
Dynamics and computation in functional shifts

Jun Namikawa† and Takashi Hashimoto‡
†‡ School of Knowledge Science,

Japan Advanced Institute of Science and Technology,

Tatsunokuchi, Ishikawa, 923-1292, Japan

† E-mail: jnamika@jaist.ac.jp

Submitted to Nonlinearity

Abstract

We introduce a new type of shift dynamics as an extended model of symbolic dy-

namics, and investigate the characteristics of shift spaces from the viewpoints of both

dynamics and computation. This shift dynamics is called a functional shift that is de-

fined by a set of bi-infinite sequences of some functions on a set of symbols. To analyze

the complexity of functional shifts, we measure them in terms of topological entropy,

and locate their languages in the Chomsky hierarchy. Through this study, we argue

that considering functional shifts from the viewpoints of both dynamics and computa-

tion give us opposite results about the complexity of systems. We also describe a new

class of shift spaces whose languages are not recursively enumerable.

1 Introduction

We propose a new framework of shift dynamics called functional shifts which extended
symbolic dynamics. A functional shift is defined as a shift space which is a set of bi-infinite
sequences of some functions on a set of symbols, while a symbolic dynamics is usually defined
as a set of bi-infinite sequences of finite symbols. This functional shift generates other
shift space as follows. Consider a sequence of functions (fi)i∈Z contained in the functional
shift. The sequence of functions generates a sequence of symbols (xi)i∈Z determined by
xi+1 = fi(xi). A set of such bi-infinite sequences of symbols is also a shift space. Thus, this
framework gives a method to analyze the relationship among classes of shift spaces using
the generative operation.

Introducing the framework of functional shifts allows us to consider the dynamic change
of functions. In traditional dynamical systems theory, functions do not depend on time, be-
cause a system is described by breaking it down into states, with stable functions governing
change of the states. Here, the decomposability of functions and states is assumed before-
hand. However, some systems, especially biological systems, cannot decompose or may be
better understood by not assuming decomposability. Therefore, considering dynamic change
of function to determine change of state is an important perspective for understanding com-
plex systems. We often call such dynamic changes meta-dynamics.

Several models have been proposed to study dynamic change of functions [5, 6, 7, 8, 9, 10].
Sato and Ikegami [5] introduced switching map systems, in which maps to govern evolution
of the systems are dynamically switched with change of time. Kataoka and Kaneko [6, 7]
investigated the evolution of a one-dimensional function fn defined by fn+1 = (1 − ε)fn +
εfn ◦ fn. Studying dynamics in which functions are varied in time by meta-dynamics can

1

be important in considering systems evolution or learning. Fontana [8] studies abstract
chemical systems which are defined by a loop in which objects encode the functions that act
on them. For another instance, Tsuda proposes a switching map system as a model of the
brain [10]. He shows that a skew-product transformation can be considered as a framework
in which meta-dynamics can be described. Functional shifts also can be represented by
skew-product transformations.

The functional shift framework has two major advantages. One is to be able to directly
compare dynamics with meta-dynamics, since both are represented by shift spaces. The
other is to be able to analyze both dynamical and computational characteristics, because
this framework is an extension of symbolic dynamics. Moreover, as a kind of meta-dynamics,
we can discuss self-modifying systems in terms of functional shifts, in which the functions
governing the dynamics of the system are used to change the functions themselves.

In this paper, we study functional shifts from the viewpoints of both dynamics and
computation. In recent years, several studies have focused on the relationship between
dynamics and computation [1, 2, 3, 4]. The central idea in these studies is to regard the
time evolution of dynamics as a computational process. From correspondence between
the unpredictability of dynamical systems and the halting problem, Moore insists on the
existence of dynamics that are more complex than chaos [1]. The relationship between
the complexity of dynamics and computation is, however, still unclear. In this work we
discuss the complexity of dynamics of functional shifts in terms of topological entropy,
which measures the diversity of orbits of dynamical systems, and also investigate that of
computation in terms of the Chomsky hierarchy. Through this study, we argue that dynamics
and computation give us opposite results concerning the complexity of systems.

