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Abstract. We aim at constructing a model for an agent showing sym-
bolic activities. Based on a discussion of the concept of a symbolic sys-
tem we propose correspondences between symbolic activities and the
behaviour of dynamical systems in which attractors develop in response
to inputs. We examine correspondences such as, symbols to attractors,
symbol manipulations to transitions among attractors, and regularities
in symbol manipulation to the order of the transitions. By using a dy-
namical system showing transitions among attractors, we may be able to
represent symbolic activities, in part. We try to construct such a system
with a kind of chaotic neural networks, derived from the Hopfield model.
We confirm that this system has multi-attractors and shows transitions
among attractors in some parameter regions. Further, we investigate the
response of the system to certain external inputs. Examining these sim-
ulation results suggests that this system learnt in a certain environment
can be used as a model of a symbolic agent for the study of the emergence
of linguistic communication.

1 Introduction

The remarkable feature of linguistic communications is the use of symbols for
transmitting information and mutual understanding. Deacon [4] pointed out that
humans are symbolic species, namely, we show symbolic cognitive activities such
as learning, formation, and manipulation of symbols. In research into the origin
and the evolution of language, we should elucidate the emerging process of such
symbolic cognitive activities.

Most agent models in simulation studies of language evolution presuppose
symbol processing ability [3]. For example, a computational model for the evolu-
tion of compositional syntax introduced in [12, 13] can possess grammatical rules
representing the correspondence of meanings and character strings that are con-
sidered as combinations of symbols. In a dynamical model for the evolution of
prototypical category structure introduced in [8], agents can emit, receive and
process sequences of words.

In order to understand the origin and the evolution of language, we should
deal with the emerging process of such a symbol processing ability. To this end,



we need a model of an agent that autonomously acquires the ability of symbolic
cognitive activities for effectively studying the emergence and the evolution of
linguistic communication with a constructive approach.

Mathematical and computational studies of symbol processing have been
done in artificial intelligence and connectionism. The former has difficulty in
the self-organisation and the emergence of symbols, since symbols and syntactic
rules governing the symbol processing are usually given by hand. While the latter
can acquire, in part, the symbolic representation from scratch without preparing
explicit symbolic elements, it is not good at explicitly describing symbols and
their processing rules, since symbols have a distributed representation in neural
networks. Thus, a new approach for symbol formation has been required [7]. A
new approach is to integrate both artificial intelligence type and connectionism
type methods1.

A recent development is to view cognitive systems from the dynamic per-
spective. van Gelder [18] argued that cognitive systems can be well understood
by considering them as dynamical systems and has presented many examples
of dynamic cognitive models [19]. This viewpoint is also proposed to describe
dynamic aspects of brain activities using the framework of dynamical systems
and chaos [17].

Chaos is a deterministic unpredictable dynamics – in spite that the time
evolution of a system is fully described by deterministic equations, no one can
predict its long term behaviour. The unpredictability is caused by the expan-
sion of small differences by the nonlinearity of chaotic systems. This property
is described as “sensitive dependence on initial conditions”. Note that chaotic
dynamics is not random but has certain structure temporally and geometrically.
A geometrical structure of chaotic dynamics is often characterised by a “strange
attractor”, which is a limit set of orbits (attractor) having a fractal structure.
Namely, chaos can bring fertile spaciotemporal structures into existence. Re-
cently such interesting features of chaos has been payed attention as carrying
brain functions [16, 17], and actually chaotic dynamics are found in real neurons
and brains [2, 6].

The purpose of the present study is to construct a model of an agent show-
ing symbolic cognitive activities with a dynamical system. When we construct
a model of a cognitive agent for linguistic communication, we take the dynamic
viewpoint not only for the cognitive systems [18] but also for language [8, 9, 18].
The dynamic view for language means that symbols are not mere correspon-
dences of words to referents and symbol formation is not merely an assigning
process of words to some objects.

The rest of this paper is organised as follows. In §2 we discuss how symbolic
systems are able to be interpreted in dynamical terms. Based on the discussion,
we introduce a model of dynamical systems for symbolic activities in §3, based

1 Note that using a connectionist model does not necessarily mean that no symbolic
element is involved. For example, in the simple recurrent network introduced by
Elman [5], sequences of words which are discrete representations are fed to the
network as inputs.
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on the Hopfield model. Concretely, the model is composed of coupled chaotic
dynamical systems, called NZ maps. The simulation results of the model are
shown in §4. We discuss the results in §5 and conclude this paper in §6.

