitary consequence relation on FmL; for the
definition of consequence relations and their properties, see e.g. [8].

A substructural logic (over FL) is a set of formulas that is closed un-
der `FL and substitution. If L is a substructural logic and Σ ∪ {φ} a set
of formulas, we write Σ `L φ for Σ ∪ L `FL φ. It is clear that `L is a
substitution invariant and finitary consequence relation. We say that a sub-
structural logic L is axiomatized by a set of formulas Σ, if L is the smallest
substructural logic containing Σ.

Theorem 2.4. [11] A set of formulas L is a substructural logic iff it is
closed under substitution and under the following rules

(fl) FL ⊆ L.
(mp`) If φ, φ\ψ ∈ L, then ψ ∈ L.
(adju) If φ ∈ L, then φ ∧ 1 ∈ L.
(pn) If φ ∈ L, then ψ\φψ, ψφ/ψ ∈ L.

A substructural logic L is called integral, if for every φ, φ\(1∧φ) ∈ L; it is
called contractive, if for every φ, φ\φ2 ∈ L; finally, it is called commutative, if
for every φ, ψ, φψ\ψφ ∈ L. If a logic is L integral and additionally 0\φ ∈ L,
for every φ, we say that L has weakening. It is easy to see that a logic is
integral, contractive, commutative or has weakening, iff it includes the logic
FLi, FLc, FLe or FLw, respectively; the reader is referred to [11] for the
definition of these four logics.

For every class K of pointed residuated lattices and for every set Φ of
formulas over L, let L(K) = {φ ∈ FmL |K |= 1 ≤ φ} and V(Φ) = Mod({1 ≤
φ | φ ∈ Φ}). Moreover, if Σ is a set of formulas over L and E is a set of
equations over L, we define the set of equations Eq(Σ) = {1 ≤ φ | φ ∈ Σ},
and the set of formulas Fm(E) = {t\s ∧ s\t | (t ≈ s) ∈ E}. Let s ≈ t
and si ≈ ti, i ∈ I, be equations in the language of FL, x̄ the sequence of
variables in them and K a subclass of FL. Following [2], we say that s ≈ t is
a K-consequence of E = {si ≈ ti | i ∈ I}, in symbols E |=K s ≈ t, iff, for all
A ∈ K and every assignment ā in A for the variables x̄, if A |= si(ā) = ti(ā),
for all i ∈ I, then A |= s(ā) = t(ā). Note that if E is finite, then

E |=K s ≈ t iff K |= (∀x̄)(
∧

i∈I si(x̄) = ti(x̄) ⇒ s(x̄) = t(x̄)).
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Theorem 2.5. [11]
(1) For every K ⊆ FL, L(K) is a substructural logic and for every Φ ⊆

FmL, V(Φ) is a subvariety of FL.
(2) The maps L : S(FL) → SL and V : SL → S(FL) are mutually

inverse, dual lattice isomorphisms.
(3) If a substructural logic L is axiomatized by a set of formulas Φ, then

the variety V(L) is axiomatized by the set of equations Eq(Φ).
(4) If a subvariety V of FL is axiomatized by a set of equations E, then

the substructural logic L(V) is axiomatized by the set of formulas
Fm(E).

(5) A substructural logic is commutative, integral or contractive iff the
corresponding variety is.

(6) If Σ ∪ {φ} is a subset of FmL and L is a substructural logic, then
Σ `L φ iff Eq(Σ) |=V(L) 1 ≤ φ, and

φ a`L 1\φ ∧ φ\1
(7) If E ∪ {t ≈ s} is a set of equations in L and V is a subvariety of

FL, then
E |=V t ≈ s iff Fm(E) `L(V) t\s ∧ s\t, and

s ≈ t =||=V s\t ∧ t\s ≈ 1

The theorem implies, in the terminology of [2], that every subvariety V
of FL is an equivalent algebraic semantics for the substructural logic L(V),
where the defining equation is 1 ≈ φ ∧ 1 and the equivalence formula is
φ\ψ ∧ ψ\φ.

Theorem 2.5 establishes a link between substructural logics and varieties
of pointed residuated lattices and it allows for the interchange of algebraic
and logical terminology throughout the paper. We will use the language
of logic and algebra interchangingly throughout the paper, without explicit
reference to the algebraization result.

An iterated conjugate is a composition of polynomials of the form λa(x) =
a\xa ∧ 1 and ρb(x) = bx/b ∧ 1, for various values of a and b. For example,
γ(x) = a\(b\(cx/c ∧ 1)b ∧ 1)a ∧ 1 is an iterated conjugate. See [3] and [11]
for further discussion on conjugate terms.

The following theorem is a weak version of the classical deduction theorem
and is called parametrized local deduction theorem in [7].

Theorem 2.6. [11] If Σ∪∆∪{φ} is a subset of FmL and L is a substructural
logic, then

Σ,∆ `L φ iff Σ `L (
∏n

i=1 γi(ψi))\φ,
for some non-negative integer n, iterated conjugates γi and ψi ∈ ∆, i < n.

In particular, when L is commutative, then
Σ,∆ `L φ iff Σ `L (

∏n
i=1(ψi ∧ 1)) → φ,
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for some non-negative integer n, and ψi ∈ ∆, i < n.

We denote by ΣL the set of all substitutions in the language L of (pointed)
residuated lattices. Also, if Φ is a set of formulas, we set ΣL(Φ) = {σ(φ)|σ ∈
ΣL, φ ∈ Φ}. If L is a substructural logic and Φ is a set of formulas, we denote
by L + Φ the least substructural logic that contains L ∪ Φ.

The following corollary is an easy consequence of Theorem 2.4 and The-
orem 2.6.

Corollary 2.7. If Φ ∪ {ψ} is a set of formulas, then FL + Φ `FL ψ iff
ΣL(Φ) `FL ψ.

The following lemma allows for a certain degree of commutativity when
dealing with inequalities, the right-hand side of which is negated. Note that
we cannot use Lemma 2.3, as we do not assume cyclicity.

Lemma 2.8. Let φi and ψ be formulas, and γi iterated conjugates, for
all i ∈ {1, 2, . . . , n}, where n is a non-negative integer. If

∏n
i=1 γi(φi) ≤

−ψ, then there exist iterated conjugates γ′i, for i ∈ {1, 2, . . . , n}, such that∏1
i=n−∼ γ′i(φi) ≤ −ψ. [Note the change in the order of the product.]

Proof. If γ1(φ1)γ2(φ2)γ3(φ3) · · · γn(φn) ≤ −ψ, then we have

[−∼ γ1(φ1)]γ2(φ2)γ3(φ3) · · · γn(φn) ≤ −ψ,

by Lemma 2.2(13). Recalling that ρa(b)a ≤ ab, by Lemma 2.1, we have
successively

ρ[−∼ γ1(φ1)](γ2(φ2))[−∼ γ1(φ1)]γ3(φ3) · · · γn(φn) ≤ −ψ,

ρ[−∼ γ1(φ1)](γ2(φ2))ρ[−∼ γ1(φ1)](γ3(φ3))[−∼ γ1(φ1)] · · · γn(φn) ≤ −ψ,
and finally, for a = [−∼ γ1(φ1)],

ρa(γ2(φ2))ρa(γ3(φ3)) · · · ρa(γn(φn))[−∼ γ1(φ1)] ≤ −ψ,

or simply, for γ′i(φi) = ρa(γi(φi)),

γ′2(φ2)γ′3(φ3) · · · γ′n(φn)[−∼ γ1(φ1)] ≤ −ψ.

By another application of Lemma 2.2(13), we have

[−∼ γ′2(φ2)]γ′3(φ3) · · · γ′n(φn)[−∼ γ1(φ1)] ≤ −ψ

and proceeding in the same spirit as above, we have, for γ′′i (φi) = ρb(γ′i(φi))
and b = [−∼ γ′2(φ2)],

γ′′3 (φ3) · · · γ′′n(φn)[−∼ γ′2(φ2)][−∼ γ1(φ1)] ≤ −ψ.

Proceeding inductively, we obtain

[−∼ γn(φn)] · · · [−∼ γ2(φ2)][−∼ γ1(φ1)] ≤ −ψ,

for some iterated conjugates γi. �
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3. Glivenko equivalence

We introduce the notion of Glivenko equivalence between subvarieties of
FL. Via the algebraization theorem, Theorem 2.5, there is an associated
relation between substructural logics, for which we will use the same name.
Glivenko equivalence will serve as a unifying concept that will connect the
different Glivenko properties we will be consider.

Lemma 3.1. Let W, V be subvarieties of FL and let r, s, t, si, ti terms over
FL, for i ∈ I. We consider the sets E = {si ≈ ti|i ∈ I}, D = {1 ≤ ti|i ∈ I},
∼E = {∼ si ≈ ∼ ti | i ∈ I} and ∼D = {1 ≤ ∼ ti | i ∈ I}. The following
statements are equivalent.

(1) V |= ∼ s ≈ ∼ t iff W |= ∼ s ≈ ∼ t.
(2) V |= − s ≈ − t iff W |= − s ≈ − t.
(3) V |= ∼ s ≤ ∼ t iff W |= ∼ s ≤ ∼ t.
(4) V |= r ≤ ∼ t iff W |= r ≤ ∼ t.
(5) V |= 1 ≤ ∼ t iff W |= 1 ≤ ∼ t.
(6) D |=V 1 ≤ ∼ t iff D |=W 1 ≤ ∼ t.
(7) ∼D |=V 1 ≤ ∼ t iff ∼D |=W 1 ≤ ∼ t.
(8) E |=V ∼ s ≈ ∼ t iff E |=W ∼ s ≈ ∼ t.
(9) ∼E |=V ∼ s ≈ ∼ t iff ∼E |=W ∼ s ≈ ∼ t.

Proof. Assume that (1) holds. Then, V satisfies − s ≈ − t iff it satisfies
∼− s ≈ ∼− t, by Lemma 2.2(6). By (1), this is true iff W satisfies ∼− s ≈
∼− t; i.e., iff W satisfies − s ≈ − t. Therefore, (1) implies (2); the converse
is obtained by interchanging the two negation operations.

Note that ∼ s ≤ ∼ t iff ∼ s ≈ ∼(s∨ t), by Lemma 2.2(1); also ∼ s ≈ ∼ t is
equivalent to the conjunction of ∼ s ≤ ∼ t and ∼ t ≤ ∼ s. The equivalence
between (1) and (3) follows from these two facts.

Obviously, (4) implies both (3) and (5). (5) implies (4), since r ≤ ∼ t
iff 1 ≤ r\∼ t iff 1 ≤ ∼(tr), by Lemma 2.2(8), and (3) implies (4), since
r ≤ ∼ t iff ∼− r ≤ ∼ t, by Lemma 2.2(2,3,4). Consequently, (1)-(5) are all
equivalent. Moreover, the same argument shows that (9) implies (7). It is
clear that (8) implies (9) and that (7) implies (5). We will show that (5)
implies (6) and that (6) implies (8).

Assume that (5) holds. We have {1 ≤ ti | i ∈ I} |=V 1 ≤ ∼ t iff there exists
a natural number n and iterated conjugates γk over a sequence of terms, such
that |=V 1 ≤

∏n
k=1 γk(tik)\∼ t = ∼[t·

∏n
k=1 γk(tik)], by using Theorem 2.5(6)

and Theorem 2.6. By (5) the same equation holds in W for the same n
and the same iterated conjugates, hence {1 ≤ ti | i ∈ I} |=W 1 ≤ ∼ t;
consequently, (6) holds.