In the analysis of complexity of computation in functional shifts, we prove that a shift
space exists whose language is not recursively enumerable (r.e.), even though the language
of the functional shift that generates it is r.e. Computational classes of sets to be beyond
r.e. are related to analog computation in the interest of both dynamics and computation.
While Siegelmann [2] introduces analog shifts as a model of analog computation which is
more powerful than the universal Turing machine, the dynamical feature of such a powerful
computation system is an open problem. When we study dynamical systems modified by
meta-dynamics, we discuss analog computation with functional shifts, and argue that the
existence of dynamical behaviour being more complex than the universal Turing machine
should be taken into account.

This paper is organized as follows. We first review some basic definitions of shift spaces,
and define functional shifts in section 2. Next, in section 3, we show the property of entropy
in functional shifts. In section 4, we study functional shifts by focusing on how the language
of a shift space belongs to a class of the Chomsky hierarchy. In the last subsection in section
4, we prove that there is a shift space whose language is not r.e., even though the language
of a functional shift to generate the shift space is r.e. Finally, our results are discussed from
standpoints of dynamics, computation, meta-dynamics, and self-modifying systems.

2 Definition

Since we will study shift dynamics, we first give some definitions for shift spaces [11]. Let
A be a nonempty finite set of symbols called an alphabet. The full A-shift (simply the full
shift) is the collection of all bi-infinite sequences of symbols from A. Here such a sequence

2

is denoted by x = (xi)i∈Z and the full A-shift is denoted by

AZ = {x = (xi)i∈Z|∀i ∈ Z xi ∈ A}. (1)

A block over A is a finite sequence of symbols from A. A n-block is simply a block of length
n. We write blocks without separating their symbols by commas or other punctuation, so
that a typical block over A = {a, b} looks like aababbabbb. A sequence of no symbols is
called an empty block and denoted by ε. For any alphabet A, we write A∗ to denote the set
of all blocks over A. If x ∈ AZ and i ≤ j, then we denote a block of coordinates in x from
position i to position j by x[i,j] = xixi+1 · · ·xj .

Let F, which we call the forbidden blocks, be a collection of blocks over A. For any such
F, define XF to be the subset of sequences in AZ in which no block in F occurs. A shift
space is a subset X of a full shift AZ such that X = XF for some collection F. The set of
all n-blocks that occur in points in X is denoted by Bn(X), and the language of X is the
collection B(X) =

⋃∞
n=0 Bn(X). The language of a shift space determines the shift space.

Thus two shift spaces are equal iff they have the same language.
Suppose that X is a shift space and A is an alphabet. A (m + n + 1)-block map

Φ : Bm+n+1(X) → A maps from allowed (m + n + 1)-blocks in X to symbols in A. A map
φ : X → AZ defined by y = φ(x) with yi = Φ(xi−mxi−m+1 · · ·xi+n) is called a sliding block
code induced by Φ. If Y is a shift space over A and φ(X) ⊂ Y , then we write φ : X → Y .
If a sliding block code φ : X → Y is onto, φ is called a factor code. A shift space Y is a
factor of X if there is a factor code from X onto Y . A sliding block code φ : X → Y is a
conjugacy from X to Y if it is bijective. Two shift spaces X and Y are conjugate (written
X ∼= Y) if there is a conjugacy between X and Y .

Next, we define functional shifts and generated shifts, and explain the basic property of
each.

Definition 2.1 Let A be a nonempty finite set, and F be a set of maps on A. A functional
shift F is a shift space which is a subset of the full shift FZ.

A generated shift XF given by F is defined by

XF = {(xi)i∈Z ∈ AZ| ∃(fi)i∈Z ∈ F ∀i ∈ Z xi+1 = fi(xi)}. (2)

Although a generated shift is not required by our definition to be a shift space, it is
always a shift space.

Theorem 2.2 If F is a functional shift, XF is a shift space.

Proof. Let
Yn = {x ∈ An| ∀f ∈ Bn(F) ∃i xi+1 6= fi(xi)} (3)

and F =
⋃

n∈N Yn. Suppose that X is a shift space which can be described by the collection
F of forbidden blocks. If x ∈ XF , then x ∈ X because every block in F does not occur in x.
Thus XF ⊂ X.