2 Symbol Systems as Dynamical Systems

To model the symbolic activities in the framework of dynamical systems, we
consider features of symbols. In general, symbols are considered to represent
or to signify something and are manipulated according to some rules such as a
grammar in language or a deduction rule in calculation and formal thought.

Harnad [7] summarised the features of symbol systems with the following
definitions:

1. A symbol is a set of arbitrary physical tokens that are
2. manipulated on the basis of explicit rules
3. that are likewise physical tokens and strings tokens.
4. The rule-governed symbol-token manipulation is based purely on the form2

of the symbol tokens, i.e. it is purely syntactic, and
5. consists of rulefully combining and recombining symbol tokens.
6. There are primitive atomic symbol tokens and
7. composite symbol-token strings.
8. The entire system and all its parts are all semantically interpretable: the

syntax can be systematically assigned a meaning.

This definition describes an external system that can be interpreted as sym-
bolic rather than internal symbolic activities. In order to construct an agent
model showing symbolic activities, we construe this definition as internal cogni-
tive processes. Further, to implement the agent model using a dynamical system,
we interpret the processes through the concepts of dynamical systems.

The items 1, 6 and 8 imply that there are some entities that are accepted
or interpreted as representing something such as objects, states of affairs, or
abstract ideas by cognitive agents. To receive some physical tokens a cognitive
process recalls some memorised concepts. In the terms of dynamical systems,
some inputs to a dynamical system bring it to certain (dynamic) states. This
representative function is thought of as being realised by a kind of memory that
is usually modelled by attractors of the dynamical system.

The items 2, 3 and 4 state that the cognitive agent performs a process of
successive recall of concepts (memories) and the successions are rule-governed.
In dynamical terms, there are (spontaneous) transitions among attractors and a
transition is rule-governed or, at least, ordered.

The items 5, 7 and 8 mean that a part of sets or some series of physical tokens,
but not all sets and series, are accepted as an ordered combination of entities, not
as independent entities, and receiving processes of such series induce retrieval
2 In Harnad’s original article [7], the term “shape” is used. We reword this as “form”

for clarification.
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processes of concepts. These activities are considered as evocations of ordered
transitions among attractors by some input sequences in dynamical systems.

A chaotic neural network is a candidate to implement the above mentioned
behaviour as a dynamical system. In chaotic neural networks, memories are re-
alised as attractors of the system [1]. In some chaotic dynamical systems, transi-
tions among “attractor ruins3” have been found [11], that is called “chaotic itin-
erancy”. Thus, we may be able to construct a system with plastically learnable
symbolic activities by a chaotic dynamical system by introducing the following
correspondences:

– symbols to attractors,
– symbol manipulations to transitions among attractors,
– manipulation rules, or regularities in manipulation, to order of the transition.

In the followings, we try to construct a dynamical system having the above
mentioned properties corresponding to symbolic activities, that is, multiple at-
tractors, transitions among the attractors, and order in th transitions. We will
enquire if the dynamical system introduced in the next section has actually such
properties by computer simulations.

3 Model of Chaotic Neural Newtork

3.1 Coupled NZ map

Nozawa [15] derived a chaotic neural network model from the Hopfield model
[10] by introducing small negative self-feedback connections and by discretising
the time variable using Euler method. The chaotic neural network model is
called coupled NZ maps4. It is shown that this system chaotically itinerates
among attractor ruins. Similar to the Hopfield model [10] and other chaotic
neural networks [1], the coupled NZ maps can be used as an associative memory
device. Nozawa also demonstrated the high information processing ability of
this system in solving a class of combinatorial optimisation problem [15] and a
nonlinear optimisation [14].

In this paper, we use the coupled NZ maps for a model representing the
features of symbols discussed in the previous section. The coupled NZ maps is

3 An attractor ruin is a region in a state space of a dynamical system, in which an
orbit stays for a while like an attractor, but does not stay forever, and escapes from
there.