Assume, now, that (6) holds. We have ∼ s ≈ ∼ t iff ∼ s ≤ ∼ t and
∼ t ≤ ∼ s, iff 1 ≤ ∼ s\∼ t = ∼(t · ∼ s) and 1 ≤ ∼(s · ∼ t), by Lemma 2.2(8),
iff 1 ≤ ∼(t · ∼ s) ∧ ∼(s · ∼ t), iff 1 ≤ ∼ p, where p = (t · ∼ s) ∨ (s · ∼ t), by
Lemma 2.2(1). Moreover, s ≈ t iff 1 ≤ s\t ∧ t\s. So, (8) can be written in
a form that is a special case of (6). �
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If any of the equivalent statements of the previous lemma holds, we say
that the variety V is Glivenko equivalent to the variety W. Glivenko equiv-
alence coincides with the notion of negative equivalence of S. Odintsov, for
the special cases considerd in [15]. Obviously, Glivenko equivalence is an
equivalence relation on S(FL). It is clear that if V, W are Glivenko equiv-
alent and V ⊆ U ⊆ W, then U is Glivenko equivalent to V and W. So, the
equivalence classes of the Glivenko equivalence relation are convex.

We say that the substructural logics K and L are Glivenko equivalent, if
for all formulas φ,

`K ∼φ iff `L ∼φ
By Lemma 3.1, K and L are Glivenko equivalent iff V(K) and V(L) are
Glivenko equivalent. It follows from Lemma 3.1 that ∼ can be replaced by
− in the above definition.

For every variety V of pointed residuated lattices, let G(V) be the subva-
riety of FL axiomatized by the equations ∼ s ≈ ∼ t, where s, t range over
all pairs of terms such that the equation s ≈ t holds in V. The variety G(V)
is called the Glivenko variety of V.

Lemma 3.2. For every subvariety V of FL, the variety G(V) is also ax-
iomatized by the equations − s ≈ − t, where s ≈ t holds in V.

Proof. Consider the variety G′(V) axiomatized by the equations − s ≈ − t,
where s ≈ t holds in V; we will show that G′(V) = G(V). For every
equation s ≈ t valid in V, the equation − s ≈ − t is valid in V, as well. So,
G(V) satisfies the equation ∼− s ≈ ∼− t, hence it also satisfies the equation
−∼− s ≈ −∼− t. In view of Lemma 2.2(4), we have that − s ≈ − t holds in
G(V). Thus, G(V) ⊆ G′(V). Likewise, we obtain the converse inclusion. �

Lemma 3.3. Let U , V, W be subvarieties of FL.
(1) G is a closure operator on S(FL); i.e.

(a) V ⊆ G(V),
(b) if V ⊆ W, then G(V) ⊆ G(W), and
(c) G(G(V)) = G(V).

(2) The varieties V and G(V) are Glivenko equivalent.
(3) The varieties V and W are Glivenko equivalent iff G(V) = G(W).
(4) The variety G(V) is the largest subvariety of FL that is Glivenko

equivalent to V.

Proof. (1) For (a), note that if ∼ s ≈ ∼ t is an axiom of G(V), namely s ≈ t
is valid in V, then ∼ s ≈ ∼ t is valid in V. Thus, V is a subvariety of G(V).
The fact that G is increasing is clear from its definition. To show that
G(G(V)) ⊆ G(V), let ∼ s ≈ ∼ t be an axiom of G(V). Then, −∼ s ≈ −∼ t
holds in G(V), hence ∼−∼ s ≈ ∼−∼ t holds in G(G(V)). Thus, G(G(V))
satisfies ∼ s ≈ ∼ t, by Lemma 2.2(4).
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(2) If V satisfies − s ≈ − t, then G(V) satisfies ∼− s ≈ ∼− t, hence it
satisfies − s ≈ − t, by Lemma 2.2(6). Conversely, if − s ≈ − t holds in G(V),
then it also holds in V, by (1a). Thus, V and G(V) are Glivenko equivalent.

(3) If V and W are Glivenko equivalent, then G(V) and G(W) are
Glivenko equivalent, by (2). Thus, if ∼ s ≈ ∼ t is an axiom of G(V), then
it is valid in G(W). So, G(W) ⊆ G(V). The other inclusion is obtained in
a similar way, hence G(V) = G(W). Conversely, if G(V) = G(W), then V,
W are Glivenko equivalent, by (2).

(4) If V, W are Glivenko equivalent, then G(V) = G(W), by (3). Since
W ⊆ G(W), by (1), we have W ⊆ G(V). So, in view of (2), G(V) is the
largest subvariety of FL that is Glivenko equivalent to V. �

For a substructural logic L we define the Glivenko logic of L to be G(L) =
L(G(V(L))). It follows from the preceding theorem and from Theorem 2.5
that G(L) is the smallest substructural logic that is Glivenko equivalent to
L.

By definition G(V(L)) is axiomatized by the equations ∼ s ≈ ∼ t, where
s ≈ t ranges over all equations valid in V(L). Recalling that s ≈ t is valid in
V(L) iff the formula s\t∧ t\s is in L iff both of s\t and t\s are in L we have
that G(L) is axiomatized by the formulas ∼ s\∼ t∧∼ t\∼ s, where s\t and
t\s are in L. Therefore, G(L) = FL + {∼ψ\∼φ | φ\ψ ∈ L}. We provide
an alternative axiomatization for G(L).

Proposition 3.4. If L is a substructural logic, then G(L) is axiomatized
relative to FL by either one of the sets {−∼φ |φ ∈ L} and {∼−φ |φ ∈ L};
i.e., G(L) = FL + {−∼φ | φ ∈ L} = FL + {∼−φ | φ ∈ L}.

Proof. We will show that G(L) = M, where M = FL + {−∼φ | φ ∈ L}.
If −∼φ is an axiom of M for φ ∈ L, then 1\φ ∈ L; hence

−∼φ = ∼φ\0 = ∼φ\∼ 1 ∈ G(L).

Consequently, M ⊆ G(L).
Conversely, suppose that ∼ψ\∼φ is an axiom of G(L) for φ\ψ ∈ L. So,

−∼(φ\ψ) ∈ M and ρφ(−∼(φ\ψ)) ∈ M.
By Lemma 2.1(4), we have (0/ψ)φ(φ\ψ) ≤ 0 = ∼ 1, so

(0/ψ)φ[−∼(φ\ψ)] ≤ 0,

by Lemma 2.2(13). Hence, φ[−∼(φ\ψ)] ≤ (0/ψ)\0 = (∼ψ)\0. Since

ρφ(−∼(φ\ψ))φ = [φ(−∼(φ\ψ))/φ ∧ 1]φ ≤ φ(−∼(φ\ψ)),

we have ρφ(−∼(φ\ψ))φ ≤ (∼ψ)\0. So,

ρφ(−∼(φ\ψ)) ≤ ((∼ψ)\0)/φ = (∼ψ)\(∼φ),

by Lemma 2.1(7). By (mp`) of Theorem 2.4, we have (∼ψ)\(∼φ) ∈ M.
Consequently, G(L) ⊆ M. �
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An axiomatization of G(L) is also given in [15], for the special case of
extensions of Johansson’s logic.

We know form Theorem 3.3(4) that given a logic L there exists a smallest
logic G(L) that is Glivenko equivalent to L. For every substructural logic
L, we define the logic

M(L) = FL + {φ | −∼ γ(φ) ∈ L, for every γ ∈ Γ},
where Γ denotes the set of all iterated conjugates.

Theorem 3.5. For every substructural logic L, the logic M(L) is the great-
est element of the Glivenko equivalence class of L.

Proof. If ψ ∈ L, then γ(ψ) ∈ L, by (pn) and (adju) of Theorem 2.4, and
−∼ γ(ψ) ∈ L, by Lemma 2.2(3) and (mp`) of Theorem 2.4; hence ψ ∈ M(L).
Therefore, L ⊆ M(L).

If −ψ ∈ M(L), then FL + Φ `FL −ψ, where

Φ = {φ | −∼ γ(φ) ∈ L, for every γ ∈ Γ}.

By Corollary 2.7, we have ΣL(Φ) `FL −ψ. We will show that ΣL(Φ) = Φ.
Assume that φ ∈ Φ, σ ∈ ΣL and γ ∈ Γ. Let γ′ be the iterated conjugate

obtained from γ by replacing all common variables xi of γ and φ in γ by
new variables yi not appearing in γ or φ. Also, let σ′ be the substitution
that maps the variables yi to the variables xi and otherwise behaves like σ.
It is easy to see that σ′(−∼ γ′(φ)) = −∼ γ(σ(φ)). Since φ ∈ Φ, we have
−∼ γ′(φ) ∈ L and hence −∼ γ(σ(φ)) = σ′(−∼ γ′(φ)) ∈ L. Thus, σ(φ) ∈ Φ.

Consequently, Φ `FL −ψ, so there are φi ∈ Φ and iterated conjugates γi,
for i ∈ {1, 2, . . . , n}, for some non-negative integer n, such that

n∏
i=1

γi(φi) ≤ −ψ

By Lemma 2.8, we have
1∏

i=n

−∼ γ′i(φi) ≤ −ψ

Since φi ∈ Φ, for all i, we have that −∼ γ′i(φi) ∈ L, for all i; hence∏1
i=n−∼ γ′i(φi) ∈ L, by (pn) of Theorem 2.4 and −ψ ∈ L, by (mp`) of

the same theorem. Consequently, L and M(L) are Glivenko equivalent.
Now, assume that K is a substructural logic that is Glivenko equivalent to

L. If ψ ∈ K, then, by Theorem 2.4, we have that σ(ψ) ∈ K, for every substi-
tution σ, γ(σ(ψ)) ∈ K, for every iterated conjugate γ, and −∼ γ(σ(ψ)) ∈ K.
By the Glivenko equivalence, −∼ γ(σ(ψ)) ∈ L, for all σ ∈ ΣL and for all
γ ∈ Γ; thus ψ ∈ M(L). Consequently, K is contained in M(L). �

A similar result is shown in [15] for the special case considered in the
paper.
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The definitions and results in this as well as in the following sections
can be transferred from subvarieties of FL to substructural logics over FL
and vice versa. For example, for a subvariety V of FL we define M(V) =
V(M(L(V))).

It follows, by Lemma 3.3(4) and Theorem 3.5, that the Glivenko equiv-
alence classes are intervals in S(FL) of the form [M(V),G(V)]. Also, the
classes of the Glivenko equivalence between logics are intervals of the form
[G(L),M(L)].

4. Glivenko properties

In this section we discuss when a Glivenko property holds for a sub-
structural logic K relative to a substructural logic L. As mentioned in the
introduction, we consider three types of Glivenko properties. We provide a
characterization for each of them in terms of different types of involutiveness
that we introduce below.

A substructural logic L is called left involutive, if `L ∼−φ\φ, for every φ.
We say that L is left weakly involutive, if ∼−φ `L φ, for every φ, and that
it is left Glivenko involutive, if `L ∼−φ implies `L φ, for every φ. Clearly,
left involutiveness is the strongest and left Glivenko involutiveness is the
weakest among the three properties. In Section 4.3 – see Propositions 4.9
and 4.10 – we will see that the associated implications are strict.

