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Abstract

A self-reproduction via description is discussed in a network model

of machines and description tapes. Tapes consist of bit strings, encod-

ing function of machines. A tape is replicated when it is read by an

adequate machine. Generally, a machine rewrites a tape without doing

correct replication. The variation in a reproduced tape is taken as mu-

tation. Since this mutation is caused by a machine's program, we call

it active mutation. Which machine is translated from a given tape

is dependent on what kind of a machine reads the tape. External noise

is introduced in machine's reading process to make errors. A new re-

action pathway is induced by external noise via machine's error action.

We �nd that the induced pathways will be mimicked deterministically

in an emerging core structure. This core structure will be remained

stable after turning o� external noise. Low external noise develops a

core structure of minimal self-replicative loop. When external noise

is elevated, a more complex network evolves. Machines composing a

complex core network, which has been bred in high external noise, will

actively rewrite tapes rather just replicate them. Self-replication not

as an individual but as a network now becomes important.

Key words: Active mutation; Self-reproduction; Machines; Tapes;

Core network; Double loop replication

�E-mail address : ikeg@sacral.c.u-tokyo.ac.jp
yE-mail address : toshiwo@sacral.c.u-tokyo.ac.jp

1



1 Introduction

Reproduction and mutation are both sides of one thing. Mutation is not just
brought by the external causes. It is resulting from the inevitable nature
of self-reproduction. Self-reproduction at the same time induces mutation,
which we call active mutation. In order to pursue this idea, we study a
self-reproduction dynamics with description.

In order to replicate a complex active entity such as a living cell, to make
the description is prerequisite. For example, living systems have elaborated
their own description, DNA.

However description is not always easy to obtain. Some sort of \obser-
vation" process is needed to make description. But some objects are easily
destroyed by observation itself. Di�culty of making description is not only
attributed to the object itself. How we observe determines which objects
can or cannot be allowed to have description.

Reproduction by itself provides far di�cult problems. An object and an
observer are no more separated entities. Self-reproductive objects should ob-
serve themselves to copy themselves. Such self-observation leads to endless
regression. Namely, a machine observes itself, which observes itself, which
observes � � �.

One resolution has been shown by von Neumann[19] that a self-reproduction
can be possible with a universal constructing machine appended with a de-
scription and a copier machine. A universal constructing machine copies
itself and a copier by reading the description. The copier just copies the
description without translation.

On the other hand, Chris Langton discusses that a naturally occurring
self-reproduction may not use a universal constructor nor a description [17].
In order to distinguish a biological reproduction from a mere crystal growth,
some non-triviality in a reproduction form is required. As an example, Lang-
ton has shown a self-reproduction of loop con�gurations in 2-dimensional
Cellular Automata (CA). A separation of machines and description is not
necessary for self-reproduction in that case. 1

If a unique CA con�guration is able to replicate as in Langton's system,
we merely prepare a description of the unique reproducing \machine". We
admit that in such a case a separation of machine and description does not
matter at all. But if more than two possible reproducing machines interfere

1Recently, it is shown that extra information can be copied with the loop con�gura-
tion by slightly modifying CA rules [18]. This makes a tape more close to what we call
description.
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with each other, we have to care about the followings:

� Syntax mixture

A tape a becomes a description of a machine A when it is read by a
machine A. But it can be translated into di�erent machines or fails to
reproduce when it is read by the di�erent machines. How can machines
�nd their own right description?

� Semantics mixture

If a tape a expresses \A tape b is wrong" and a tape b expresses \A
tape a is right", we face with a paradoxical situation. When tapes can
carry information more than reproduction information, such semantics
mixture causes serious paradoxes.

� Evolution and mutation

A separation of machines and tapes is relevant for evolution. If a
machine can rewrite tapes to make new machines, evolution can be
discussed as a deterministic read/write process. This is what we will
see in this paper.