Conversely if x ∈ X, then x[−n,n] 6∈ F for all n because F is a set of blocks never occurring
in points in X. Therefore,

∀n ∈ N ∃f ∈ B2n(F) ∀i x[−n,n]i+1 = fi(x[−n,n]i), (4)

then
∃f ∈ F ∀i ∈ Z xi+1 = fi(xi), (5)

3

so that x ∈ XF . Accordingly X ⊂ XF . Hence X = XF and XF is a shift space.

By theorem 2.2, a functional shift is regarded as a rule to generate a shift space. Since
any functional shift is also a shift space, we can compare functional shifts with generated
shifts by using the properties of shift spaces.

The following examples are instances of functional shifts which generate shift spaces.

Example 2.3 (Full shifts) Let A = {0, 1} and F = {f, g} be a set of maps such that

x f(x) g(x)
0 1 0
1 0 1

If a functional shift F is equal to FZ, then XF is the full shift AZ.

Example 2.4 (Golden mean shift) Let X be the set of all binary sequences with no two
1’s next to each other, so that X = XF, where F = {11}. This is called the golden mean
shift.

Let A = {0, 1} and F = {f, g} be a set of maps such that

x f(x) g(x)
0 1 0
1 0 0

If a functional shift F is equal to FZ, then XF is the set of all binary sequences not to
contain continuous 1’s. Thus XF is equal to the golden mean shift X.

Example 2.5 (Sturmian shifts) Consider the circle map

T (x) = x + α mod 1 (6)

with irrational α ∈ [0, 1]. Let S ⊂ {0, 1}Z be a set

S = {s ∈ {0, 1}Z|x ∈ [0, 1), ∀n ∈ Z sn = bTn(x)/αc}, (7)

where bxc is the integer part of x. S is not necessarily closed, but it is shift-invariant, and
so its closure Xα = Cl(S) is a shift space, called a Sturmian shift.

Let F = {f, g} be a set of maps given by

x f(x) g(x)
0 1 1− b2αc
1 0 1− b2αc

and Xα is a Sturmian shift with irrational α. Here F = φ(Xα), where a 2-block map
Φ : {0, 1}2 → F is defined by

Φ(x) =
{

f if x = 01 or x = 10,

g otherwise,
(8)

and a map φ : Xα → FZ is a sliding block code induced by Φ. Since α is irrational, 00
or 11 must appear in x, so that for any h ∈ F there is a unique sequence x ∈ Xα such
that φ(x) = h and xn+1 = hn(xn) for all n ∈ Z. Therefore this functional shift F satisfies
F ∼= Xα and XF = Xα.

4

3 Entropy

This section will describe the properties of the relationship between functional shifts and
generated shifts by analyzing the entropy for those shifts.

The entropy of a shift space X is defined by

h(X) = lim
n→∞

1
n

log2 |Bn(X)|. (9)

Note that log2 |A| is the upper limit of h(X) for any X ⊂ A. The entropy of X is a measure
of the growth rate of the number of n-blocks occurring in points in X. Furthermore, if a
distance function d of X is determined by

d(x, y) =
{

2−|k| if xk 6= yk and xi = yi for −|k| < i < |k|,
0 if x = y,

(10)

then the entropy of X is equal to the topological entropy of the shift map on the metric
space (X, d) [11]. Hence we regard the entropy of a shift space as the topological entropy.

It is known that the topological entropy is an indicator of the complexity of the dynamics
and that it is invariant under topological conjugacy. The existence of a positive topological
entropy implies that a system is chaotic, because the topological entropy measures the mixing
rate of the global orbit structure of the system.

The following theorem is an important result of the entropy of functional shifts.

Theorem 3.1 If F is a functional shift, then h(XF) ≤ h(F).

Proof. Let ϕn : Bn(F) → 2A
n

be defined by

ϕn(f) = {x ∈ Bn(XF)| ∃a ∈ A x0 = f0(a) ∧ ∀i xi+1 = fi+1(xi)}, (11)

where 2X denotes the power set of X. It is clear that |ϕn(f)| ≤ |A| for all f ∈ Bn(F) and

Bn(XF) ⊂
⋃

f∈Bn(F)

ϕn(f). (12)

Thus |Bn(XF)| ≤ |Bn(F)||A|. Accordingly,

h(XF) = lim
n→∞

1
n

log2 |Bn(XF)|

≤ lim
n→∞

1
n

log2(|Bn(F)||A|)

= lim
n→∞

1
n

log2 |Bn(F)|
= h(F). (13)

Hence h(XF) ≤ h(F).