4.1. The Glivenko property. We say that the left Glivenko property holds
for K relative to L, or that K has the left Glivenko property relative to L,
if `L φ iff `K ∼−φ, for all φ. The opposite of the left Glivenko property
(obtained by interchanging ∼ and −) is the right Glivenko property and the
conjunction of the two is the Glivenko property. We define the Glivenko
property for subvarieties of FL by referring to their corresponding substrc-
tural logics. The following result then can be reformulated for subvarieties
of FL in the obvious way.

Proposition 4.1. If L and K are substructural logics, then the following
are equivalent.

(1) The left Glivenko property holds for K relative to L.
(2) K and L are Glivenko equivalent and L is left Glivenko involutive.
(3) L = M(K) and M(K) is left Glivenko involutive.

Proof. We first establish the equivalence of (1) and (2). By setting ∼φ for
φ in (1), it follows by Lemma 2.2(4) that K and L are Glivenko equivalent.
In particular, `K ∼−φ iff `L ∼−φ; hence `L ∼−φ iff `L φ, for every φ,
by (1). Conversely, if (2) holds, then `K ∼−φ iff `L ∼−φ iff `L φ, by the
assumption that L is left Glivenko involutive.

Obviously, (3) implies (2). For the converse implication, note that L ⊆
M(K), since K and L are Glivenko equivalent. Moreover, if `M(K) φ, then
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`M(K) ∼−φ. By Glivenko equivalence, we have `L ∼−φ, so `L φ, since L
is left Glivenko involutive. Thus, M(K) ⊆ L. �

It follows from Proposition 4.1 that in every Glivenko equivalence class
[G(K),M(K)] there is at most one left Glivenko involutive logic and it
is equal to M(K), when it exists. The corresponding statement and the
analogue of Proposition 4.1 hold for subvarieties of FL. Conditions on the
existence of the left Glivenko involutive logic in a Glivenko equivalence class
will be discussed in Section 5; see page 25.

We show that there exists a substructural logic K for which the Glivenko
property does not hold (relative to any logic L). We will state and prove
this result in the terminology of algebra; i.e. we will show that there is a
subvariety V of FL, for which the Glivenko property does not hold. By
Proposition 4.1, it is enough to show that M(V) is not left Glivenko involu-
tive.

We define an order relation on the set A = {⊥, u, 1,>}, by ⊥ < u <
1 < >. Moreover, we define an idempotent multiplication, for which ⊥ is
an absorbing and 1 a unit element, by >u = > and u> = u. It is easy to
check that multiplication preserves order, hence it preserves arbitrary joins,
as well, since A is totally ordered. Therefore, multiplication is residuated
with respect to the order and it can be easily checked that it is associative.
We denote by A the associated pointed residuated lattice, where 0 = ⊥.

Proposition 4.2. The subvariety of FL that is generated by A does not
enjoy the left Glivenko property. Similarly, the variety generated by Aop

does not enjoy the right Glivenko property.

Proof. It is easy to see that A does not have any subalgebras or homomor-
phic images other than the trivial and the universal. Therefore, the variety
W generated by A is an atom, see [9], and M(W) = W. To show that W
is not left Glivenko involutive, it suffices to show that there is a term t such
that A |= 1 ≤ ∼− t, but not A |= 1 ≤ t. Such a term is t(x) = 1/[x∨(x\1)].
Indeed, it is not hard to verify that tA(x) = u and ∼− tA(x) = >, if x 6= 1,
tA(1) = 1 and ∼− tA(1) = >. �

On the other hand, we have the following result.

Proposition 4.3. M(K) is Glivenko involutive whenever K is a substruc-
tural logic that contains FLew. Thus, the Glivenko property holds for every
substructural logic over FLew.

Proof. It follows from Theorem 3.5, and the fact that conjugates do not con-
tribute anything in the commutative integral case, that M(K) = FLew +
{φ | ∼∼φ ∈ K}. We will show that M(K) is Glivenko involutive. If
`M(K) ∼∼φ, then, by Theorem 2.6 and integrality, there exist φi, i ∈ I,
such that `K ∼∼φi and `FLew (

∏
φi) → ∼∼φ. It follows from Lemma 2.8,
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commutativity and integrality that `FLew (
∏
∼∼φi) → ∼∼φ; alterna-

tively, using terminology and results that have not been itroduced yet, it
follows from the fact that λ is a nucleus in the commutative case accord-
ing to Lemma 5.2 of the next section. Therefore, `K ∼∼φ, by (mp`) of
Theorem 2.4; hence `M(K) φ. �

4.2. The deductive Glivenko property. We say that the left deductive
Glivenko property holds for K relative to L, if Σ `L φ iff Σ `K ∼−φ, for
all Σ∪{φ}. The right deductive Glivenko property is defined as the opposite
statement to the left deductive Glivenko property; the deductive Glivenko
property is the conjunction of the two properties.

Proposition 4.4. If L and K are substructural logics and Φ ∪ {ψ} are
formulas, then the following are equivalent.

(1) The left deductive Glivenko property holds for K relative to L.
(2) Φ `L ψ iff ∼−Φ `K ∼−ψ, for all Φ ∪ {ψ}.
(3) K and L are Glivenko equivalent and L is left weakly involutive.
(4) L = M(K) and M(K) is left weakly involutive.

Proof. (1) ⇒ (2). Assume that (1) holds and let ∼−Φ `K ∼−ψ, for some
Φ ∪ {ψ}. Since φ `K ∼−φ for all φ ∈ Φ, we get Φ `K ∼−ψ, by the
transitivity of `K. By (1), we obtain Φ `L ψ. Conversely, let Φ `L ψ,
for some Φ ∪ {ψ}. Taking {∼−χ} for Σ and χ for φ in (1), we obtain
∼−χ `L χ, for every χ. So, ∼−Φ `L φ, for all φ ∈ Φ; hence ∼−Φ `L ψ,
by transitivity. By (1), we get ∼−Φ `K ∼−ψ.

(2)⇒ (3). Recall that ∼−∼−ψ = ∼−ψ; so, for Φ = {∼−ψ}, (2) yields
∼−ψ `L ψ. Moreover, by substituting the empty set for Φ and ∼ψ for ψ in
(2), we obtain `L ∼ψ iff `K ∼ψ, for all ψ, by Lemma 2.2(4). Consequently,
K and L are Glivenko equivalent.

(3) ⇒ (1). Since K and L are Glivenko equivalent, we have Φ `K ∼−ψ
iff Φ `L ∼−ψ. Moreover, since ψ and ∼−ψ are mutually deducible in L,
i.e. ψ `L ∼−ψ and ∼−ψ `L ψ, we have that Φ `L ∼−ψ is equivalent to
Φ `L ψ.

Obviously, (4) implies (3). For the converse, if L is weakly involutive,
then it is Glivenko involutive, so L = M(K), by Proposition 4.1. �

It is easy to see that the opposite of Proposition 4.4 is valid, so we obtain
a characterization for the deductive Glivenko property, as well.

4.3. The equational Glivenko property. In view of Theorem 2.5, it is
clear that K has the left Glivenko property relative to L iff, for every term
t,

V(L) |= 1 ≤ t iff V(K) |= 1 ≤ −∼ t.
It is natural to consider the stronger property given by condition 5 of the
following proposition.

Lemma 4.5. Let W, V be subvarieties of FL and let s, t be terms over FL.
Then, the following statements are equivalent.
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(1) V |= s ≈ t iff W |= −∼ s ≈ −∼ t, for all s, t.
(2) V |= s ≈ t iff W |= ∼ s ≈ ∼ t, for all s, t.
(3) V |= s ≤ t iff W |= −∼ s ≤ −∼ t, for all s, t.
(4) V |= s ≤ t iff W |= ∼ s ≥ ∼ t, for all s, t.
(5) V |= s ≤ t iff W |= s ≤ −∼ t, for all s, t.

The opposite statements are pairwise equivalent, as well.

Proof. The equivalences of (1) to (2) and of (3) to (4) follow from the fact
that their right hand sides are equivalent, by Lemma 2.2. The same holds
for the equivalence of (3) and (5), since by Lemma 2.2, −∼ s ≤ −∼ t iff
s ≤ −∼ t. Moreover, it is clear that (3) implies (1). To show the converse
it is enough to show that (2) implies (3). We assume that (2) holds. The
inequality s ≤ t is valid in V iff the equation s ∨ t ≈ t is valid in V. By (2)
this is the case exactly when W satisfies the equation ∼(s ∨ t) ≈ ∼ t; i.e,
by Lemma 2.2(1), when W satisfies ∼ s ∧ ∼ t ≈ ∼ t. The last equation is in
turn equivalent to ∼ t ≤ ∼ s, which, by Lemma 2.2(2) and (4), is equivalent
to −∼ s ≤ −∼ t.

To show that (1) implies (3), assume that (1) holds. The inequality s ≤ t
is valid in V iff the equation s ∨ t ≈ t is valid in V. By (1) this is the
case exactly when W satisfies −∼(s∨ t) ≈ −∼ t. By Lemma 2.2(5), the last
equation is equivalent to ∼(s∨t) ≈ ∼ t and, by Lemma 2.2(1), it is equivalent
to ∼ s∧∼ t ≈ ∼ t. The last equation is in turn equivalent to ∼ t ≤ ∼ s, which,
by Lemma 2.2(2) and (4), is equivalent to −∼ s ≤ −∼ t. �

LetW and V be subvarieties of FL. We say that the left (right) equational
Glivenko property holds for W relative to V, if any of the statements (1)-
(5) (the opposite statements of (1)-(5), respectively) of the previous lemma
holds. If both the left and the right equational Glivenko property hold
for W relative to V, we say that the equational Glivenko property holds
for W relative to V. The definition for substructural logics refers to the
corresponding varieties. The following results have obvious analogues for
substructural logics.

Proposition 4.6. Let W and V be subvarieties of FL. Then, the following
statements are equivalent.

(1) The left equational Glivenko property holds for W relative to V.
(2) W and V are Glivenko equivalent and V is left involutive.
(3) V = M(W) and M(W) is left involutive.

Proof. Assume that the left equational Glivenko property holds for W rel-
ative to V. By Lemma 2.2, W satisfies −∼−∼x ≈ −∼x, so V satis-
fies −∼x ≈ x; i.e., V is left involutive. Moreover, the variety V satisfies
− s ≈ − t iff W satisfies −∼− s ≈ −∼− t, by (1) of Lemma 4.5, iff W
satisfies − s ≈ − t, by Lemma 2.2(4). Thus, (2) of Lemma 3.1 holds; i.e., V
and W are Glivenko equivalent.

Conversely, assume that V is left involutive and that statement (2) of
Lemma 3.1 of holds; i.e. assume that
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V |= − s ≈ − t iff W |= − s ≈ − t.

We will show that (1) of Lemma 4.5 holds, as well. If V satisfies s ≈ t,
then it also satisfies −∼ s ≈ −∼ t. Thus, W satisfies −∼ s ≈ −∼ t, by
(2) of Lemma 3.1. Conversely, if W satisfies −∼ s ≈ −∼ t, then V satisfies
−∼ s ≈ −∼ t, by (2) Lemma 3.1. So, V satisfies s ≈ t, since V is left
involutive.

Obviously, (3) implies (2). Conversely, if V is left involutive, then it is
left Glivenko involutive, so by the algebraic analogue of Proposition 4.1, we
have V = M(W). �

We summarize the previous results in the following corollary.