� Stability of reproduction and erroneous actions

A self-reproducing con�guration in von Neumann's or Langton's CA
is structurally unstable. A slight di�erence in the reproducing con�g-
uration fails to show any reproduction. Such fragilty of reproduction
causes a serious problem for realistic situation. Further if machines can
make mistakes when reading tapes, reproduction is easily terminated.
To overcome such fragilty is an urgent issue.

In this paper, we will study the evolution of machines and description
tapes in
uenced by random external noise [1, 2, 3]. While a machine reads a
tape, both probabilistic and deterministic mutations are assumed to occur.
The probabilistic mutation is caused by external noise and is called a pas-
sive mutation. On the other hand, the deterministic mutation is caused
by machine action and is named active mutation.

In low external noise regime, perfect replicating network composed of
one or two machine(s) is evolved. In high noise regime, a complex autocat-
alytic network sustaining deterministic mutation evolves. Self-replication
not as an individual but as a network now becomes important. In the other
autocatalytic models [6, 4], reproduction is discussed only by machines or
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by tapes. However, the important fact is that no machine can reproduce
itself without the coding tapes and vice versa. Because of this restriction,
autocatalytic loops only of machines or tapes are inhibited. By considering
both machines and tapes, we can start discussing the dynamics of encoding
and decoding process in reproduction.

2 Modeling

Our system consists of two di�erent objects, tapes and machines.
A tape has a bit string of a circular form. A machine consists of 3

di�erent parts, a head, a tail and a transition table. Each head and tail is
expressed by a 4 bit string, whose pattern will be compared with binary pat-
terns of tapes. A transition table consists of 4 mappings; (�m; �t)! (�0m; �0t),
where �m and �t represent current binary state of machine and tape, re-
spectively. A tape and machine state will change to (�0m; �0t) depending on
a current state of machine and tape (�m; �t) .

Introducing an ensemble of tapes and machines, we carry out a machine-
tape reaction process as follows:

(1) Interaction of machines and tapes:
A machine Mi reads a tape Tj i� the tape Tj has the same pattern of

head hi and tail ti of the machineMi in a di�erent site of the tape Tj. The
sites from a �rst bit of hi to that of ti will be called the reading frame.

Then machineMi rewrites the reading frame according to its own tran-
sition table. A half population of machine starts to read a tape with the
internal state 1 and the other half does with the state 0. We assume that
there exist a su�cient amount of resources so that a pair of machine and
tape can unlimitedly generate a new tape Tl and a machine Mk translated
from that tape.

Mi +Tj )Mk +Tl +Mi +Tj (1)

(2) Translation of tapes:
Not only bits of a reading frame, but every bit of tape is repeatedly

picked up to construct a new machine from a �rst site of the reading frame.
If a length of a tape is not enough, the same bit is used for coding several
di�erent part of a machine. In the present model, we use a �xed length of
7-bit tapes and 16-bit machines. A �rst 8 bits are mapped onto head and
tail parts in order. The next 8 bits are mapped onto a transition table. In
order to cover 16 bits by 7 bits, several bits are used twice. In Fig. 1, we
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give an example of how a machine rewrites a tape and how a new machine
is translated from the rewritten tape.

Each tape has a source where an attached machine starts to search for
the head and tail pattern. Starting from the site, patterns are searched
for in the clockwise direction of a circular tape. When a head pattern is
found, a tail pattern starts to be searched in the clockwise direction. The
site of source can be updated randomly when the tape is newly generated
after its extinction. An identical tape with di�erent source can make di�er-
ent machines being read by the same machine. But here every coexisting
translational invariant tape has the same site of a source.

(3) Population dynamics:
We assume a �nite capacityN for both tapes and machines. By iterating

the following procedures, we simulate the machine/tape reactions:

1. Compute concentration of machines and tapes by dividing the popu-
lation number of each object, denoted by mi, ti, respectively, by the
capacity size N as following equations,

fMi =
mi

N
; (2)

fTj =
tj

N
; (3)

where, fMi and fTj is concentration of i-th machine and j-th tape,
respectively.