Example 3.2 Let F be a functional shift given in example 2.4. Here h(F) = log2 2 and
h(XF) = log2

1+
√

5
2 (this derivation formula is in Ref [11]). Thus h(XF) < h(F).

The key point in the proof of theorem 3.1 is to satisfy a condition |Bn(XF)| ≤ |Bn(F)||A|
for any n ∈ N. The condition implies that for any sequence of symbols x ∈ XF there exists
one or more sequences of functions f ∈ F which are restricted by xn+1 = fn(xn) for all

5

n ∈ Z. Since the plural sequences (in some case, it is infinitely) in F can correspond to a
sequence in XF , the entropy of F is the same as or larger than that of XF .

If F is a set of maps on A such that

∀f, g ∈ F f 6= g ⇒ ∀x ∈ A f(x) 6= g(x), (14)

then every functional shift F ⊂ FZ satisfies h(XF) = h(F), because |Bn(XF)| ≥ |Bn(F)|
for all n ∈ N. Hence

∃f, g ∈ F ∃x ∈ A f 6= g ∧ f(x) = g(x) (15)

is a necessary condition in order to realize h(XF) < h(F). For example, if |A| < |F | and
F = FZ, then F satisfies equation (15) and h(XF) < h(F). However, there exists a case
in which F satisfies equation (15) and h(XF) = h(F). The example 2.5 is one of such
instances, because F and XF are conjugate and the entropy is invariant under conjugacy.

From theorem 3.1, we may consider that the degree of complexity of a functional shift
F is greater than that of XF from the viewpoint of dynamics. However, satisfying such a
relationship is not necessarily required in the computational point of view. The next section
turns to the computational power of shift spaces, and compares the languages of functional
shifts with those of generated shifts.

4 Computation in functional shifts

In section 3, we compared the complexity of functional shifts with generated shifts based on
entropy. Entropy measures the exponential growth rate of the number of orbits distinguished
in limited accuracy, i.e., it represents sensitivity to the initial conditions of a dynamical
system. On the other hand, there is the complexity of languages given by the Chomsky
hierarchy which differs from that of entropy. The complexity described by the Chomsky
hierarchy is based on the memory size of the automata that recognize languages (see A). In
this sense languages are classified into four classes: regular languages which do not need any
memory; context free languages which have just a stack; context sensitive languages which
have a storage capacity proportional to the input word length; and type-0 languages which
have unlimited memory.

The memory size of an automaton is deeply related to the long range correlation and
unpredictability of a dynamical system. Badii and Politi have discussed the relationship
between memory size and the properties of dynamical systems with some examples of physi-
cal systems corresponding to formal languages in the Chomsky hierarchy [12]. For example,
random walks with two reflecting barriers are dynamics whose languages are regular, because
the domain surrounded by two barriers can be considered to express a finite state. Those dy-
namics can be described by the Markov graph, so they are stationary and ergodic. Random
walks with one reflecting barrier are dynamics whose languages are context free, because the
domain on the semi-lattice which makes one barrier the starting point can be considered to
express a stack. The fact that there is no restriction about distance from a barrier brings
long-range correlation to those random walks. For another example, self-avoiding random
walks are dynamics whose languages are more complex than context free languages. Some
dynamics whose languages are not context free have strong unpredictability. In section 5,
we discuss this property in detail.

In this section, we compare functional shifts with generated shifts, by focusing on how
the language of a shift space belongs to the Chomsky hierarchy of formal languages. Notice

6

that not every collection of blocks is the language of a shift space. Namely, if X is a shift
space and w ∈ B(X), then

• every subblock of w belongs to B(X), and
• there are nonempty blocks u and v in B(X) such that uwv ∈ B(X).

