恒常的可塑性の進化シミュレーション ~ 刺激変化の知覚能力が与える影響~

鳥居 拓馬 かい橋本 敬

北陸先端科学技術大学院大学 知識科学研究科

{tak.torii, hash}@jaist.ac.jp

抄録 恒常的可塑性は生物が動的な環境で生存するために不可欠な性質である.視覚反転に適応する 走光性をもつロボットを拡張し,複数回の視覚反転というより動的な状況に適応できる高度な恒常的可 塑性をもつ方策を考察する.本研究では光の時間変化(差分)を知覚できる能力と光の強さを記憶できる 能力を仮定する.シミュレーションを行った結果、モデルの違いによらず、視覚反転、複数回の視覚反転 に適応できる個体はモータの推進力 - 舵分担と後退移動を獲得していることがわかった.このような方 策が高度な恒常的可塑性に対してもつ意義を議論する.

Evolutionary Simulation of Homeostatic Plasticity: Effect of Sensibility to Stimulus Changes

Takuma Torii Takashi Hashimoto

School of Knowledge Science, Japan Advanced Institute of Science and Technology

Abstract Homeostatic plasticity is a vital characteristic of life living in dynamic environment. By extending a model of phototactic robot adaptive to visual inversion, we consider a method to adapt to more dynamic situation, multiple visual inversion. Our robot can percept changes of sensory inputs or has short-term memory of the inputs. Despite model differences, robots adaptive to the multiple inversion acquire backward motion and the division of roles of motors into driving force and steer. We discuss the meaning of this policy from the viewpoint of adaptive behavior.

1 はじめに

生物は恒常的可塑性をもつ. 恒常的可塑性とは外的 撹乱によって恒常性が失われたときには内部構造が可 塑的に変化することで恒常性を取り戻すという性質で ある. 走光性のシミュレーションモデルによって,恒 常的可塑性を扱った研究に Di Paolo[1] がある. この 論文ではロボットは恒常性を保ちながら走光性をもつ ように進化させられる. 進化したロボットは視覚反転 という撹乱に対し,一旦走光性を失うが,視覚反転へ の適応能力が獲得されるよう進化していないにも関わ らず,いずれ適応できるようになる. すなわち,視覚反 転に適応するという恒常的可塑性をもつ. しかし,こ こで Di Paolo[1] は,複反転には適応できなかったと 述べている.

一方,人間が視覚反転(逆さ眼鏡)のような撹乱を経 験したとき,行動に対する知覚の差異を用いることで 撹乱に対応できると考えられる.そこで本研究では, ロボットに移動による光の変化を知覚する能力を仮定 したモデルを考える.本研究では Di Paolo[1] に加え て 2 つのモデルを用いて,撹乱に対する恒常的可塑性 について考える.ひとつめに、ロボットが光の時間変 化量を認知できると仮定したモデル(差分モデル)を 考える.このモデルではロボットは差分情報を活用す ることで複反転に適応することが期待される.ふたつ めに、光入力を記憶できると仮定したモデル(記憶モ デル)を考える.このモデルではロボットは内的に差 を計算することで複反転に適応することが期待され る.3つのモデルの結果を比較・解析し、高度な恒常的 可塑性が実現される適応メカニズムを考察する.

- 2 モデル
- 2.1 ロボット

ロボットが提示される光源に近づこうとする状況を 考える. ロボットは半径 R_r の円形ボディをもち,正 面から ± 60 度に配置された 2 つのセンサと,正面か ら ± 90 度に配置された 2 つのモータをもつ^{*1} (図 1)

113

^{*1} 光の強さ L は距離の逆二乗に従って減衰する. また、光源からの光がロボットのボディによって遮られたときセンサへの入力は 0 となる. モータは前後方向へ駆動し、ロボットの移動・回転は左右のモータ出力の角速度で計算される.