2. Make a total cN numbers of new machines and tapes from reaction of
machines and tapes. Here the coe�cient c gives a rate of new machines
in a total capacity N . One generation is de�ned as the period needed
to make cN new machines and tapes. The rate of reaction fij is given
by,

fij =
cfMi fTjP
k;l f

M
k fTl

: (4)

3. Remove dm % of old machines and dt % of old tapes.

4. Put the new machines and tapes back in each space. Hence the pop-
ulation of machine i and tape j of the next generation becomes,

m0
i = (1 � dm)mi +

X

k+j!i

fkjN; (5)
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Machine [ebbd]
0011
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TM T’M’

head 1011
tail   1101

Tape [1b] = [0011011]

(1)

(2)

[0011011]
[0010011]
[0010111]
[0010111]
[0010110]
[1010110]

Machine state

1
1
0
1
1
0

 [1110110]

(3)

TM T’M’

0011
0110
1011
1101

head 1011
tail   1101

 Tape [e6]

Machine [ebbd]

translation

source

=

source

Figure 1: An example of a rewriting process. Here the machine Mebbd

reads the tape T1b, and generating a new tape Te6 with a new machine
Mebbd.
1)Structures of a machineMebbd and a tape T1b are depicted. A transition
table determines a transition rule (�m; �t)! (�0m; �0t), where �m and �t

represent current binary state of machine and tape, respectively. A head
pattern [1011] and a tail pattern [1101] of a machine Mebbd are found on
di�erent sites of a tape T1b. Hence the tape is transcribed by the machine.
2) During the transcription process, several bits are rewritten due to the
machine's transition table. Here the machine starts to read the tape with
the initial state 1. A small box on each string denotes the machine's reading
site. A machine always move in a clockwise direction.
3) The transcribed tape is translated from the �rst site of a reading frame.
Each bit is succesively translated into machine's transition table, a head and
a tail pattern.
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t0j = (1� dt)tj +
X

k+i!j

fkiN: (6)

If no reactions occur, the second terms in the above equations vanish.
It should be noted here that each machine has its unique description
tape but the inverse is not true. Generally a tape encodes several
machines depending on which machine reads the tape.

5. Taking an integer part of the above population, we obtain the actual
population of the next generation. Hence the machine or tape whose
concentration (fMi ,fTj ) is lower than N�1 is removed from the popu-
lation.

(4) E�ect of external noise:
Out of cN new tapes, a number of tapes as well as machines, are erro-

neously generated by external noise. It is assumed that the rate of mutation
depends on the reading frame. Namely, the rate of mutation replication by
external noise is given by,

" = 1� (1� �P )
L; (7)

where the symbol L is the length of reading frame. We use the Monte Carlo
method to get the mutant objects. At most "cN mutant populations are
generated by randomly 
ipping the bit within a reading frame. As the result,
the reaction terms in the equations (7) and (8) are decreased by the factor
of 1� " and noise generated populations are added.

(5)Active mutation:
During the read/write process, both probabilistic and deterministic mu-

tations are assumed to occur. The probabilistic mutation is caused by
external noise and is called passive mutation. On the other hand, the
deterministic mutation is caused by machine action, and is named active

mutation. We call it mutation since it does not completely replicate a tape
but actively rewrites it. A rewritten tape can be taken as a mis-copy of the
original tape. The rate of passive mutation, denoted by �P , is measured by
a bit 
ip rate per a bit. The active mutation per a reaction is measured
by the rewriting rate per length of reading frame when a machine i reads a
tape j. Namely, it is given by,

�Aij =
w

Lij
; (8)
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where a symbol w denotes the number of rewritten bits and Lij denotes
length where machine i reads a tape j. Averaged active mutation rate is
given by,

h�Ai =

P
ij �AijmitjP

ijmitj
: (9)

3 Destabilization of a minimal self-replicating loop

About 10 randomly selected machines with 2 or 3 tapes are prepared as an
initial con�guration. A machine without description tape is unstable and
smoothly removed from the system. Hence an initial con�guration which
does not include any description tapes of the initial machines will die out.
External noise may produce description tapes by mistake.