Given a class of languages of functional shifts F , a class of languages of generated shifts G

is given by G = {B(XF)| B(F) ∈ F ,F is a functional shift}. Now we consider the inclusion
relation between F and G . From the properties of entropy in functional shifts, we may
consider that F is at least as complex as G from the dynamical viewpoint, because for any
shift space X whose language is in G there exists a functional shift F whose language is in F

satisfying XF = X, so that h(X) ≤ h(F). Thus, if the complexity of entropy corresponds to
that of computation, we shall expect G as the subclass of F . It is, however, known that the
complexities of entropy and computation generally do not correspond. For instance, consider
the language of a periodic shift space which only contains periodic sequences and that of a
full shift. Both are contained in a class of regular languages which is the lowest computation
class in the Chomsky hierarchy. However, the former has minimal entropy, and the latter
has maximal entropy. The fact that shift spaces with different entropy belong to the same
computational class makes it generally difficult to clarify the relationship between entropy
and the complexity of computation. Hence it is worthwhile to investigate this relationship
using functional shifts. We will show the inclusion relation between F and G in the case
where F and G belong to the Chomsky hierarchy, and discuss the complexity of dynamics
and computation with these results.

We first prove the following theorem to be a basic principle of functional shifts.

Theorem 4.1 For any shift space X over A, there is a functional shift F over F and a
1-block map Φ : A → F such that

• XF = X,
• Φ is a one-to-one mapping,
• φ induced by Φ satisfies φ(X) = F .

Proof. For any a ∈ A, we define a function fa : A → A by

∀x ∈ A fa(x) = a. (16)

Let F = {fa|a ∈ A}, and Φ be defined by

∀a ∈ A Φ(a) = fa. (17)

Clearly Φ is a one-to-one mapping, so that φ(X) is a shift space. Now a functional shift F
is defined by F = φ(X). Then

x ∈ XF ⇔ ∃f ∈ F ∀i ∈ Z xi+1 = fi(xi)

⇔ ∃f ∈ F ∀i ∈ Z Φ(xi+1) = fi

⇔ x ∈ X. (18)

Thus XF = X.

From theorem 4.1 we can get the next corollary.

7

Corollary 4.2 Let F be a class of languages of shift spaces. Suppose that G is a class of
languages of generated shifts given by the functional shifts whose languages belong to F .
Then F ⊂ G .

Proof. Let L be a language in F , and X be a shift space defined by B(X) = L. By
theorem 4.1, there is a functional shift F such that B(X) = B(F) and XF = X. Then
L ∈ G .

From corollary 4.2, any class of the languages of functional shifts is at most the same as
that of generated shifts given by them. However, there is still the open problem of whether
there exists a class of languages of functional shifts which is proper subset of languages of
shift spaces generated by the functional shifts. We can study the relationship between the
languages of functional shifts and those of generated shifts to bring this problem into focus.

Hereafter, the next lemma is the key ingredient in each proof.

Lemma 4.3 Let

DF (n, x) = {y = ax|a ∈ An, ∃f ∈ B|y|−1(F) ∀i yi+1 = fi(yi)}. (19)

Then x ∈ B(XF) iff limn→∞DF (n, x) 6= ∅.
Proof. Suppose that x ∈ B(XF), and y ∈ XF having subblock x. There is a bi-infinite
sequence f ∈ F such that yi+1 = fi(yi) for any i ∈ Z. Since x is a subblock of y, an integer
k such as x1 = yk exists. Hence yk−n · · · yk−1x1 · · ·x|x| ∈ DF (n, x) for any n ∈ N, so that
limn→∞DF (n, x) 6= ∅.

Conversely, suppose that limn→∞DF (n, x) 6= ∅. Then there is a infinite sequence y =
· · · a−1a0x1 · · ·x|x| (by Koenig’s lemma) and a bi-infinite sequence f ∈ F such that yi+1 =
fi(yi) for −∞ < i < |x|. If a bi-infinite sequence z is defined by

zi =
{

yi if i ≤ |x|,
fi−1(zi−1) otherwise,

(20)

then z ∈ XF because zi+1 = fi(zi) for any i ∈ Z. Since x is a subblock of z, x ∈ B(XF).

4.1 Shifts of finite type and sofic shifts

Here we study the case in which a functional shift is a shift of finite type or a sofic shift. We
first define shifts of finite type and sofic shifts.

A shift of finite type is a shift space that can be described by a finite set of forbidden
blocks. Although shifts of finite type are the simplest shifts, they are significant in the
dynamical systems theory. If a dynamical system is hyperbolic, then the system has a
Markov partition and a topological conjugacy to a shift of finite type.