ロボットの振る舞いは8ニューロンの全結合ニュー ラルネットによって制御される.それぞれのニューロ ンの状態は式(1)で更新される

$$\tau_i \dot{y_i} = -y_i + \sum_j w_{ji} z_j + I_i \tag{1}$$

ここで y_i は細胞電位, τ_i は時定数, z_j は発火率, w_{ij} はノード i からノード j への結合の強さ, I_i は入力である. 発火率 z_j は活性化関数 (2) で得られる.

$$z_j = \frac{1}{1 + \exp[-(y_j + b_j)]}$$
(2)

ここで *b_j* はバイアス項である. 重みは式 (3)~(6) で 更新される.

$$R0: \Delta w_{ij} = \delta \eta_{ij} p_j z_i z_j \tag{3}$$

$$R1: \Delta w_{ij} = \delta \eta_{ij} (z_i - z_{ij}^c) z_j$$
(4)
$$R2: \Delta w_{ij} = \delta m_{ij} (z_i - z_{ij}^c) z_j$$
(5)

$$R2: \Delta w_{ij} = \delta \eta_{ij} z_i (z_j - z_{ij}^\circ) \tag{5}$$

 $R3: \Delta w_{ij} = 0 \tag{6}$

ここで、定数 δ は線形減衰因子、 η_{ij} は変化率、 p_j は局 所可塑促進子である. 閾値 z_{ij}^o は w_{ij} を [0,1] へ写像 した値である.

モータの出力は、モータ・ニューロンの出力を [-1,1] へ写像したものにノイズ項を加え、ゲインを 掛けた値となる.

本研究では入力の種類が異なる 3 つのモデルを用 いる.以下,それぞれについて説明する.Di Paolo[1] のモデル (これを「オリジナルモデル」と呼ぶ)では光 入力を受け取る 2 つのセンサをもつ.センサ・ニュー ロンへの入力 *I_i*は、センサに届いた光の強さにノイ ズ項を加え、ゲインを掛けた値となる.差分モデルで は光入力の変化量を計算するモジュールを仮定する. 8 ニューロンのうち左右入力に対応して、それぞれ 1 ニューロンが現在と *δt*時間前の入力の差 (差分入力) を入力として受け取る記憶モデルでは同様に 2 ニュー ロンが左右それぞれのセンサ・ニューロンに対応した 記憶 (*δt*時間前の入力)を入力として受け取る.

図1 ロボット

2.2 進化

ロボットのニューラルネットをエリート主義ランク 選択遺伝的アルゴリズムを用いて進化させる.遺伝子 には $\tau_i, w_{ij}, b_i, \eta_{ij}, ゲイン (センサ, モータは左右対称), および更新ルール (3)~(6)を指定する整数がコー$ ドされている (遺伝子長は 210. [0,1]の値をとる 146の実数と [0,3]の値をとる 64 の整数).実数に対してはベクトル突然変異を用い,整数に対しては点突然変異 (ともに変異確率 0.002)を用いる.また,一様交叉(ともに交叉確率 0.7)を用いる.

次に適応度を説明する.1回の試行で光源がひとつ, 距離 D の位置にランダムに配置される.ロボットは T時間動き続ける.この試行を連続で6回行い,この 間,ニューラルネットの重みを引き継ぐ.6試行を1 セットとし,5セット繰り返す.各セットの初めに重 みを遺伝子にコードされた値に戻す.適応度 F は3 つの指標の荷重和である(式 (7) ~ (10)).

$$F = F_D W_D + F_P W_P + F_H W_H \tag{7}$$

$$F_D = \begin{cases} 0 & \text{if } D_f > D_i \\ 1 - D_f / D_i & \text{otherwise} \end{cases}$$
(8)

$$F_P = S_p/T \tag{9}$$

$$F_H = S_h/T \tag{10}$$

ここで F_D は光源に近づけたかどうかを測る指標で, D_i , D_f はそれぞれ試行開始時, 終了時のロボットと光 源間の距離である. F_P は光源付近に居た程度を測る 指標で, S_p は光源から半径 $4R_r$ 以内に居た時間であ る. F_H は恒常性を評価する指標で, S_h は各時間にお いて恒常的に振る舞ったニューロンの比率の総和であ る. ニューロンが恒常的に振る舞うとは発火率 z_j が [0.119, 0.881] に含まれることである. W_D, W_P, W_H は各指標に対する重み $(W_D + W_P + W_H = 1)$ であ る. 上で述べた 5 セットに対し F を計算し, その平均 - 標準偏差 ×0.2 を各個体の適応度とする.