Even without external noise, a machine can acquire its tape by the other
machines' product. To sustain the tape, we have to make the tape of the
machine which generates the tape of the �rst machine. In order to complete
it, a successive reproducing process should form a closed loop; each machine
on the loop reproduces a machine for the next position.

We will see how the replicating networks evolve by changing the amount
of external noise. Examples of temporal evolution of population of machines
and tapes are shown in Fig. 2.

By introducing a lower amount of external noise in a system, we see a
minimal autocatalytic loop evolve. In this example, a machineM1002 reads
a tape T1 to replicate the tape T1 and the machine M1002. The number
attached to tapes and machines are hexadecimal number converted from
its binary representation. Many initial con�gurations reach this minimal
autocatalytic system for a lower noise regime.

A system with the minimal autocatalytic loop is said to be metastable
since it remains stable after turning o� external noise but destabilized by
increasing external noise. Reaction under external noise generates many
machines, most of them are parasitic machines. Namely, machines cannot
replicate without being supported by other machines. Increasing parasite
machines weakens the original self-replicating loop. In Fig. 2-a), a para-
sitic machine M1222 invades the network. Its description tape T3 is also
increasing its population.

A greater variety of machines and tapes induces unstable oscillation in
Fig. 2-b). An original self-replicating pair becomes unstable if too many
parasitic machines attach to it. Population of each machine and tape show
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Figure 2: Temporal evolution of population of tapes (the top row) and
machines (the middle row). The bottom row displays temporal evolution
of averaged active mutation rates and the averaged length of the reading
frame. The parameters of population dynamics are c = dm=t = 0:6 in the
in
uence of, a) lower external noise (�P = 0:04) and b) higher external noise
(�P = 0:055). Both start from the same initial states.
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unstable oscillation in time. Oscillating lines of the larger amplitude are of
the original self-replicating loop and a parasite which are depicted in Fig. 2-
a). Other oscillation lines are caused by parasitic machines and tapes.

These temporal oscillations spontaneously crash by exhausting the orig-
inal self-replicating loop. The system then restarts if the original self-
replicating loop is retained, otherwise it is extinct.

It should be noted that a non-zero active mutation rate begins to oscillate
in time in Fig. 2-b). Lower active mutation mean that the network has more
precise local replication; each tape is self-replicated without mutation. But
higher active mutation suggest that many reactions produce di�erent tapes
from the original ones. Namely, the degree of unsuccessful replication is
re
ected in the amplitude of active mutation rate.

The initial self-replicating loop shows a zero active mutation rate as
being depicted in Fig. 2-a). Intermittent bursts of an active mutation rate
are caused by the actions of a parasite machine M1222.

4 Emergence of Core network

In the region of middle external noise (�P � 0:05), a stable structure seems
to evolve. Unstable oscillation in population amplitude as we see in Fig. 2-b)
is spontaneously stabilized around the generation 600 in Fig. 3. At the same
time, the active mutation rate is sustained at the high level.

If we turn o� external noise after the generation 600, the variety of
machines and tapes is not completely lost. But if the noise is removed
before the generation 600, it will back to the initial self-replicating loop. We
call a network which acquired an implicit stable structure a core network.

Fig. 4 shows temporal evolution of the distinct number of machines and
tapes. The amplitude of oscillation becomes less rugged compared with that
before a transition. By turning o� the noise, the distinct number of machines
decreases abruptly to some level. A true core network is left in the system
afterwards.