Corollary 4.7. Let W, V and U be subvarieties of FL and consider the
three properties for W relative to V – the (left) Glivenko property, deductive
Glivenko property and equational Glivenko property – and the corresponding
notions of involutiveness for V – (left) Glivenko involutive, weakly involutive
and involutive.

(1) A Glivenko property holds for W relative to V iff V possesses the
corresponding type of involutiveness and V ⊆ W ⊆ G(V).

(2) If V and W are Glivenko equivalent, then the left version of a Glivenko
property holds for V relative to U iff it holds for W relative to U .

(3) If V possesses the left version of a type of involutiveness, then the
corresponding right Glivenko property for W relative to V implies
the corresponding left Glivenko property for W relative to V.

(4) In particular, if V possesses both the left and right versions of a type
of involutiveness, then the left and right versions of the corresponding
Glivenko property for W relative to V are mutually equivalent.

Proof. All statements are clear, if one recalls that, by Proposition 4.1 and
the algebraization result, if V is even (left) Glivenko involutive, then M(V) =
V. �

Corollary 4.8. If V is a left involutive or right involutive subvariety of FL
and there exists a variety W with a decidable equational theory, such that
V ⊆ W ⊆ G(V), then V has a decidable equational theory, as well.

We have shown that the equational Glivenko property implies the deduc-
tive Glivenko property; also, the later implies the Glivenko property. We
will provide examples that show that the converse of these implications do
not hold. We say that a property holds for a subvariety of FL or a substruc-
tural logic, if the property holds for the variety or the logic with respect to
some variety or logic.

It follows from Proposition 4.1, Proposition 4.4 and Proposition 4.6 that
a variety or logic has a certain type of involutiveness iff it satisfies the corre-
sponding Glivenko property with respect to itself. We will make use of this
remark in the proofs of the following two propositions.
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Proposition 4.9. The variety CFL (the logic FLe) is Glivenko involutive,
but not weakly involutive. In other words, the Glivenko property holds for
CFL (FLe), but the deductive Glivenko property fails.

Proof. Note that ∼∼φ is provable in FLe iff φ is provable in FLe. This
follows from the cut elimination theorem for FLe. In detail, if ⇒ (φ →
0) → 0 is the last sequent in a proof in FLe, then the only possibility for the
upper sequent of the last rule is φ→ 0 ⇒ 0. In turn, the only possibilities
for the upper sequents of the next to the last rule are ⇒ φ and 0 ⇒ 0.
Consequently, CFL is Glivenko involutive. Therefore, the Glivenko property
holds for CFL (FLe), relative to itself, by Proposition 4.1.

On the other hand, if FLe satisfies the deductive Glivenko property, then
∼∼ p `FLe p, where p is a propositional variable. By the local deduction
theorem, we have that for some n, `FLe (∼∼ p∧1)n → p. Nevertheless, there
is a commutative pointed residuated lattice that does not satisfy the identity
(∼∼x ∧ 1)n ≤ x, for any n. Indeed, consider the two-element residuated
lattice on the set {⊥, 1}, where ⊥ < 1, multiplication is idempotent and
commutative, and 1 is the unit element. If we chose 0 = 1, then we have
(∼∼⊥ ∧ 1)n = (1 ∧ 1)n = 1, for all n. �

Proposition 4.10. The variety CFL∩Mod((∼∼x)2 ≤ x) (the logic FLe +
(∼∼ p)2 → p) is weakly involutive, but not involutive. In other words, The
deductive Glivenko property holds for it, but the equational Glivenko property
fails.

Proof. It follows from the local deduction theorem that the variety V =
CFL ∩ Mod((∼∼x)2 ≤ x) is weekly involutive. Consequently, V = M(V)
and the deductive Glivenko property holds for V relative to itself, by Propo-
sition 4.4.

The equational Glivenko property holds for V = M(V) iff it is involutive,
by Proposition 4.6. This is not the case, since there exists a commutative
pointed residuated lattice that satisfies the identity (∼∼x)2 ≤ x, but is
not involutive. Indeed, consider the residuated lattice on the set {⊥, a, 1},
where ⊥ < a < 1, 1 is the unit, ⊥ is an absorbing element and a2 = ⊥. If we
chose 0 = a, then ∼∼⊥ = a, so the algebra is not involutive. Nevertheless,
(∼∼x)2 = x, for every x ∈ {⊥, a, 1}. �

4.4. The Glivenko variety of an involutive variety. Next, given an
equational basis of an involutive variety V, we show how to obtain an explicit
axiomatization of the Glivenko variety G(V) of V. Recall that G(V) was
defined on page 11. Equivalently, given an axiomatization of an involutive
substructural logic L, we give an explicit axiomatization of the Glivenko
logic G(L) of L.

The subvariety Gl of FL axiomatized by the equations

(Gl) ∼(x ? y) ≈ ∼(−∼x ?−∼ y)



20 NIKOLAOS GALATOS AND HIROAKIRA ONO

where ? ∈ {∧, ·, \, /}, is called the left Glivenko variety. Also, the subvariety
Gr of FL axiomatized by the equations

(Gr) −(x ? y) ≈ −(∼−x ?∼− y),
where ? ∈ {∧, ·, \, /}, is called the right Glivenko variety. The variety G =
Gl∩Gr is called the Glivenko variety. We will show, see Proposition 4.11(3),
that the (left-, right-) Glivenko variety is the (left-, right-) Glivenko variety
of the largest (left-, right-) involutive subvariety of FL; see page 24 for the
definition. Note that, by Lemma 2.1(3) and Lemma 2.2(4), the equations
(Gl) and (Gr) for ? = ∨ hold in all subvarieties of FL, thus we do not
include them in the axiomatization of the left Glivenko and right Glivenko
variety.

For every subvariety V of FL, and for every equational basis B = {si ≈
ti | i ∈ I} of V relative to FL, let VB (VB, respectively) be the subvariety of
Gl (Gr, respectively) axiomatized by the equations ∼ si ≈ ∼ ti (− si ≈ − ti,
respectively), where i ∈ I, We will show that if V is a subvariety of G, then
VB and VB are equal to G(V). Thus, we obtain an explicit axiomatization
of G(V) relative to FL.

For every pointed residuated lattice A, define the binary relations λ, ρ
and θ, by x λ y iff ∼x = ∼ y, x ρ y iff −x = − y, and x θ y iff both x λ y
and x ρ y, for all x, y ∈ A. Obviously, λ, ρ and θ are equivalence relations
on A.

Proposition 4.11. Assume that V is a subvariety of FL, B an equational
basis of V and A a pointed residuated lattice.

(1) The implications (a) ⇒ (b) ⇒ (c) hold for the following statements.
(a) A is in VB (VB, VB ∩ VB, respectively).
(b) λ (ρ, θ, respectively) is a congruence relation on A and A/λ

(A/ρ, A/θ, respectively) is in V,
(c) A is in G(V).

Consequently, VB ⊆ G(V) and VB ⊆ G(V).
(2) If A is in G(V) and λ (ρ, θ, respectively) is a congruence relation

on A, then A/λ (A/ρ, A/θ, respectively) is in V.
(3) If V is a subvariety of Gl (Gr, G), then the corresponding statements

in (a)-(c) of (1) are equivalent. In particular, VB = G(V) (VB =
G(V), VB = VB = G(V), respectively).

(4) If V is a finitely axiomatized subvariety of Gl or of Gr, then so is
G(V).

Proof. For the first implication in (1), assume that A is in VB. By the defi-
nitions of the relation λ and the variety VB and by (1) and (4) of Lemma 2.2,
it is clear that λ is a congruence on A. Consequently, A/λ is a residuated
lattice. Note that A/λ satisfies all the equations in B, by the definition of
the variety VB; hence A/λ ∈ V.
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For the second implication, assume that λ is a congruence relation on A
and A/λ is in V. If the equation s ≈ t holds in V, then it also holds in A/λ;
hence, the equation ∼ s ≈ ∼ t is valid in A. Consequently, A is in G(V).

For (2), let A be in G(V) and let λ be a congruence on A. If s ≈ t holds
in V, then ∼ s ≈ ∼ t holds in G(V), hence also in A. So, s ≈ t holds in
A/λ. Thus, A/λ ∈ V.

In view of (1), it suffices to show the implication (c) ⇒ (a) in order to
establish (3). If V is a subvariety of Gl, then it satisfies the equations (Gl).
Since, G(V) is Glivenko equivalent to V, it satisfies the equations (Gl), as
well. Consequently, G(V) satisfies all the equations in the axiomatization
of VB; thus, G(V) ⊆ VB. Finally, statement (4) follows from (3). �

We define the left Glivenko logic Gl = L(Gl), the right Glivenko logic
Gr = L(Gr) and the Glivenko logic Gl = L(G). We restate the main result
in Proposition 4.11 in the terminology of logic.

Corollary 4.12. If a logic L is an extension of Gl axiomatized by a set of
formulas Φ, then G(L) is axiomatized by

{∼−φ | φ ∈ Φ} ∪ {(∼(φ ? ψ))/(∼(−∼φ ?−∼ψ)) | ? ∈ {∧, ·, \, /}},
or by the opposite formulas.

Proof. Note that V(L) is a subvariety of Gl axiomatized by {φ ≈ φ∨ 1 | φ ∈
Φ}. By Proposition 4.11, G(V(L)) is axiomatized by {∼φ ≈ ∼(φ ∨ 1) | φ ∈
Φ} ∪ (Gl), or equivalently by {1 ≤ −∼φ | φ ∈ Φ} ∪ (Gl). �

Corollary 4.13. If a logic L is a finitely axiomatized extension of Gl, then
G(L) is also finitely axiomatized.

For example, if L is left involutive and finitely axiomatized, we can give an
explicit axiomatization of the smallest logic for which the Glivenko property
holds relative to L. We will give some interesting such examples in Section 6.

5. More on the equational Glivenko property

5.1. The deductive equational Glivenko property. In this section, we
show that the deductive form of the equational Glivenko property is equiv-
alent to the equational Glivenko property.

Lemma 5.1. Let W and V be subvarieties of FL and let E ∪ {s ≈ t} be a
set of equations in the language of FL. Then, the following statements are
equivalent.

(1) E |=V s ≈ t iff E |=W −∼ s ≈ −∼ t.
(2) E |=V s ≈ t iff E |=W ∼ s ≈ ∼ t.
(3) E |=V s ≤ t iff E |=W −∼ s ≤ −∼ t.
(4) E |=V s ≤ t iff E |=W ∼ s ≥ ∼ t.
(5) E |=V s ≤ t iff E |=W s ≤ −∼ t.

The opposite statements are pairwise equivalent, as well.
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Proof. The proof is similar to the proof of Lemma 4.5, which is a special
case for E = ∅, and is left to the reader. �

Let W and V be subvarieties of FL. We say that the left (right) deductive
equational Glivenko property holds for W relative to V, if, for every set
E∪{s ≈ t} of equations in the language of FL, the statements (the opposite
of the statements, respectively) in the first set of Lemma 5.1 hold. We say
that the deductive equational Glivenko property holds for W relative to V, if
both left and right deductive equational Glivenko properties hold.

A map γ on a (pointed) residuated lattice A is called a nucleus, if it
is a closure operator on A and, for all x, y ∈ A, γ(x)γ(y) ≤ γ(xy). For
equivalent definitions, see [12].