4 Because of the discretisation of the time variable, the model consists of difference
equations, that is, maps, while the original Hopfield model consists of differential
equations. In a network model the elements described by a single NZ map interact
through connections, therefore the elements are said to be “coupled” with each other
in a neural network system.
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given by the following equations5:

pi(t + 1) = Fqi(t){pi(t)} , (1)

qi(t) = − 1
Tii


N∑

j ̸=i

Tijpj(t) + Ii

 , (2)

Fq(p) = rp + (1 − r)
[
1 − 1

2

{
1 + tanh

(
p − q

2β

)}]
, (3)

where the symbols in these equations are as follows:

– pi(t): the internal buffer of the ith neuron at time t, which develops according
to the map, Fqi(t), defined by Eqn.(3)

– qi(t): the influence from the other neurons to the ith neuron as shown in
Eqn.(2)

– Tij : the synaptic connection between the ith and the jth neurons
– Tii: the self-feedback connection of the ith neuron
– Ii : the threshold of the ith neuron
– N : the number of neurons
– r: the parameter related to the damping constant of the neurons
– β: the parameter related to the gain constant of the neurons6

In order to understand the basic properties of the NZ maps, let us look at the
behaviour of single NZ map. When there is no connection between the elements,
Tij = 0 for all i and j ̸= i. Therefore, qi(t) in Eqn.(2) is constant qi = Ii/Tii ≡ q.
Thus the single NZ map is described by

p(t + 1) = rp + (1 − r)
[
1 − 1

2

{
1 + tanh

(
p − q

2β

)}]
. (4)

This map is a combination of a linear function p and a reversed sigmoid function
with the combination coefficient r. The parameter r usually takes a value between
0 and 1, thus the map has three branches as shown in Fig. 1. When an orbit
comes to the middle branch, the expansion of small differences occurs and the
dynamics comes to be chaotic, since the slope of this branch is steep. Because
the variable q, which is the ratio of the threshold to the self-feedback connection,
moves the threshold of the sigmoid function, the middle branch of the single NZ
map moves with the value of q. Namely, the variable q plays a role of a control
parameter to determine the shape and the nonlinearity of the single map. When
q is 0 and 1, the map has a fixed point around p = 0 and p = 1, respectively.
When 0 < q < 1, the orbit shows chaotic behaviour. Examples of the map and
the dynamics for different values of q are shown in Fig. 1. In Fig. 1a) and c), the
dynamics are chaotic for q = 0.09 and 0.9, respectively, and in Fig. 1b), period
two dynamics is shown for q = 0.5.
5 Refer [15] for the detailed derivation from the Hopfield model.
6 As describe later, the parameters Tii, Ii, r and β are chosen for the system to show

chaotic behaviour and Tij is determined to store some memory patters in the system.
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a) q=0.09 b) q=0.5 c) q=0.9
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Fig. 1. The shapes of the single NZ map, Eqn.(4) and their dynamics for different
values of the control parameter a) q = 0.09, b) q = 0.5 and c) q = 0.9. The other
parameters are r = 0.7 and β = 0.006. The horizontal and vertical axes are the value
of the variable p at time t and t+1, respectively. The dotted lines are the shape of the
map. The solid lines shows the dynamics (orbit) of the map (the cobweb plot). The
dashed lines are the diagonals. If the orbit does not come to the middle branch which
has steep negative slope, as in b), the dynamics is periodic. When the orbit comes to
the middle branch, it shows chaotic motion as a) and c)

In the coupled system, the control parameter q changes with time by the
influences from other elements, as Eqn.(2) says. Even if the dynamics of some
elements fall into fixed points, the values of q of such elements are changed by
the other ones through the connections, and then the orbits can escape from the
fixed points. Therefore, the coupled NZ maps consists of a variety of maps of
all sorts of dynamical motions, that induces diverse dynamic behaviour of the
system, such as fixed, periodic and chaotic motions and transitions among such
states.

3.2 Embedding Patterns as Attractors

As mentioned above, we consider that symbols correspond to attractors of a
dynamical system. Since the system introduced here is basically an associative
memory model, we can embed several memory states as attractors of the dynam-
ical system [10]. To do this, the connection weights between elements should be
appropriately set or learnt corresponding to patterns to be embedded, or mem-
orised.