A core network is not necessarily be a �xed point state. It may start to
oscillate after turning o� the noise. An example of oscillatory state of core
network is described in Fig. 5. Both the number of machines and tapes, and
an averaged active mutation rate show oscillation after turning o� external
noise. The distinct number of machines becomes even larger after turning
o� the noise.

Phenomenologically, core nets as attractors can be divided into roughly
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Figure 3: A spontaneous transition into a core network of a �xed point
state. It displays temporal evolution of population of tapes (the top row)
and machines (the middle row), and averaged active mutation rates and
the averaged length of the reading frame (the bottom row). The rate of
external noise is set at 0:07. The parameters of population dynamics are
c = dm=t = 0:6.
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Figure 4: Temporal evolution of distinct numbers of machines and tapes.
External noise (�P = 0:08) is turned o� at the generation 2000 after the
emergence of a core network at the generation 1100. The parameters of
population dynamics are c = dm=t = 0:6.
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3 di�erent categories:

1. Fixed point states A minimal self-replicating loop. Active mutation
rate is completely suppressed in this state.

2. Non-trivial �xed point states Population of all machines and tapes
in a core network are kept constant. Most core networks have roughly
60 di�erent machines but there is an exceptional core with roughly 40
machines. The constituent machines are very di�erent between two.
Active mutation rates are sustained at higher levels.

3. Oscillatory states Population of machines and tapes oscillate in
time. Oscillations can be quasi-periodic or almost periodic. Periodic-
ity of the oscillation depends on the set of machines and tapes com-
posing the core networks. Di�erent from the usual notions of periodic
behavior, the number of di�erent machines and tapes also change in
time. Namely, a topology itself oscillate in time. Here active mutation
rates also oscillate in time with keeping a high average value.

There exist upper and lower bound on external noise to evolve rich core
networks. Non-trivial cores (i.e. attractor 2 and 3) are mostly found at the
mid range of external noise (0:05 � �P < 0:1). In Fig. 6, we depict active
mutation rates of core nets as a function of external noise, which are attained
by turning o� external noise at the generation 2000. At the higher range of
external noise, we again �nd that a system attains a minimal self-replicating
loop (i.e. attractor 1) or being extinct.

This diagram depends on an initial con�guration of machines and tapes.
Some initial con�gurations never attain any core networks. Each con�gu-
ration can be characterized by the existence of self-replicating loops. There
exist 5 possible self-replicating loops. We also have studied the evolution
from the initial con�gurations, each of which only contains one of those
pairs. It seems that oscillatory states (attractor 3) are only attainable when
the initial states contains a machine T9dd3 with its own tape T1d or a
machine Mbdd1 with T37.

The initial states which contain each of other three pairs (i.e. M1002

with T1, M2004 with T1 and Md�b with T3f ) will mostly lead to non-
trivial �xed point states(attractor 2).

Fig. 6 is obtained from the initial states which contains none of those
pairs. Every attractor can be seen in this diagram. In particular, a core
network appeared at external noise of 0.05 contains a rather smaller number
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Figure 6: Each column shows �nal values of the distinct number of machines
and tapes (left �gure) and those of active mutation rates (right �gure) after
turning o� external noise. Those values are generally oscillating so that we
have plotted all points during the generation [2500; 3000]. A horizontal line
corresponds to an amount of external noise added during the generation
[0; 2000]. The noise is turned o� at the generation 2000.

of machines than the usual core networks. We have found that this core
uses more 0-rich tapes, which contains states 0 more than states 1, in au-
tocatalytic loops. Whereas �xed core networks found in other noise range
use more 1-rich tapes. It seems that the amount of a bit of state 1 in tapes
used in core networks increases by elevating external noise.

The important criterion to distinguish core networks is to investigate the
embedded autocatalytic loops. Since Eigen and Schuster's pioneering work
[4], notion of autocatalicity has been known as a useful razor. We use this
notion to dissect core networks in the next section.