Consider the pointed residuated lattice terms λ(x) = −∼x and ρ(x) =
∼−x. We will use the same symbols for the term operations that these
terms define on particular pointed residuated lattices. Recall the binary
relation λ defined in the previous section and note that, if A is a pointed
residuated lattice and x, y ∈ A, then x λ y iff λ(x) = λ(y). In other words,
we use the same symbol for the map and its kernel.

Lemma 5.2. If A is a pointed residuated lattice, then the maps λ and ρ
are closure operators on A. If for all x ∈ A, (x\0)\0 = 0/(x\0) ((x\0)\0 =
0/(x\0)), then λ (ρ, respectively) is a nucleus on A. In particular, if A is
cyclic, then λ and ρ are nuclei on A.

Proof. The fact that λ is a closure operator follows from (2), (3) and (4) of
Lemma 2.2. Using Lemma 2.1(4) and (13), we have

[y\(x\0)]λ(x)λ(y) = [y\(x\0)][0/(x\0)][0/(y\0)]
= [y\(x\0)][(x\0)\0][(y\0)\0]
≤ [y\0][(y\0)\0] ≤ 0.

So, we have λ(x)λ(y) ≤ [y\(x\0)]\0 = (xy\0)\0 = 0/(xy\0) = λ(xy), by
Lemma 2.1(6) and the assumption. �

Lemma 5.3. If γ is a nucleus on a pointed residuated lattice A, then the
algebra Aγ = 〈γ(A),∧,∨γ , ·γ , \, /, γ(1), γ(0)〉, where x ·γ y = γ(xy) and x∨γ

y = γ(x∨y), is a pointed residuated lattice. If, additionally, γ is either λ or
ρ, then γ(0) = 0 and Aγ is left involutive or right involutive, respectively.

Proof. It is shown in [12], see also [10], and in [16] for the commutative case,
that the algebra 〈γ(A),∧,∨γ , ·γ , \, /, γ(1)〉 is a residuated lattice. Thus, Aγ

is a pointed residuated lattice. Moreover, λ(0) = 0, by Lemma 2.1(12). �

Theorem 5.4. Let V and W be subvarieties of FL. Then, the following
statements are equivalent.

(1) The left equational Glivenko property holds for W relative to V.
(2) The left deductive equational Glivenko property holds for W relative

to V.



GLIVENKO THEOREMS FOR SUBSTRUCTURAL LOGICS OVER FL 23

(3) E |=V s ≈ t iff −∼E |=W −∼ s ≈ −∼ t, for all E, s, t.

Proof. By taking E to be the empty set in (3), we obtain the left equational
Glivenko property; so (3) implies (1).

We will show that (2) implies (3). Suppose that (2) holds and assume
that E |=V s ≈ t. Then, −∼E |=V s ≈ t, since V is left involutive by
Proposition 4.6. By (2), we have −∼E |=W −∼ s ≈ −∼ t. Conversely,
assume that −∼E |=W −∼ s ≈ −∼ t. Since E |=W −∼u ≈ −∼ v, for all
(u ≈ v) ∈ E, we have E |=W −∼ s ≈ −∼ t. By (2), we get E |=W s ≈ t.
Thus, (2) implies (3). We will prove that (1) implies (2).

We will first show that, for all A ∈ W, λ is a homomorphism from A
onto Aλ. By Proposition 4.6, Proposition 4.11(3) and Lemma 2.2, G(V)
satisfies the equations ∼(x?y) ≈ ∼(−∼x?−∼ y), hence also the equations
−∼(x ? y) ≈ −∼(−∼x ? −∼ y) where ? ∈ {∧, ·, \, /}. Consequently, the
latter set of equations holds in A, since W ⊆ G(V); the last inclusion follows
from Lemma 3.3(4) and the fact that, by Proposition 4.6, the varieties V and
W are Glivenko equivalent. For ? = ·, we have λ(x) ·λ(y) ≤ λ(λ(x) ·λ(y)) =
λ(xy), for all x, y ∈ A; so, in view of Lemma 5.2, λ is a nucleus from A to
Aλ. Thus,

λ(xy) = λ(x) ·Aλ
λ(y), λ(1) = 1Aλ

, λ(0) = 0Aλ
and

λ(x ∨ y) = λ(x) ∨Aλ
λ(y),

for all x, y ∈ A, by Lemma 5.3. By the same lemma, Aλ is closed under the
meet and division operations of L. So, for ? ∈ {∧, \, /} we have

λ(x ? y) = λ(λ(x) ? λ(y)) = λ(λ(x) ?Aλ
λ(y)) = λ(x) ?Aλ

λ(y).

Now, assume that E |=V s ≈ t, where E = {si(x̄) ≈ ti(x̄) | i ∈ I}. To
show that E |=W −∼ s ≈ −∼ t, let A ∈ W and assume that, for all i ∈ I,
sAi (ā) = tAi (ā), where ā is an element of the appropriate power of A. We
will show that λ(sA(ā)) = λ(tA(ā)). Since λ(sAi (ā)) = λ(tAi (ā)), for all
i ∈ I, and since λ is a homomorphism, we obtain sAλ

i (λ(ā)) = tAλ
i (λ(ā)),

where λ(ā) denotes the sequence consisting of the λ images of the terms in
ā. Note that Aλ is in W, since it is a homomorphic image of an algebra
in W; hence Aλ ∈ G(V), since W ⊆ G(V). If u ≈ v is an equation valid
in V, then the equation ∼u ≈ ∼ v holds in G(V) and hence it holds in
Aλ. By Lemma 5.3, Aλ is left involutive, so the equation s ≈ t holds in
Aλ. Consequently, Aλ is in V, hence it satisfies sAλ(λ(ā)) = tAλ(λ(ā)).
Thus, λ(sA(ā)) = λ(tA(ā)), since λ is a homomorphism. Consequently,
E |=W −∼ s ≈ −∼ t. Conversely, suppose that E |=W −∼ s ≈ −∼ t. By
Corollary 4.7, V ⊆ W, so E |=V −∼ s ≈ −∼ t. Since V is left involutive, we
have E |=V s ≈ t. �

Corollary 5.5. If V is an involutive subvariety of FL and the quasi-equational
theory of a variety W, where V ⊆ W ⊆ G(V), is decidable, then the quasi-
equational theory of V is decidable, as well.
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5.2. An alternative characterization for the equational Glivenko
property. We have obtained a characterization of the Glivenko proper-
ties in terms of the type of involutiveness that the minimal variety of the
Glivenko equivalence class has to possess. Here we describe varieties, con-
tainment in which guarantees the validity of the equational Glivenko prop-
erty.

Let IlFL (respectively, IrFL) be the variety of left- (right-) involu-
tive pointed residuated lattices, i.e. the subvariety of FL axiomatized by
the equation −∼x ≈ x (respectively, ∼−x ≈ x). Also, let InFL =
IlFL ∩ IrFL. By Proposition 4.11(3), it follows that Gl = G(IlFL),
Gr = G(IrFL) and G = G(InFL).

Note that, by Proposition 4.11, A ∈ Gl (A ∈ Gr, A ∈ G) iff λ (ρ, θ,
respectively) is a congruence on A and A/λ is left involutive (A/ρ is right
involutive, A/θ is involutive, respectively).

For every subvariety V of FL, set Il(V) = IlFL ∩ V, Ir(V) = IrFL ∩ V
and In(V) = InFL ∩ V – the largest left involutive, right involutive and
involutive subvariety of V, respectively. Note that Il, Ir and In are interior
operators on S(FL). A notion related to In(V) is also discussed in [5].

Lemma 5.6. Let V and W be subvarieties of FL.

(1) If V and W are Glivenko equivalent, then Il(V) = Il(W), Ir(V) =
Ir(W), and In(V) = In(W).

(2) Il(V) = Il(G(V)), Ir(V) = Ir(G(V)), and In(V) = In(G(V)).
(3) If V is left involutive (right involutive, involutive), then Il(G(V)) =

V (Ir(G(V)) = V, In(G(V)) = V, respectively).
(4) The varieties Il(V), Ir(V) and In(V) are subvarieties of M(V).
(5) G(Il(V)) = Gl ∩ G(V), G(Ir(V)) = Gr ∩ G(V), and G(In(V)) =

G ∩G(V).

Proof. For (1), assume that V and W are Glivenko equivalent. If V satisfies
s ≈ t, then it also satisfies ∼ s ≈ ∼ t. So, W satisfies ∼ s ≈ ∼ t, hence it
satisfies −∼ s ≈ −∼ t. Consequently, Il(W) satisfies s ≈ t. Thus, Il(W) ⊆
V, so Il(W) ⊆ Il(V). Likewise, we show the other inclusion, so Il(W) =
Il(I).

Statement (2) follows from (1) and Lemma 3.3(2). Statement (3) is a
direct consequence of (2). For statement (4), note that since V and M(V)
are Glivenko equivalent, using (1) we obtain Il(V) = Il(M(V)) ⊆ M(V).

To show (5), note that if a pointed residuated lattice A is in Gl∩G(V) =
G(IlFL) ∩ G(V), then, by taking IlFL for V in Proposition 4.11(3), we
have that λ is a congruence relation on A and A/λ is in IlFL. So by
applying Proposition 4.11(2) to V, we get that A/λ is in V. Therefore, A/λ
is in IlFL ∩ V = Il(V). By Proposition 4.11(1) we get A is in G(Il(V)).
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Conversely, if A is in G(Il(V)), then λ is a congruence relation on A and
A/λ is in Il(V) = IlFL ∩ V, by Proposition 4.11(3). By applying Proposi-
tion 4.11(1) to V and to IlFL, we have A ∈ G(V) and A ∈ G(IlFL). So,
A ∈ G(V) ∩G(IlFL) = G(Il(V)). �

The following theorem shows that the equational Glivenko property holds
for a subvariety V of FL iff V is contained in the Glivenko variety.

Theorem 5.7. The following are equivalent.
(1) V is a subvariety of Gl (Gr, G).
(2) G(V) is a subvariety of Gl (Gr, G, respectively).
(3) M(V) is a subvariety of Gl (Gr, G, respectively).
(4) M(V) is equal to Il(V) (Ir(V), In(V), respectively).
(5) The left equational Glivenko property holds for V relative to Il(V)

(Ir(V), In(V), respectively).
(6) The left equational Glivenko property holds for V relative to some

variety.
(7) M(V) is a subvariety of IlFL (IrFL, IFL, respectively).

Proof. We will establish the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒
(6) ⇒ (1), and the equivalence (7) ⇔ (4). The implications (2) ⇒ (3) and
(5) ⇒ (6) are clear and the equivalence (7) ⇔ (4) follows from Lemma 5.6(4)
and the fact that M(V) ⊆ V.

(1) ⇒ (2): If V ⊆ Gl = G(IlFL), then G(V) ⊆ G(G(IlFL)) = Gl.
(3) ⇒ (4): Since M(V) ⊆ G(V), using Lemma 5.6(5) we obtain M(V) ⊆

G(Il(V)). Moreover, Il(V) ⊆ M(V) by Lemma 5.6(4), so the left equational
Glivenko property holds for M(V) relative to Il(V) by Corollary 4.7(1).
Consequently, by Proposition 4.6, M(V) and Il(V) are Glivenko equivalent.
Since M(V) is Glivenko equivalent to V, and V and Il(V) are Glivenko
equivalent, we obtain M(V) = Il(V) by Proposition 4.6.

(4) ⇒ (5): Since Il(V) = M(V) and Il(V) is involutive, (5) follows from
Proposition 4.6.