In order to embed a pattern represented by a N dimensional vector V s =
(V s

1 ,· · · ,V s
N ) with V s

i 1 (“ON”) or 0 (“OFF”), where the index s indicates each
embedded pattern, the following equation is used to determine the connection
Tij between the ith and the jth elements,

Tij =
∑

s

(2V s
i − 1)(2V s

j − 1) . (5)
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3.3 Recalled Pattern

The coupled system behaving according to Eqns.(1)∼(3) represents some pat-
terns. We define a recalled pattern ϕ(t) = {ϕ1(t), · · · , ϕN (t)} by observing the
values of qi(t) of all elements as

ϕi(t) =

{
1 (qi(t) ≥ q̄(t)) ,

0 (qi(t) < q̄(t)) ,
(6)

where

q̄(t) = lim
t→∞

1
tN

t−1∑
t′=0

N∑
i=1

qi(t′) (7)

is the criterion to separate whether each element is “ON” (ϕi(t) = 1) or “OFF”
(ϕi(t) = 0). This criterion is the spaciotemporal average of qi(t) [15]. When a
recalled pattern coincides with one of the embedded patterns, that is,

ϕ(t) = V s (8)

for some s, the embedded pattern, or memory, is retrieved.

4 Simulation Results

We embed three orthogonal patterns, shown in Fig. 2 and named C,F, 4, respec-
tively, in the system with N = 16 elements. Because of the symmetrical nature
of the system, the reversed patterns of the embedded ones are also attractors.
Such reversed patterns are labelled as C̄, F̄ and 4̄, respectively. All the patterns
other than the embedded and their reversed patterns are treated in a lump and
labelled as O. The parameters are q = Ii/Tii = 0.09, r = 0.7, β = 0.006 through-
out the experiments described in this paper. This parameter set means that each
element alone keeps showing chaotic behaviour as depicted in Fig. 1a). In the
following experiments, we change the strength of the self-feedback connection,
Tii, of the all elements as a control parameter. Note that the ratio of Tii to Ii is
fixed.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 2. Schematic view of embedded patterns. The black and white boxes mean 1
(“ON”) and 0 (“OFF”), respectively. The patterns are named as C, F and 4, respec-
tively. The index for each elements is arranged as the left most figure.
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4.1 Recall and Transition of Embedded Patterns

The system starts from a generic initial state. Then in a certain region the
strength of the self-feedback connection, Tii, causes the recall of one of the em-
bedded or their reversed patterns after a certain time (Fig. 3). The two graphs
in Fig. 3 have the same parameters but differ in their initial states. They con-
verge to different patterns. The fact that different initial conditions end up with
different converged attractors means that this system has multi-attractors.

4–
F–
C–
O

C

F

4

0 50 100 150 200

φ(
t)

t

Tii=13.0

4–
F–
C–
O

C

F

4

0 50 100 150 200

φ(
t)

t

Tii=13.0

Fig. 3. The time series of recalled patterns. The x and y axes are time t and the
recalled patterns ffi, respectively. The labels C, F, 4 are the embedded patterns and
C̄, F̄ , 4̄ are their reversed patterns, respectively. The label O means that the system is
not in any embedded pattern. Two graphs starts from the different initial conditions.
The self-feedback connection is Tii = 13.0 in the both graphs.

When we raise the strength of the self-feedback connection from the conver-
gence parameter region, the system itinerates among embedded patterns through
non-memorised patterns as shown in Fig. 4. Since there is no input to the system,
the system autonomously changes its recalling patterns.

4.2 Response to Input

We examine how the system reacts to external inputs. Among a great variety of
ways to input signals, we consider, as the simplest cases, constant and periodic
inputs and observe the response of the system to these inputs. The external
input S(t) is given in Eqn.(2) as

qi(t) = − 1
Tii


N∑

j ̸=i

Tijpj(t) + S(t) + Ii

 . (9)

In order to observe the dynamics of the system more precisely than just the
sequence of recalled patterns, we introduce a distance measure of orbit qi(t) from
the embedded patterns V s′

. The index s′ is for the patterns both embedded and
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φ(
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t

Tii=15.0

Fig. 4. The time series of recalled patterns ffi without input. The x axis is time. The
self-feedback connection is Tii = 15.0. This graph shows an itinerant motion among
the embedded patterns.

their reversed, that is, C,F, 4. and C̄, F̄ , 4̄, while s in Eqn.(5) indicates only the
embedded patters. The measure is defined as

Dists
′
(t) =

√√√√ N∑
i=1

(V s′
i − qi(t))2 . (10)

When any embedded and its reversed pattern is not definitely recalled, the orbit
is categorised merely as O, as seen in Figs. 3 and 4.