5 Embedded autocatalytic loops

A typical evolutionary pathway from the random initial con�guration is
discussed here. A typical con�guration will fall into the con�guration which
contains a self-replicating pair of a machine M1002 with its own tape T1.
As the most large variety of machines generate the machine M1002 in our
our model, the total con�guration will often be dominated by this machine.

Evolution from this self-replicating loop to complex ones is depicted in
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Figure 7: Evolution from a simple self-replicating loop to a complex network
(a) An initially existing a minimal self-replicating loop. A machine M1002

replicates itself by reading the tape T1. A loop (a) will be successively
exploited by M3006 (b)then by M1222 T3 (c). The net which is depicted
on d) is a parasitic network (shown in broken lines) hanging on a network
c). This is named a parasitic net, since as a network it depends on a net c)
for the input tapes T5 and T3 to maintain its structure. In a network (e),
a hyper-parasite (shown in broken lines) hanging on a parasite network in
(d) is depicted. 15



Fig. 7, where we express it by actual machine-tape reaction graphs. Fig. 7a)-
c) are corresponding to 2a), and emergence of Fig. 7c) and d) is found in
2b).

In Fig. 7-a), a machine M1002 copies itself by reading its own descrip-
tion tape T1. This self-replicating loop exempli�es Eigen-Schuster's auto-
catalytic network type. Namely, a tape is replicated into the same tape. In
lower noise regime, the minimal loop (a) is gradually destabilized by parasite
machines( (a) to (c)). In higher noise regime, parasites as a network appear.
Fig. 7 d) and e) show a successive appearance of such parasitic networks.
We call it a parasite network as it depends its necessary tapes on other net-
works. As is seen from the �gures, a subnet in (d) depends tapes (T3 and
T5) on a network (c). Similarly, a subnet on (e) depends a tape Tb on the
parasite network on (d). Hence this latter parasite network can be called a
hyper parasite network. Those parasite networks will be extinguished if the
original host loop (a) is weaken or removed. Hence the state will be back to
(a) and repeat the process from (a) to (e).

Finally, a system acquires a stable structure, which is retained after
turning o� external noise. A �nally established structure is composed of
many autocatalytic loops. Fig. 8 shows an example of a core network which
is obtained after Fig. 7.

With respect to composing machine sets only, a closed machine loop is
identi�ed, where a machine Mj generates a machine Mj+1 and the �nal
machine Mk generates the �rst machine M1. If a necessary tape for each
machine is self-produced by one of the machine composing the loop, we say
that the loop satis�es an autocatalytic condition.

As special case, the autocatalytic condition is locally satis�ed; each tape
is self-replicated. A network which satis�es this condition locally is called
the Eigen-Schuster type. Since each tape self-replicates, the independent
tape loop is identical with the length of a machine loop. However, such
autocatalytic condition should not be locally satis�ed in general. In the noisy
environment, a more general network which globally satis�es the condition
can appear.

Di�erence between two possible types are schematically depicted in Fig. 9.
In the case of Fig. 9-b), not only machines but also tapes form a loop struc-
ture. Hence we call it a double autocatalytic loop. In the low noise regime,
a network can sustain its structure by Eigen-Schuster type. But for the high
noise regime, it is di�cult to maintain prefect replication. Hence autocat-
alytic loops switch to the double loop structure. Since Eigen-Schuster type
only allows replication without mutation, we call this type a DNA-like repli-
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Figure 8: Embedded autocatalytic loops, which are found in the core net-
work after turning o� external noise, are depicted. Reducible parasitic sub-
nets are not drawn here. We can see four independent double autocatalytic
loops here. Two are of the Eigen-Schuster type and two are of the double
loop types.
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Figure 9: Illustration of two di�erent hyper-cycles. They are Eigen-Schuster
type (the right �gure) and the double loop type (the left �gure). Tapes are
replicated without errors in Eigen-Schuster type. In the double loop type,
both machines and tapes are respectively forming loops.

cating system. On the other hand, a double loop type edits tapes, which we
call a RNA-like editing system. Comparing with core networks in a �xed
state, we �nd that cores in oscillatory states change the number of autocat-
alytic loops in time. At one period of time a core has only Eigen type but at
the di�erent period of time it has doule loop types. Details will be discussed
elsewhere [11].