(6) ⇒ (1): If the left equational Glivenko property holds for V rela-
tive to some variety U , then U ⊆ V ⊆ G(U) and U is left involutive, by
Lemma 4.7(1). So, U = Il(U) and V ⊆ G(Il(U)). Since Il(U) ⊆ IlFL, we
have G(Il(U)) ⊆ G(IlFL) = Gl, by Lemma 3.3(1b). Thus, V ⊆ Gl. �

The equivalence of statements (2) and (3) of the preceding theorem implies
that the Glivenko equivalence class [M(V),G(V)] of V is either contained
in the principal order ideal of S(FL) generated by Gl (Gr, G, respectively),
or it is completely disjoint from it. In the first case and only then the
least variety M(V) (equivalently some variety) of the interval is contained
in IlFL (IrFL, InFL, respectively), or equivalently it is equal to Il(V)
(Ir(V), In(V) respectively). In the second case, the equational Glivenko
property fails to hold for every variety in the interval.

Corollary 5.8. G(Il(V)) is the largest subvariety of G(V) for which the left
equational Glivenko property holds relative to some variety.
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Proof. By Theorem 5.7, the left equational Glivenko property holds for a
subvariety W of G(V) relative to some variety iff W ⊆ G(V) and W ⊆ Gl.
By Lemma 5.6(5), this is equivalent to W ⊆ G(Il(V)). �

6. Special cases

In this section we discuss some special cases for which the Glivenko prop-
erties holds and describe how Theorems 1.1 and ?? follow from our results.

As we have seen the left Glivenko (right Glivenko, Glivenko) variety Gl
(Gr, G, respectively) is axiomatized by the equations ∼(x ? y) ≈ ∼(−∼x ?
−∼ y) (−(x ? y) ≈ −(∼−x ?∼− y), the combination of both sets of equa-
tions, respectively), where ? ∈ {∧, ·, \, /}. Given an axiomatization of a left
involutive (right involutive, involutive) variety V, an axiomatization of the
Glivenko variety G(V) of V – the largest subvariety of FL for which the left
Glivenko (right Glivenko, Glivenko, respectively) property holds relative to
V – consists of the axiomatization of Gl (Gr, G, respectively) mentioned
above plus the left (right, left and right, respectively) negations of the equa-
tions in the axiomatization of V.

Moreover, for every subvariety W of FL, an axiomatization of the variety
GW(V) = G(V)∩W – the largest subvariety ofW for which the left Glivenko
(right Glivenko, Glivenko) property holds relative to the left involutive (right
involutive, involutive, respectively) variety V – is obtained by combining an
axiomatization of G(V) with one of W. Below we give a number of varieties
W for which the axiomatization of GW(V) relative to W can be simplified.
In particular, we obtain simpler axiomatizations for GlW = Gl ∩W, GrW =
Gr∩W and GW = G∩W relative to W. Moreover, we study the cases where
V is the variety of Boolean algebras. In this way we show how known results
on the Glivenko theorem can be derived from our result.

6.1. The cyclic case. Let CyFL = Mod(∼x ≈ −x) be the cyclic subva-
riety of FL. Before we proceed, we point out that the equation for one of
the division operations in (Gl) can be simplified.

Lemma 6.1. In every cyclic pointed residuated lattice the equations
1 ≤ ∼∼(∼∼ y\y) and ∼(x\y) ≈ ∼(∼∼x\∼∼ y)

are equivalent. The same holds for the equations
1 ≤ ∼∼(y/∼∼ y) and ∼(y/x) ≈ ∼(∼∼ y/∼∼x).

Proof. Assume that ∼(∼∼x\∼∼ y) ≈ ∼(x\y) holds. Then,

∼∼(∼∼x\∼∼ y) ≈ ∼∼(x\y)
holds as well. By setting x = ∼∼ y and using (3), (2) and (4) of Lemma 2.2,
we obtain

1 ≤ ∼∼ 1 ≤ ∼∼(∼∼ y\∼∼ y) ≈ ∼∼(∼∼∼∼ y\∼∼ y) ≈ ∼∼(∼∼ y\y).
For the converse, note that (x\∼∼ y)(∼∼ y\y) ≤ x\y ≤ ∼∼(x\y), by

Lemma 2.1(4,5) and by Lemma 2.2(4); so ∼∼ y\y ≤ (x\∼∼ y)\∼∼(x\y),
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hence
∼∼(∼∼ y\y) ≤ ∼∼[(x\∼∼ y)\∼∼(x\y)].

Moreover, by Lemma 2.2(12),

∼∼[(x\∼∼ y)\∼∼(x\y)] ≈ (x\∼∼ y)\∼∼(x\y)

and, by hypothesis, 1 ≤ ∼∼(∼∼ y\y), so we have 1 ≤ (x\∼∼ y)\∼∼(x\y),
that is x\∼∼ y ≤ ∼∼(x\y). Now, since ∼∼x\∼∼ y ≤ x\∼∼ y, we have
∼∼x\∼∼ y ≤ ∼∼(x\y), hence ∼(∼∼x\∼∼ y) ≥ ∼(x\y). The converse
inequality follows from (11) of Lemma 2.2. �

Note that GCyFL = GlCyFL = GrCyFL

Corollary 6.2. The variety GCyFL is axiomatized relative to CyFL by the
conjunction of the following equations

(1) 1 ≤ ∼∼(y/∼∼ y),
(2) 1 ≤ ∼∼(∼∼ y\y),
(3) ∼(x ∧ y) ≈ ∼(∼∼x ∧ ∼∼ y).

Proof. Recall that GCyFL is axiomatized by the equations (Gl) in Section 4.4;
see page 19. We will show that the identity for multiplication is redundant.
For every x, y in an algebra in the variety GCyFL, we have

∼(xy) = y\∼x (Lemma 2.2(8))
= y\−x (∼x ≈ −x)
= −∼ y\−∼−x (Lemma 2.2(4,10))
= ∼∼ y\∼∼∼x (∼x ≈ −x)
= ∼(∼∼x · ∼∼ y) (Lemma 2.2(8))

By Lemma 6.1, the identities for the division operations follow from (1) and
(2). �

Recall that by CFL we denote the variety of commutative pointed resid-
uated lattices.

Corollary 6.3. GCFL is axiomatized relative to CFL by the equations 1 ≤
∼∼(∼∼ y → y) and ∼(x ∧ y) ≈ ∼(∼∼x ∧ ∼∼ y).

Let IFL denote the variety of integral pointed residuated lattices and set
ICyFL = CyFL ∩ IFL.

Corollary 6.4. The variety GICyFL is axiomatized relative to ICyFL by
the equations 1 ≤ ∼∼(y/∼∼ y) and 1 ≤ ∼∼(∼∼ y\y).

Proof. We will show that the equation for the meet operation in Corollary 6.2
is redundant. Using integrality we have,

(x/∼∼x)(∼∼x ∧ ∼∼ y)(∼∼ y\y) ≤ (x/∼∼x)∼∼x ≤ x.

Similarly,
(x/∼∼x)(∼∼x ∧ ∼∼ y)(∼∼ y\y) ≤ y,
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so
(x/∼∼x)(∼∼x ∧ ∼∼ y)(∼∼ y\y) ≤ x ∧ y ≤ ∼∼(x ∧ y).

By applying Lemma 2.2(13) twice, we obtain

∼∼(x/∼∼x)(∼∼x ∧ ∼∼ y)∼∼(∼∼ y\y) ≤ ∼∼(x ∧ y).
Since 1 ≤ ∼∼(x/∼∼x) and 1 ≤ ∼∼(∼∼ y\y), we have

∼∼x ∧ ∼∼ y ≤ ∼∼(x ∧ y).
By (2) and (4) of Lemma 2.2, we obtain

∼(x ∧ y) ≤ ∼(∼∼x ∧ ∼∼ y).
The converse inequality follows from (3) and (2) of Lemma 2.2. �

The following corollary can also be obtained from Theorem 5.1 of [6].

Corollary 6.5. GICFL is axiomatized relative to ICFL by the equation 1 ≤
∼∼(∼∼ y → y).

As a consequence we obtain Theorem ??(3).

In [6] Glivenko’s Theorem 1.1 is generalized to logics containing BCK-
logic. In algebraic terminology and in our notation it is shown that if W is a
subquasivariety of a natural expansion of the quasivariety of bounded BCK-
algebras that satisfies the equation 1 ≤ ∼∼(∼∼ y → y), then the Glivenko
property holds for W relative to In(W). This result extends the original
theorem to expansions of quasivarieties, but is limited to the integral, com-
mutative case, where the negation constant 0 is the least element. Our result
has exactly the opposite attributes and it extends to the stronger equational
Glivenko property. Both results include the extension of Glivenko’s theorem
for commutative, integral, bounded pointed residuated lattices where 0 is
the least element, given by Corollary 6.5.

6.2. The classical case. Note that a Brouwerian algebra is (term equiv-
alent to) a residuated lattice that satisfies the law xy ≈ x ∧ y. A Heyting
algebra is (term equivalent to) a pointed residuated lattice, whose residuated
lattice reduct is a Brouwerian algebra and 0 is its least element.

Lemma 6.6. A pointed residuated lattice is (term equivalent to) a Boolean
algebra iff it satisfies the equations xy ≈ x ∧ y and x\y ≈ ∼x ∨ y.

Proof. Setting x = 1 into the second equation, we have 0 ≤ y. So, in view of
the first equation the pointed residuated lattice is a Heyting algebra; hence
it has a distributive lattice reduct. To show that it is a Boolean algebra,
it suffices to show that every element has a complement. For every x, we
have x ∧ ∼x = x(x\0) ≤ 0, so x ∧ ∼x = 0. Also, by the second equation
∼x ∨ x = x\x = 1, since every Heyting algebra is integral. �

In the case when the variety relative to which a Glivenko property holds
is the variety BA of Boolean algebras, we obtain a simpler axiomatization.
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Corollary 6.7. G(BA) is axiomatized by the following equations.
(1) ∼(x ∧ y) ≈ ∼(xy)
(2) ∼(x\y) ≈ ∼(−x ∨ y)
(3) −(x\y) ≈ −(∼x ∨ y)
(4) ∼(x\y) ≈ ∼(−∼x\−∼ y)
(5) ∼(x/y) ≈ ∼(−∼x/−∼ y)

Proof. Given the axiomatization of BA in Lemma 6.6, an axiomatization
of G(BA) consists of the equations (1), (2), (4) and (5) plus the equations
∼(x · y) ≈ ∼(−∼x ·−∼ y) and ∼(x∧ y) ≈ ∼(−∼x∧−∼ y). We will verify
that these two equations follow from the proposed list. We have

∼(−∼x ∧ −∼ y) = ∼−(∼x ∨ ∼ y) (Lemma 2.2(1))
= ∼−(x\∼ y) (3)
= ∼−∼(yx) (Lemma 2.2(8))
= ∼(yx) (Lemma 2.2(4))
= ∼(x ∧ y) (1)

Consequently, we have ∼(xy) = ∼(x ∧ y) = ∼(−∼x ∧ −∼ y) = ∼(−∼x ·
−∼ y), as well. �

Corollary 6.8. GCyFL(BA) is axiomatized relative to CyFL by the follow-
ing equations.