Constant Input We give a constant input sequence S(t) = 0.3 at t = 10000 ∼
20000 for the system with the self feedback connections Tii = 15.0 for the all
elements. While the system shows the itinerant motion when there is no input
as in Fig 4, the constant input brings the system sometimes to become fixed to a
pattern and sometimes to fluctuate among the patterns. Figure 5(Left) shows the
time series of qi(t) around the input when the system falls onto a fixed pattern.
The elements fluctuate widely, they itinerate among attractors before the input
is given, and are then stabilised by the input.

Figure 5(Right) is a magnification of the dynamics of the system around the
beginning of the input. Injecting the constant input causes the orbits showing
chaotic dynamics to separate into two clusters. The dynamics are still chaotic
but this is a transient state, and after 50 steps from the beginning of the input,
the orbits of all elements enter stable periodic motions.

The elements are actually clustered hierarchically. Eight of 16 elements have
higher values of qi(t) than the other ones as shown in Fig. 6(Left). The former
elements, i = 1, 6, 7, 8, 12, 14, 15, 16 with numbering from top left to bottom
right in Fig. 2, correspond to “ON” elements of the pattern F̄ . They form 4
sub-clusters consisting of two elements each. The residual 8 elements in the
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Fig. 5. (Left) The time series of qi(t) when a fixed input S(t) = 0.3 in Eqn. (9) is
given. The x axis is time. The self-feedback connection is Tii = 15.0. The time series of
2 elements among 16 are drawn. (Right) The time series of qi(t) around the beginning
of the input. The time series of 4 of 16 elements are depicted. The orbits, chaotically
fluctuating before the input, promptly split into two clusters, when the input starts
(indicated by the down arrow). Then, the dynamics are stabilised at a periodic state
after 50 steps from the beginning of the input.

latter cluster, corresponding to “OFF” elements, synchronously oscillate while
the input is given. Although the elements are not fixed by the dynamics of qi(t),
the nearest pattern does not change. The time series of the distance measure,
depicted in Fig. 6(Right), tells that the system stays at a state where the nearest
pattern is F̄ .

As we mentioned, the system with a constant input sequence sometimes con-
verges to various fixed patterns and sometimes itinerates among the embedded
patterms and their reverses, in which case itinerant motion is not the same as
one without an input sequence. This behavioural diversity depends on the tim-
ing of the input, since the system is in an itinerant motion as shown in Fig. 4.
This itinerant behaviour is considered as the internal dynamics of the system.
The system differs in its response to stimuli according to its internal dynamics,
even though the same stimulus is given.

Sinusoidal Input We input a sinusoidal sequence,

S(t) = A sin(2πωt) , (11)

at t = 10000 ∼ 20000 (A = 0.7, ω = 0.001) to the same system as in the previous
experiment, the self-feedback connections are Tii = 15.0 for all the elements. A
transition among the patterns is observed as shown in Fig. 7.

For a closer observation, we draw the dynamics of the distance measure in
Fig. 8. This graph tells us that the change of the nearest patterns occurs with
roughly the same intervals. The interval approximately matches with the cycle of
the sinusoidal input. The order of recalled patterns is not periodic. Further, we
have not found clear statistical order in the transition among recalled patterns.
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Fig. 6. (Left) The time series of qi(t) around the mid of the inputting period when
a fixed input S(t) = 0.3 is given. The x axis is time. The self-feedback connection is
Tii = 15.0. Note the change in scale of t on the x axis from Fig. 5(Right). The time
series of all 16 elements are superimposed, but only 5 lines are distinguishable. The
elements form two clusters. The upper cluster consisting of 8 elements corresponds
to a pattern, F̄ . The elements are subdivided into 4 clusters, each of which has two
elements. The residual 8 elements in the lower cluster have the same values while the
input is given. (Right) The time series of the distance measure from the embedded

patterns, Dists′(t). The six orbits of the distance from all patterns are superimposed.
The orbits periodically change, but the nearest pattern is fixed at F̄ .
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t)

t

Fig. 7. The time series of recalled patterns with a sinusoidal input sequence. The x
axis is time. The self-feedback connection is Tii = 15.0. This graph shows an itinerant
motion among the patterns.
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Fig. 8. The time series of the distance measure from embedded patterns, Dists′(t),
when a sinusoidal input sequence is given. The x axis is time. The six orbits of the
distance from all patterns are superimposed. The self-feedback connection is Tii = 15.0.
A transition among the nearest patterns with nearly the same intervals is observed.