6 discussions

We have studied the coevolution of machines and their description tapes.
We note that a minimal self-replicating loop, composed of one machine and
one tape, emerges under in
uence of external noise.

When external noise is elevated, a minimal self-replicating loop is ex-
ploited by parasitic networks. Population of machines and tapes then begins
to show unstable oscillations. In the mid regime of external noise, a system
will evolve into a stable network against external noise spontaneously. When
a network attains this state, it is stably sustained even after external noise
is removed. We therefore call the network acquiring such noise stability
a \core network". The core network consists of many autocatalytic loops,
being a �xed point or oscillatory state.
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A minimal self-replicating loop has no replication error, and correspond-
ing to the simplest Eigen-Schuster's autocatalytic network. Such autocat-
alytic network is only stable below some noise level. On the other hand,
a high active mutation rate is sustained in core networks in the high noise
regime. Self-replication with errors is replaced by those with active mutation
in the noisy environment.

This autocatalytic network with high active mutation rates consists of
double loops of machines and tapes. Namely, each machine replicates a
successive machine on a loop. On the other hand, description tapes of the
machines composing of a loop are replicated as a whole, not as individual
tapes.

A transition from an unstable state to a core network state is similar to
what we have seen in a previous host parasite model [14, 15]. In the model,
chaotic instability is shared by almost all species by sustaining a high mu-
tation rate, leading to weak high-dimensional chaos, termed \homeochaos".
In this paper, a role of host and parasite emerges spontaneously in a net-
work. Interaction of host and parasite loops causes dynamic instability as
well. The core structure suppresses the instability and as the result high
mutation rates are sustained in the present model.

The idea of introducing two di�erent mutations provides a new interpre-
tation of self-replication. A network absorbs external noise as active mu-
tation of machine function. Namely, passive mutation caused by external
noise is replaced by active mutation.

In real biological systems, DNA is replicated individually without active
mutation. RNA is also a mere copy of DNA. However, we have an example
[10] which may be related to our double autocatalytic network. The authors
showed that DNA of macro-nucleus is generated from DNA of micro-nuclear
in Oxytricha nova. DNA of micro-nuclear is transcribed once into RNA.
Then the exons are completely rearranged and reverse transcribed into the
DNA of macro-nucleus. If editing and reverse transcribing RNA is more
stable than replicating DNA itself, active mutation as editing will be favored
in some genetic systems.

In order to enhance a desirable mutation, we have to generate mutation
not by chance but by a deterministic process. In order to suppress the un-
desirable mutation, we have to change our coding structure, for example by
replacing unstable description tape with more stable tapes. However it is
di�cult to chose stable coding generally. An optimal coding of a machine
may lead to the worst coding of the other. This causes a temporal oscilla-
tion even in a core network. Note that self-organization of an autocatalytic
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network implies self-organization of a coding system [20, 5]. How to improve
coding cannot be determined locally but should be done in a network con-
text. Alternation of coding driven by external noise has also been reported
[12]. In their systems, a multi coding system is developed in the high noise
regime.

In the light of evolution in formal systems theory, Fontana's Alchemy
[7, 8, 9] shares common features with our system. His level 0 system is
corresponding to our simple �xed state core and a level 1 to stable core
structures. Instead of meta-inhibition of self-copying in Fontana's model,
we have introduced external noise to breed core structures. A level 2 cor-
responds to inter-cellular interacting system, where each cell contains a full
set of core network. If we study interactions among di�erent core networks,
what Fontana calls a \glue" sentence is corresponding to machines exchang-
ing between core networks. These glue machines are indeed found in our
cell models. Such glue machines are used to make cells of core networks
di�erentiate[13].
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