(1) ∼(x ∧ y) ≈ ∼(xy)
(2) ∼(y/x) ≈ ∼(∼x ∨ y)
(3) ∼(x\y) ≈ ∼(∼x ∨ y)

Alternatively, (2) and (3) can be replaced respectively by
(4) 1 ≤ ∼∼(∼∼x\x)
(5) 1 ≤ ∼∼(x/∼∼x).

Proof. For the first axiomatization, in view of Corollary 6.7, it suffices to
show that the equations for the division operations are redundant. We have

∼(y/x) = ∼(∼x ∨ y) (2)
= ∼∼x ∧ ∼ y (Lemma 2.2(1))
= ∼∼∼∼x ∧ ∼∼∼ y (Lemma 2.2(4))
= ∼(∼∼∼x ∨ ∼∼ y) (Lemma 2.2(1))
= ∼(∼∼ y/∼∼x) (2)

Likewise, ∼(x\y) = ∼(∼∼x\∼∼ y). Therefore, (1) and (2) form an ax-
iomatization for GCyFL(BA) relative to CyFL.

Finally, we will show that (2) and (4) are equivalent; the equivalence of
(3) and (5) follows in a similar way. If (2) holds, we have

∼∼(∼∼x\x) = ∼∼(∼∼∼x ∨ x) (2)
= ∼∼(∼x ∨ x) (Lemma 2.2(4))
= ∼(∼∼x ∧ ∼x) (Lemma 2.2(1))
= ∼(∼∼x · ∼x) (1)
≥ ∼ 0 = 1
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Conversely, assume that (4) holds. We have, (x\∼∼ y)(∼∼ y\y) ≤ x\y, by
Lemma 2.1(13) and x\y ≤ ∼∼(x\y), by Lemma 2.2(3), so

(x\∼∼ y) · (∼∼ y\y) · ∼(x\y) ≤ 0.

By Lemma 2.3(3), we obtain ∼∼(x\∼∼ y) ·∼∼(∼∼ y\y) ·∼∼∼(x\y) ≤ 0,
i.e. ∼∼(x\∼∼ y) · ∼∼(∼∼ y\y) ≤ ∼∼(x\y). Using (4) and the fact that
∼∼x\∼∼ y ≤ x\∼∼ y, we obtain

∼∼(∼∼x\∼∼ y) ≤ ∼∼(x\y),
thus ∼(x\y) ≤ ∼(∼∼x\∼∼ y).

On the other hand, x(x\y) ≤ y ≤ ∼∼ y, so ∼∼x · ∼∼(x\y) ≤ ∼∼ y,
by Lemma 2.3(4). Consequently, we have ∼∼(x\y) ≤ ∼∼x\∼∼ y and
∼(∼∼x\∼∼ y) ≤ ∼(x\y). Therefore, ∼(∼∼x\∼∼ y) = ∼(x\y)

Additionally, we have

∼(∼x ∨ y) = ∼∼∼(∼x ∨ y) (Lemma 2.2(4))
= ∼∼(∼∼x ∧ ∼ y) (Lemma 2.2(1))
= ∼∼(∼ y ∧ ∼∼x)
= ∼∼(∼ y · ∼∼x) (1)
= ∼(∼∼x\∼∼ y) (Lemma 2.2(8)).

Consequently, ∼(x\y) = ∼(∼x ∨ y). �

Corollary 6.9. The variety GICyFL(BA) is axiomatized relative to ICyFL
by the equations:

(1) ∼(x ∧ y) ≈ ∼(xy)
(2) 1 ≤ ∼∼(∼∼x\x)
(3) 1 ≤ ∼∼(x/∼∼x).

Alternatively, (1) can be replaced by either one of the equations
(4) x ∧ ∼x ≤ 0
(5) ∼(x2) ≈ ∼x.

Proof. We will show that (1), (4) and (5) are all equivalent. First assume
that (1) holds. We have x · ∼x ≤ 0, so 1 ≤ (x · ∼x)\0 = ∼(x · ∼x) =
∼(x ∧ ∼x); hence x ∧ ∼x ≤ 0.

Assume, now, that (4) holds. We have x · (x\∼x) ≤ x, by integrality and
x · (x\∼x) ≤ ∼x. So, x · (x\∼x) ≤ x ∧ ∼x ≤ 0. Therefore, x\∼x ≤ ∼x,
so ∼(x2) = x\(x\0) ≤ ∼x. On the other hand, x2 ≤ x, by integrality, so
∼x ≤ ∼(x2).

Finally, if (5) holds, then we have ∼(x ∧ y) ≤ ∼(xy), by integrality, and
∼(xy) ≤ ∼[(x ∧ y)(x ∧ y)] = ∼(x ∧ y)2 = ∼(x ∧ y), by (4). �

Corollary 6.10. GCFL(BA) is axiomatized relative to CFL by the equa-
tions:

(1) ∼(x ∧ y) ≈ ∼(xy)
(2) ∼(x→ y) ≈ ∼(∼x ∨ y).

Alternatively, (2) can be replaced by
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(3) 1 ≤ ∼∼(∼∼x→ x)

Corollary 6.11. The variety GICFL(BA) is axiomatized relative to ICFL
by the equations:

(1) ∼(x ∧ y) ≈ ∼(xy)
(2) 1 ≤ ∼∼(∼∼x→ x).

Alternatively, (1) can be replaced by either one of the equations
(3) x ∧ ∼x ≤ 0
(4) ∼(x2) ≈ ∼x.

The algebraic version of Theorem 1.1 follows from the following corollary.

Corollary 6.12. The (equational) Glivenko property holds for HA relative
to BA.

Proof. Note that HA satisfies ∼∼x ·x ≤ x by integrality, so x ≤ ∼∼x→ x
and ∼(∼∼x→ x) ≤ ∼x = ∼∼∼x. Consequently, ∼∼x ·∼(∼∼x→ x) ≤
0 ≤ x, so ∼(∼∼x → x) ≤ ∼∼x → x, hence ∼(∼∼x → x) ∧ ∼(∼∼x →
x) ≤ 0. Therefore, ∼(∼∼x→ x) ≤ 0; thus 1 ≤ ∼∼(∼∼x→ x).

By Corollary 6.5, HA ⊆ G, so the equational Glivenko property holds for
HA relative to In(HA) = BA, by Theorem 5.7. �

For every bounded residuated lattice A, consider the pointed residuated
lattice A′, that is obtained by appending to A a new bottom element ⊥
and setting 0 = ⊥. That A′ is a residuated lattice can be easily verified;
alternatively it follows form [9]. Note that ∼ a = − a = 0, for all a ∈ A,
and ∼ 0 = − 0 = 1. Using Corollary 6.7, it is easy to see that A′ ∈ G(BA).
As an example we verify Corollary 6.7(2), for x = 0 and y ∈ A; we have
∼(0\y) = ∼> = 0 and ∼(− 0 ∨ y) = ∼(> ∨ y) = ∼> = 0. Therefore, the
variety G(BA) is neither integral, nor commutative, nor contractive.

6.3. The basic logic case. A basic-logic algebra or BL-algebra is an inte-
gral, commutative pointed residuated lattice that satisfies the equations

0 ≤ x, x(x→ y) ≈ x ∧ y and (x→ y) ∨ (y → x) ≈ 1.
A many-valued algebra or MV-algebra is an integral, commutative pointed
residuated lattice that satisfies the equations 0 ≤ x and (x → y) → y ≈
(y → x) → x. For term equivalent definitions and basic properties, see [14]
and [4].

A (pointed) generalized BL-algebra or (pointed) GBL-algebra is a (pointed)
residuated lattice that satisfies the equation

(GBL) y(y\x ∧ 1) ≈ x ∧ y ≈ (1 ∧ x/y)y
and a (pointed) generalized MV-algebra or (pointed) GMV-algebra is a (pointed)
residuated lattice that satisfies

(GMV) x/(y\x ∧ 1) ≈ x ∨ y ≈ (1 ∧ x/y)\x.
It is not hard to see that commutative, representable (as a subdirect product
of totally ordered algebras), bounded, pointed GBL-algebras in which 0
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is the least element are term equivalent to BL-algebras. Similarly, MV-
algebras are just commutative, bounded, pointed GMV-algebras in which
0 is the least element. In both cases, integrality follows from the fact that
the algebras are bounded. For a study of GBL-algebras and GMV-algebras,
representations of them and a characterization of their cancellative members,
see [1] and [12]. We denote the varieties of BL-algebras, pointed GBL-
algebras, MV-algebras and pointed GMV-algebras by BL, GBL0, MV, and
GMV0, respectively. It is not difficult to see that (pointed) GMV-algebras
are (pointed) GBL-algebras. Under the assumption of involutiveness the
converse is true as well.

Lemma 6.13. Involutive pointed GBL-algebras are pointed GMV-algebras.

Proof. For every x, y in an involutive pointed GBL-algebra, we have

x ∨ y = ∼−(x ∨ y) (x ≈ ∼−x)
= ∼((−x) ∧ (− y)) (Lemma 2.2(1))
= ∼[(−x)((−x)\(− y) ∧ 1)] (GBL)
= ∼[(−x)((∼−x)/y ∧ 1)] (Lemma 2.2(9))
= ∼[−x(x/y ∧ 1)] (x ≈ ∼−x)
= (x/y ∧ 1)\∼−x (Lemma 2.2(8))
= (x/y ∧ 1)\x (x ≈ ∼−x).

Likewise we obtain the opposite equation. �

It is observed in [5] that BL satisfies the equation 1 ≤ ∼∼(∼∼ y → y),
and that MV coincides with the variety In(BL), so, by Theorem 5.7 and
Corollary 6.5, Glivenko’s theorem holds for BL relative to MV. We will
obtain a generalization by dropping the assumption of representability and
by replacing the commutativity assumption by cyclicity. We first establish
the following non-commutative generalization of a property observed in [5];
the proof is essentially the same.

Lemma 6.14. Every cyclic pointed GBL-algebra in which 0 is the least
element satisfies the equations 1 = ∼∼(x/∼∼x) and 1 = ∼∼(∼∼x\x).

Proof. First note that every pointed bounded GBL-algebra in which 0 is the
least element is integral; see [1] or [12] for details. We have

∼x · ∼∼x = ∼x(∼x\0) ≤ 0 ≤ x,

so ∼x ≤ x/∼∼x, hence ∼(x/∼∼x) ≤ ∼∼x. Consequently, we have

∼(x/∼∼x) = ∼∼x ∧ ∼(x/∼∼x)
= (∼∼x)((∼∼x)\∼(x/∼∼x)) (GBL)
= (∼∼x) · ∼((x/∼∼x)(∼∼x)) (Lemma 2.2(8))
= (∼∼x) · ∼(∼∼x ∧ x) (GBL)
= (∼∼x) · ∼x ≤ 0 (Lemma 2.2(3))

Thus, ∼∼(x/∼∼x) = 1. Similarly we prove the other equation. �
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It follows from Corollary 6.9 and Lemma 6.14 that the variety CyGBL⊥
of cyclic pointed bounded GBL-algebras where 0 is the least element is
contained in the Glivenko variety G. Moreover, In(CyGBL⊥) is equal to the
variety CyGMV⊥ of cyclic pointed bounded GMV-algebras where 0 is the
least element, by Lemma 6.13 and the fact that pointed GMV-algebras are
pointed GBL-algebras. Thus, in view of Theorem 5.7, we have the following
corollary, which is implies Theorem ??(2).

Corollary 6.15. The (equational) Glivenko property holds for CyGBL⊥ rel-
ative to CyGMV⊥. Consequently, the (equational) Glivenko property holds
for BL relative to MV, as well.