Sofic shifts are defined by using graphs, called labeled graphs, whose edges are assigned
labels. A graph G consists of a finite set V = V(G) of vertices (or states) together with a
finite set E = E(G) of edges. Each edge e ∈ E starts at a vertex denoted by i(e) ∈ V(G)
and terminates at a vertex t(e) ∈ V(G) (which can be the same as i(e)). Equivalently, the
edge e has an initial state i(e) and a terminal state t(e). A labeled graph G is a pair (G,L),
where G is a graph with edge set E , and the labeling L : E → A assigns each edge e of G to
a label L(e) in A. Let XG be denoted by

XG = {x ∈ AZ| ∃e ∈ EZ ∀i ∈ Z t(ei) = i(ei+1) ∧ xi = L(ei)}. (21)

8

A subset X of the full shift AZ is a sofic shift if X = XG for some labeled graph G. Since a
labeled graph is regarded as a state diagram of a finite state automaton, the language of a
sofic shift is regular.

It is known that a shift space is sofic iff it is a factor of a shift of finite type [11]. Since
an identity function on a shift space is a factor code, shifts of finite type are sofic. Moreover,
the class of sofic shifts is larger than that of shifts of finite type, because not all sofic shifts
have finite type. For example, the even shift, which can be described by the collection
{102n+11|n ≥ 0} of forbidden blocks, is a sofic shift that does not have finite type.

Let us prove the following theorems as the case in which functional shifts are shifts of
finite type or sofic shifts.

Theorem 4.4 (1) If X is a sofic shift, then there is a functional shift F such that F has
finite type and X = XF .

(2) If a functional shift F is sofic, then XF is sofic (so that if a functional shift F has
finite type, XF is sofic).

Proof. (1) Suppose that X is a sofic shift over A, and G = (G,L) is a labeled graph such
that X = XG . If a is an edge of G, then fa : A ∪ E ∪ {δ} → A ∪ E ∪ {δ} (where A ∩ E = ∅
and δ 6∈ A ∪ E) is defined by

fa(x) =
{

δ if x = a,

L(a) otherwise.
(22)

Let F = {fa| a ∈ E} and F = {fafb ∈ F 2| t(a) 6= i(b)}. Recall that i(a) is an initial state
and t(a) is a terminal state of a. If a functional shift F over F can be described by F, then
XF = X. Since F is a finite set, F is a shift of finite type.

(2) Suppose that F is a sofic shift over F which is a set of maps on A, and F ′ is a
collection of maps on F . By (1), there is a functional shift F ′ over F ′ such that F ′ has finite
type and XF ′ = F . Let

X = {〈x, f, g〉 ∈ (A× F× F ′)Z| g ∈ F ′,∀i ∈ Z xi+1 = fi(xi) ∧ fi+1 = gi(fi)}, (23)

be a set of elements which are sequences of 3-tuples (· · · 〈x0, f0, g0〉〈x1, f1, g1〉 · · ·), and F be
a finite set of forbidden blocks such that XF = F ′. Then

F̃ = {〈x, f, g〉 ∈ (A× F × F ′)2| x1 6= f0(x0) ∨ f1 6= g0(f0)}
∪ {〈x, f, g〉 ∈ (A× F × F ′)∗| g ∈ F} (24)

is a set of forbidden blocks such that XF̃ = X. Here, F̃ is a finite set because F is finite.
Suppose that Φ : (A × F × F ′) → A is a 1-block map such that Φ(〈x, f, g〉) = x. Since a
sliding block code φ : X → XF induced by Φ is onto, φ is a factor code. If a shift space is a
factor of a shift of finite type, then it is sofic. Thus XF is a sofic shift.

The next is an instance satisfying theorem 4.4 (1).

Example 4.5 Let A = {0, 1}, and F = {fa, fb, fc} be a set of functions on A such that

x fa(x) fb(x) fc(x)
0 1 0 0
1 1 0 1

If a functional shift F can be described by a set of forbidden blocks F =
{fafc, fbfa, fbfb, fcfc}, then F is a shift of finite type and XF is the even shift.

9

4.2 Context free languages

This subsection studies the case in which the language of a functional shift is a context free
language. The shift dynamics on some shift spaces with languages that are context free have
long range correlations, because stacks can hold memories infinitely. Moreover, if the shift
spaces are probability measure spaces, the phase transition often appears in this dynamics
[12].