The change of the recalled pattern is certainly induced by the periodicity
of the sine wave. This is clearly perceived from Fig. 9. When the amplitude
of the sine wave falls below zero, the clustering (synchronisation or recalling a
pattern) is dissolved and the system enters a chaotic (itinerate) state. When
the amplitude of the input become positive, the system starts to synchronise
again and is attracted to a pattern. But a memory of the last recalled pattern
(the time correlation between recalled patterns) is destroyed by the interleaved
chaotic motion. Thus, there is no ordered transition and a transition rule among
the patterns is not formed.

Figure 9 shows the existence of intrinsic instability of the system, as well. The
clustering is destroyed even though the amplitude of the input is large enough
around t = 11200. This is the effect of internal chaotic dynamics.

5 Discussion

We have suggested correspondences between symbolic activities and dynamical
systems such that symbols correspond to attractors, symbol manipulations to
transitions among attractors, and regularities in symbol manipulation to the
order of transitions. Let us examine how the simulation results of the coupled
NZ maps conducted in this paper are concordant with these correspondences,
and therefore appropriate as a model of a symbolic cognitive agent.

At first, some patterns are embedded in the system and they are retrieved as
attractors. The embedded patterns are recalled when a constant input is given to
the system. Namely, the patterns and input sequences are associated like memo-
ries and some patterns of perceptions. This representation is an important func-
tion of symbols. Further, embedding several patterns or having multi-attractors
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Fig. 9. The time series of the distance measure from the all embedded and their re-
versed patterns, Dists′(t), with the sinusoidal input, S(t) = A sin(2πωt) (lower periodic
line). The amplitude of the input is transformed appropriately. The straight line shows
the zero level of the input.

indicates that the system has the capacity to learn some number of symbols.
The number of symbols is below the half of the system size N .

Concerning the second point, a dynamical system model of a symbolic cog-
nitive agent is required to show, at least, transition among attractors. We can
realise such behaviour in some parameter regions of the self-feedback connection
Tii as shown in Fig. 4. The transition is evoked by the input sequence of an
ordered change. Namely, our system also has a capacity for the symbol manip-
ulations.

However, the transitions among attractors are not orderly. We have not found
regularities in the transitions, that is, no basis for syntax. In chaotic dynamical
systems, in general, time correlation decays exponentially. The rapid decrease
of the time correlation causes these disordered transitions. The low correlation
seems to be brought about partly by the orthogonal embedded patterns created
by hand. If so, system learning in a particular environment with some structure
may overcome this inadequacy. Namely, the order in the external world might
form a structural coupling with the internal structure of the agent. Thus, to ex-
amine the system’s status as a model of symbolic cognitive agent, it is important
to investigate the behaviour of the system taught in a structured environment.

Let us further discuss the process of symbol formation or development of
symbols based on the correspondences between symbolic activities and the be-
haviour of dynamical systems. Harnad [7] summarises the developmental process
of representation as a progress from iconic representation to categorical and to
symbolic. The iconic representation is demonstrated by retrieving an attractor
from an input. This is shown by our system.
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The categorical representation can be translated in two ways. One is retriev-
ing an attractor for different inputs, the other is grouping of attractors according
to some features, such as dimension and nonlinearity. Our system shows the for-
mer behaviour. The dynamics of each element differ for different inputs but
some dynamics are categorised into one pattern that is nearest to the dynam-
ics. Namely, though precise internal states of the agent are not the same the
representing symbol is the same for a class of inputs. To observe the latter in-
terpretation, we need further investigation into the characteristics of attractors
of the model.

The symbolic representation should show an orderly transition among at-
tractors induced by an input sequence. As we found, this is not realised in the
present system. If, however, we develop the system in a structured environment,
the system may learn some symbols as attractors and show ordered transition
among the attractors. Thus, we may be able to progress along the path of sym-
bolic representation.

6 Conclusion

We have proposed a dynamical system model of a cognitive agent that can ex-
hibit a part of symbolic behaviour using coupled chaotic maps, called NZ maps.
We have shown that attractors of the dynamical system can represent symbols
that can be embedded. The system can have internal dynamics and show symbol
manipulation behaviour as transitions among the embedded attractors accord-
ing to sequences of external input signals. However, the system did not show
ordered transitions among symbols, that is, no basis for syntactically structured
behaviour. Despite this drawback with the status quo, we conclude that the cou-
pled NZ map system can be developed as a model of symbolic individuals, since
we may overcome such insufficiency by further investigations, especially learning
and developing in a particular structured environment.
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