Following [5], a SBL-algebra is a BL-algebra that satisfies x ∧ ¬x = 0.
The last equation can be replaced by either of the equations x(x → y) ≤ y
and ∼(x2) ≈ ∼x. We denote the variety of all SBL-algebras by SBL. In
[5] it is shown that the Glivenko property holds for SBL relative to BA, a
fact that also follows from Lemma 6.14 and Corollary 6.11. We generalize
this result by dropping representability and replacing commutativity with
cyclicity. The following corollary is a consequence of Corollary 6.9.

Corollary 6.16. The (equational) Glivenko property holds for CyGBL⊥ ∩
Mod(∼(x2) ≈ ∼x) relative to BA. Consequently, the (equational) Glivenko
property holds for SBL relative to BA.

Note that Theorem ??(1) follows from the preceding corollary.

7. Generalized Kolmogorov translation

Propositional intuitionistic logic can be interpreted in propositional clas-
sical logic via the Glivenko double negation translation as well as via the
Kolmogorov translation. Having studied generalizations of the former prop-
erty, we now discuss the latter.

Let γ be a unary (pointed) residuated lattice term. The γ-Kolmogorov
translation Kγ(t) of a (pointed) residuated lattice term t is defined induc-
tively on the complexity of t as follows: Kγ(1) = γ(1), Kγ(0) = γ(0),
Kγ(x) = γ(x) for every variable x, and Kγ(s ? r) = γ(Kγ(s) ? Kγ(r)),
where ? ∈ {∧,∨, ·, \, /}. Note that the standard Kolmogorov translation is
obtained for γ(x) = ∼∼x.

For every variety V of (pointed) residuated lattices, let Vγ be the sub-
variety of V axiomatized relative to V by the equation γ(x) ≈ x. We say
that the γ-Kolmogorov translation holds for W relative to V, if for every
set of equations E ∪ {s ≈ t} in the language of (pointed) residuated lat-
tices, E |=V s ≈ t iff Kγ [E] |=W Kγ(s) ≈ Kγ(t), where Kγ [E] = {Kγ(u) ≈
Kγ(v) | (u ≈ v) ∈ E}. Also, if K and L are substructural logics, we say that
the γ-Kolmogorov translation holds for K relative to L, if for every set of
formulas Φ ∪ {ψ} in the language of (pointed) residuated lattices, Φ |=K ψ
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iff Kγ [Φ] |=L Kγ(ψ), where Kγ [Φ] = {Kγ(φ) | φ ∈ Φ}. Corollary 7.6 shows
the connection between these two definitions.

Note that ifW is a subvariety of FL and γ is a unary (pointed) residuated
lattice term, then γA is a nucleus on A for all A ∈ W iff W satisfies the
equations

(nuc) x ≤ γ(x), γ(x) ≤ γ(x ∨ y), γ(γ(x)) ≈ γ(x), γ(x)γ(y) ≤ γ(xy)

Theorem 7.1. Let V be a variety of (pointed) residuated lattices and γ a
term that contains only the connectives ∧, \, /, and also the constant 0 only
if γ(0) ≈ 0 holds in V. Moreover assume that for every algebra A in V, γA

is a nucleus on A; equivalently, assume that V satisfies the equations (nuc).
Then, the γ-Kolmogorov translation holds for V relative to Vγ.

Proof. Using induction on the length of t, we can show that if t is a (pointed)
residuated lattice term, A ∈ V and ā is an element of an appropriate power
of A, then

(*) Kγ(t)A(ā) = tAγ (γA(ā)),

where we have abbreviated AγA to Aγ ; see Lemma 5.3 for the definition of
AγA . To see this note that Kγ(t)A(ā) is just the application on γA(ā) of
the term function that corresponds to the term t, where every application
of an operation is followed by γ; on the other hand tAγ (γA(ā)) is the the
application on γA(ā) of the term function that corresponds to the term t,
where every operation is computed in Aγ . The operations ·,∨ and 1, when
computed in Aγ are, by definition, equal to the corresponding operations on
A followed by γ. The same holds for the other operations trivially, because
the result of those operations on elements of Aγ is already an element of
Aγ , so the application or not of γ does not make any difference. For ex-
ample, for the term t = x · y, we have Kγ(t)A(a, b) = γ(γ(a) ·A γ(b)) and
tAγ (γ(a), γ(b)) = γ(a) ·γ γ(b) = γ(γ(a) ·A γ(b)).

Recall that γ contains only the connectives ∧, \, /, and also the constant
0 only if γ(0) ≈ 0 holds in V, so γAγ (a) = γA(a), for every element a of
Aγ . Moreover, γA(a) = a, since γ is a nucleus. Hence γAγ (a) = a, for all
a ∈ Aγ , and Aγ ∈ Vγ .

We will show that the γ-Kolmogorov translation holds for V relative
to Vγ . First suppose that E |=Vγ s ≈ t; we will show that Kγ(E) |=V
Kγ(s) ≈ Kγ(t). Let A be in V and ā be an element of an appropriate
power of A, such that Kγ(u)A(ā) = Kγ(v)A(ā), for all (u ≈ v) ∈ E.
Then, uAγ (γA(ā)) = vAγ (γA(ā)) by (*), and Aγ ∈ Vγ . So, by assump-
tion, sAγ (γA(ā)) = tAγ (γA(ā)), hence Kγ(s)A(ā) = Kγ(t)A(ā).

Conversely, if E 6|=Vγ s ≈ t, then there exists an algebra B ∈ Vγ ⊆ V and
a sequence b̄ of elements of B such that uB(b̄) = vB(b̄) for all (u ≈ v) ∈ E,
but sB(b̄) 6= tB(b̄). Since B satisfies γ(x) ≈ x, we have B = Bγ . For
every (u ≈ v) ∈ E, we have Kγ(u)B(b̄) = uBγ (γB(b̄)) = uB(b̄) = vB(b̄) =
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Kγ(v)B(b̄) and Kγ(s)B(b̄) = sB(b̄) 6= tB(b̄) = Kγ(t)B(b̄). Consequently,
Kγ(E) 6|=V Kγ(s) ≈ Kγ(t). �

Recall the definition of λ from Section 5. As shown in Lemma 5.2, if we
assume cyclicity, then λ is a nucleus.

Corollary 7.2. If V is cyclic, then the λ-Kolmogorov translation holds for
V relative to Vλ.

The λ-Kolmogorov translation is simply called the Kolmogorov translation
in the literature.

The following observation shows one of the differences between the Kol-
mogorov translation and the Glivenko property.

Theorem 7.3. Assume that W is a subvariety of FL, that γ is a unary
(pointed) residuated lattice term that contains only the connectives ∧, \, /,
and also the constant 0 only if γ(0) ≈ 0 holds in W, and that W satisfies the
equations (nuc). Then the γ-Kolmogorov translation holds for W relative to
V iff Wγ = V.

Proof. One direction follows from Theorem 7.1. For the forward direction,
suppose that the γ-Kolmogorov translation holds for W relative to V. Then,
for all sets of equations E ∪ {s ≈ t}, E |=V s ≈ t iff Kγ(E) |=W Kγ(s) ≈
Kγ(t). On the other hand, by Theorem 7.1, we have E |=Wγ s ≈ t iff
Kγ(E) |=W Kγ(s) ≈ Kγ(t). Thus, E |=V s ≈ t iff E |=Wγ s ≈ t; hence
V = Wγ . �

Corollary 7.4. The variety InFLew is the only subvariety of FL relative
to which the λ-Kolmogorov translation holds for FLew.

Theorem 7.5. Assume that V and W are two subvarieties of FL and γ is
a unary (pointed) residuated lattice term such that W satisfies the equations
(nuc). The following are equivalent.

(1) For every set of equations E ∪ {s ≈ t} in the language of (pointed)
residuated lattices,

E |=V s ≈ t iff Kγ [E] |=W Kγ(s) ≈ Kγ(t).
(2) For every set of formulas Φ∪{ψ} in the language of (pointed) resid-

uated lattices,
{1 ≤ φ | φ ∈ Φ} |=V 1 ≤ ψ iff {1 ≤ Kγ(φ) | φ ∈ Φ} |=W 1 ≤ Kγ(φ).

Proof. We first show that for every pointed residuated lattice term s, the
variety W satisfies

(*) 1 ≤ Kγ(s) ⇔ Kγ(1) = Kγ(s ∧ 1)

and

(**) 1 ≤ Kγ(s\t) ⇔ Kγ(s) ≤ Kγ(t).
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For (*), if 1 ≤ Kγ(s) then Kγ(1) = γ(1) ≤ γ(Kγ(s)) = Kγ(s), so Kγ(1) =
Kγ(s) ∧Kγ(1), hence Kγ(1) = γ(Kγ(1)) = γ(Kγ(s) ∧Kγ(1)) = Kγ(s ∧ 1).
Conversely, if Kγ(1) = Kγ(s ∧ 1), then 1 ≤ γ(1) = Kγ(1) = Kγ(s ∧ 1) =
γ(Kγ(s) ∧Kγ(1)) ≤ γ(Kγ(s)) = Kγ(s).

For (**), we have Kγ(s\t) = γ(Kγ(s)\Kγ(t)) ≤ γ(Kγ(s))\γ(Kγ(t)) =
Kγ(s)\Kγ(t), since W satisfies the equations (nuc), so if 1 ≤ Kγ(s\t) then
1 ≤ Kγ(s)\Kγ(t); hence Kγ(s) ≤ Kγ(t). Conversely, if Kγ(s) ≤ Kγ(t), then
1 ≤ Kγ(s)\Kγ(t); hence 1 ≤ γ(1) ≤ γ(Kγ(s)\Kγ(t)) = Kγ(s\t), by the
definition of Kγ .

Assume that (1) holds. Note that {1 ≤ φ |φ ∈ Φ} |=V 1 ≤ ψ is equivalent
to {1 ≈ 1∧φ |φ ∈ Φ} |=V 1 ≈ 1∧ψ, and, by (1), to {Kγ(1) ≈ Kγ(1∧φ) |φ ∈
Φ} |=W Kγ(1) ≈ Kγ(1 ∧ ψ). By (*), this is equivalent to {1 ≤ Kγ(φ) | φ ∈
Φ} |=W 1 ≤ Kγ(φ).

Now, assume that (2) holds. We have E |=V s ≈ t iff {1 ≤ u\v, 1 ≤
v\u|(u ≈ v) ∈ E} |=V {1 ≤ s\t, 1 ≤ t\s} iff {1 ≤ Kγ(u\v), 1 ≤ Kγ(v\u)|(u ≈
v) ∈ E} |=W {1 ≤ Kγ(s\t), 1 ≤ Kγ(t\s)}, by (2), iff {Kγ(u) ≤ Kγ(v), 1 ≤
Kγ(v) ≤ Kγ(u) | (u ≈ v) ∈ E} |=W {Kγ(s) ≤ Kγ(t),Kγ(t) ≤ Kγ(s)}, by
(**), iff {Kγ(u) ≈ Kγ(v) | (u ≈ v) ∈ E} |=W Kγ(s) ≈ Kγ(t). �

The following corollary is a direct consequence of Theorem 2.5 and of
Theorem 7.5.

Corollary 7.6. Let K and L be substructural logics. The γ-Kolmogorov
translation holds for K relative to L iff it holds for V(K) relative to V(L).
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