We begin by proving that if the language of a functional shift F is context free, then
there is a number p ∈ N such that for any x ∈ A∗ DF (p, x) 6= ∅ iff limn→∞DF (n, x) 6= ∅, by
using the pumping lemma1. Next we prove that if the language of F is context free, then
that of XF is so.

Lemma 4.6 Suppose that F is a functional shift and B(F) is a context free language.
There is a natural number p such that

∀x ∈ A∗ DF (p, x) 6= ∅ ⇔ lim
n→∞

DF (n, x) 6= ∅. (25)

Proof. Let G = {N,F, P, S} be a context free grammar such that B(F) = L(G), where
L(G) denotes a formal language generated by G. Suppose, without loss of generality, that
G is in Chomsky normal form1. Now a formal grammar G′ = {N ′,A, P ′, S′} is defined as
follows. A set N ′ of nonterminal symbols is equal to {Aab|A ∈ N, a, b ∈ A}. P ′ is a set of
productions determined by the following rules:

• S′ → aSab ∈ P ′ for any a, b ∈ A;
• Aab → BacCcb ∈ P ′ iff A → BC ∈ P , where A,B, C ∈ N and a, b, c ∈ A;
• Aab → b ∈ P ′ iff A → f ∈ P and f(a) = b, where A ∈ N , f ∈ F , and a, b ∈ A.

Clearly, G′ is a context free grammar, furthermore,

L(G′) =
⋃

x∈A∗
DF (0, x) =

⋃

x∈A∗

⋃

n∈N
DF (n, x) (26)

because x ∈ L(G′) iff there is a block f ∈ L(G) = B(F) such that |f | = |x| − 1 and
xi+1 = fi(xi) for 1 ≤ i < |x|.

From the pumping lemma, there is a natural number p such that if r = uvwxy ∈ L(G′)
and |r| > p then

• |vx| ≥ 1,
• |vwx| ≤ p,
• for any i ≥ 0, uviwxiy ∈ L(G′).

Hence if rs ∈ L(G′), i.e., DF (p, s) 6= ∅, then DF (p + |vx|n, s) 6= ∅ for all n ∈ N. Note that if
DF (n, s) 6= ∅ and m ≤ n then DF (m, s) 6= ∅. Therefore, DF (p, s) 6= ∅ iff limn→∞DF (n, s) 6=
∅.

1In the theory of formal languages, the pumping lemma provides necessary conditions for languages to

be context free. The pumping lemma for context free languages is as follows: if language L is context free,

then there is a natural number p such that if r = uvwxy ∈ L and |r| > p then |vx| ≥ 1, |vwx| ≤ p, and for

any i ≥ 0, uviwxiy ∈ L.
1A formal grammar G = (VN , VT , P, S) is in Chomsky normal form iff all productions are of the form

A → BC or A → a, where A, B, C ∈ VN and a ∈ VT . Every formal grammar in Chomsky normal is

context free, and conversely, every context free grammar which does not generate an empty string can be

transformed into an equivalent one which is in Chomsky normal form.

10

Since we use a nondeterministic pushdown automaton (NPDA) to prove the next theo-
rem, we give the formal definition of NPDA. A NPDA is a 6-tuple M = {Q, Σ,Γ, δ, q0, Z,E},
where Q is a finite set of states, Σ is an alphabet (defining what set of input strings the
automaton operates on), Γ is a stack alphabet (specifying the set of symbols that can be
pushed onto the stack), δ : Q× (Σ ∪ {ε})× Γ → 2Q×Γ∗ is a transition function, q0 ∈ Q is a
starting state, Z ∈ Γ is a starting stack symbol, and E ⊂ Q is a set of final (or accepting)
states.

Given a NPDA M = {Q, Σ,Γ, δ, q0, Z,E}, the relation
M̀
⊂ Q× Σ∗ × Γ∗ ×Q× Σ∗ × Γ∗

is defined by
(p, β) ∈ δ(q, a, A) ⇔ (q, aw, Aγ)

M̀
(p, w, βγ), (27)

and the reflexive and transitive closure
M̀

is denoted by
∗

M̀
. M accepts a input string x if

there are p ∈ Q and γ ∈ Γ∗ such that (q0, x, Z)
∗

M̀
(p, ε, γ). The language recognized by M

is the set
L(M) = {x ∈ Σ∗| ∃p ∈ E ∃γ ∈ Γ∗ (q0, x, Z)

∗

M̀
(p, ε, γ)}. (28)

It is known that a language L is a context free language iff L = L(M) for some NPDA M .