計算機実験とその結果

前節で説明したロボット 60 体を 1000 世代進化さ せる*2. 本研究では以下の順に個体をテストにかけ,

-2-

114

^{*2} 環境パラメータの範囲は、 $L = [500, 1500], R_r = 4, D = [50, 100], T = [300, 500]$ である. ニューラルネットの パラメータの範囲は $y_i = [0, 1], \tau_i = [0.4, 4], w_{ij} = [-8, 8], b_j = [-3, 3], \eta_{ij} = [-0.9, 0.9], p_j = [0, 1], ゲ$ イン = [0.01, 10]である. 各パラメータ初期値はランダム

最終的に複数回の視覚反転(以下, 複反転)に適応でき る個体を調べる.

- 進化実験: 10 世代連続して適応度 0.8 以上の個 体を選択.
- 2. 長期適応テスト: 400 試行で平均適応度 F ≥ 0.75 の個体を選択.
- 5. 反転テスト: 400 試行中, 100 試行目で視覚反転
 し F ≥ 0.75 の個体を選択.
- 4. 複反転テスト: 400 試行中, 100 試行ごとに視覚 を反転する.

 $1 \sim 4$ を5回行ったときの複反転テストでの \overline{F} の 頻度分布を図2に示す^{*3}.

Di Paolo[1] では複反転に適応できる個体は見つか らなかったとしているが、十分に調べるとオリジナル モデルでも複反転に適応できる個体がみられた.また 期待された通り、差分モデルはオリジナルモデルより 複反転に適応できる個体が多くみられた.ところが記 憶モデルは予想とは異なり、複反転に適応できる個体 がほとんど見られなかった.

図3に複反転に適応できる個体の動きの典型例を示 す.光源に近づいていく軌跡でのロボットの正面方向 (矢印の向き)を見れば明らかなように、ロボットは後 ろ向き(センサのある側とは反対方向)に光源に近づ く.いずれのモデルでも、視覚反転、複反転に適応でき る個体の大半はこの動きをしている.モータ・ニュー ロンの出力(図4)を見ると、視覚反転や視覚複反転に 適応できる個体は一方のモータ出力を常に一方向に最 大値近くとすることで推進力として利用し、もう一方 のモータ出力を前後に調節することで舵として利用す るという方策をもつことがわかる.光入力があるとき は舵を取り、光入力が入らないように調節している.

適応度 F とモータ・ニューロンの出力の関係を図 5 に示す.長期適応できる個体 (図 5 左 の ×) では左 右のモータ・ニューロンの平均出力が 0.5 であるよう なロボットが多くみられる.これはモータの平均出力 が 0,つまりモータを前後へ均等に駆動させるロボッ 情報処理学会研究報告数理モデル化と問題解決(MPS) Vol.2009 No.19, pp. 113-116, 2009

図 2 各モデルの視覚複反転テスト結果. (a) オリジ ナルモデル, (b) 差分モデル, (c) 記憶モデル.

図3 ロボットの軌跡の例 (視覚反転後5 試行目). 左下のバツ印がロボットの開始位置,右上の円の中 心が光源,円内が *F_P* が得られる範囲,軌跡から伸び る矢印はロボットの正面方向.

トが多くいることを表している. ところが視覚反転へ 適応できる個体 (図 5 右 の ×) では、一方のモータ・ ニューロンの平均出力が 0 へ極端に偏っている. これ は推進力-舵というモータの役割分担をもち後退移動 をする傾向があることを表している. 進化の結果とし て生得的に役割分担と後退移動を獲得した個体は視覚 反転に対してロバストに適応できる.

図4 モータ・ニューロンの出力の時間変化. 縦破線 は視覚反転位置. この例ではオリジナルモデルのも のを示した.

-3-

に設定される. 適応度指標の重みは $W_D = 0.21, W_P = 0.64, W_H = 0.15$ を用いる. 計算はステップ 0.2 のオイラー積分を用い, $\delta t = 0.2$ とする.

^{*3} オリジナルモデルでは 535 体のうち,長期適応テストで 76 体,反転テストで 9 体,差分モデルでは 685 体のうち,長期 適応テストで 72 体,反転テストで 30 体,記憶モデルでは 631 体のうち,長期適応テストで 169 体,反転テストで 2 体 が選択された.

図 5 長期適応テスト (左) と視覚反転テスト (右) における左右のモータ・ニューロンの出力と適応度 F の関係. 各点は異なる個体の 100 ~ 200 試行に おける平均出力. × は F ≥ 0.75 の個体を表す.

4 議論

本研究で確認した視覚反転に適応できるロボットが 行う後退移動の方策は次のようである.

- 1. センサ入力の影響がないとき、ロボットは左右の モータを逆回転させ、後退移動する.
- センサ入力の影響があるとき、入力の強さに応じてモータ出力を調整し、弧を描くように移動する.
 センサ入力の影響がなくなると、ロボットは再び後退移動する.

ロボットの後退移動は Di Paolo [1, 2] でもみられ る. このシミュレーションでは、個体に与えられたタ スクは恒常性を保ちながら走光性を発揮することで ある. モデルやアーキテクチャの違い^{*4} によらず、ロ ボットは後退移動という方策を獲得した. 強い光入力 はニューラルネットの恒常性を奪い、可塑的変化を引 き起こす. ロボットは光刺激を可能な限り避けること で恒常性を維持しつつ走光性を発揮できるよう後退移 動を獲得した.

差分モデルでは現在と *δt* 時間前の入力の差を計算 するため負の入力が生じる場合がある.光源付近では 入力 *I_i* はニューロンの細胞電位 *y_i* を極端に変化させ る要因となる.負の入力によって *y_i* が減少すること はモータの回転を素早くゼロに近づける.光源付近に おいて,ロボットがその場でターンするような振る舞 いが観察された.

記憶モデルでは内的に差を計算して差分モデルと同様の効果を発揮することが期待されたが、そうはならなかった.その理由として、*δt*時間前の入力をそのま

情報処理学会 研究報告 数理モデル化と問題解決(MPS) Vol.2009 No.19, pp. 113-116, 2009

ま入力として与えてしまったことが考えられる. センサ・ニューロンと同程度に記憶ニューロンからモータ・ニューロンへの結合 w_{ij} が強ければ, ロボットは 光入力に過剰に反応する. その場で必要以上に回転してしまい, ロボットがある一定の距離以上光源へ近づけなくなるという振る舞いが観察された.

差分と記憶という観点からオリジナルモデルを見直 すと、オリジナルモデルでも記憶を持ち、差分入力を 計算することは可能であると考えれられる.例えば、 センサ・ニューロンの出力をそのまま保存できるよう な結合をもったニューロンがあると、そのニューロン とセンサ・ニューロンからの結合の符号を反対にする ことで、モータ・ニューロンは差を計算することがで きると考えられる..

入力そのものではなく入力の差を利用して恒常的可 塑性を高めるという方法は、より高度な適応的振る舞 いにも有効だと考えられる.例えば、記号化やカテゴ リ化は事物の同一性よりも差異に着目することで世界 の複雑性を縮減して認識する有効な方法である.

5 結論

本研究では恒常的可塑性のモデルを刺激変化の知覚 能力という観点から拡張した.モデルを用い,複数回 の視覚反転に適応可能な方策を考察した.その結果,2 つのモータを推進力と舵に役割を分化させ後退移動す る方策が適応的であることを示した.これは,光入力 をできるだけ少なくし,恒常的可塑性を高める方法で ある.

参考文献

- E.A. Di Paolo. Homeostatic adaptation to inversion of the visual field and other sensorimotor disruptions. In From animals to animats 6: Proceedings of the 6th International Conference on the Simulation of Adaptive Behavior, pp. 440– 449, 2000.
- [2] E.A. Di Paolo. Evolving spike-timing-dependent plasticity for single-trial learning in robots. *Philosophical Transactions of the Royal Society* A: Mathematical, Physical and Engineering Sciences, Vol. 361, No. 1811, pp. 2299–2319, 2003.

-4-

^{*4 [2]} では異なるアーキテクチャを用いている.