Theorem 4.7 If F is a functional shift and B(F) is a context free language, then B(XF)
is also a context free language.

Proof. We will construct a NPDA which can recognize the language B(XF).
Since B(F) is a context free language, B(F)R = {xR|x ∈ B(F)} is also context free,

where xR denotes the reversal of block x. Thus a NPDA M = {Q,F, Γ, δ, q0, Z,E} to
recognize B(F)R exists. Here a NPDA M ′ = {Q′,A, Γ′, δ′, q′0, Z

′, E′} is defined as follows:
let N = {0, 1, · · · , p} and

• Q′ = (Q×A×N) ∪ {q′0},
• Γ′ = Γ ∪ {Z ′},
• E′ = {(q, a, i) ∈ Q′|q ∈ E ∧ i = p};

next, δ′ is determined by the followings:

• δ′(q′0, a, Z ′) = {(〈q0, a, 0〉, Z)} for any a ∈ A;
• δ′(q′0, ε, Z

′) = {(〈q0, a, 1〉, Z)| a ∈ A};
• suppose that q ∈ Q, a ∈ A, and A ∈ Γ; if b ∈ A then

δ′(〈q, a, 0〉, b, A) = {(〈r, b, 0〉, g)|∃f ∈ F (r, g) ∈ δ(q, f, A) ∧ f(b) = a}, (29)

else if b = ε, then

δ′(〈q, a, 0〉, ε, A) = {(〈r, a, 0〉, g)|(r, g) ∈ δ(q, ε, A)}; (30)

• δ′(〈q, a, 0〉, ε, A) = {(〈q, a, 1〉, A)} for any q ∈ Q, a ∈ A, A ∈ Γ;
• For any 1 ≤ i ≤ p,

δ′(〈q, a, i〉, ε, A) = {(〈r, b, i + 1〉, g)|b ∈ A, ∃f ∈ F (r, g) ∈ δ(q, f, A) ∧ f(b) = a}
∪ {(〈r, a, i〉, g)|(r, g) ∈ δ(q, ε, A)}. (31)

11

Given an input x ∈ A∗, M ′ accepts x iff there are y = xa ∈ A|x|+p and f ∈ F |x|+p−1

such that M accepts f and yi−1 = fi(yi) for 1 < i ≤ |y|. Thus yR ∈ DF (p, xR), so that
M ′ accepts x iff DF (p, xR) 6= ∅. By lemma 4.6, there is a natural number p such that
DF (p, xR) 6= ∅ iff limn→∞DF (n, xR) 6= ∅. Hence there is a NPDA M ′ such that M ′ accepts
x iff xR ∈ B(XF) by lemma 4.3. Accordingly, B(XF) is a context free language.

4.3 Context sensitive, recursive, and r.e. sets

Let us consider the case in which the language of a functional shift F is not context free.
A class of dynamical systems, called generalized shifts, has been proposed by Moore [1],
as corresponding to the class of languages more complicated than context-free languages.
The class of generalized shifts is equivalent to that of Turing machines, and they can be
embedded in smooth maps in R2 or smooth flows in R3.

In this case, the problem of determining the predicate x ∈ B(XF) is more difficult than
in the above subsection. This is because there does not necessarily exist a number p to
satisfy that for any x ∈ A∗ DF (q, x) 6= ∅ iff limn→∞DF (n, x) 6= ∅ in the case in which the
language of a functional shift F is not context free, while it always exists in context free
cases.

We suppose that F is a set of bijections and F is a functional shift over F . From the
definition of DF , it is clear that DF (0, x) 6= ∅ is a sufficient condition for limn→∞DF (n, x) 6=
∅. Then we can prove the following theorems.

Theorem 4.8 Let F be a set of bijections on A, and F be a functional shift over F . If
B(F) is a context sensitive language, then B(XF) is context sensitive.

Proof. Let G = {N,F, P, S} be a context sensitive grammar to generate B(F). G′ =
{N ′,A, P ′, S′} is determined by the following conditions:

• N ′ = N ∪ F ∪ {S′}, where S′ 6∈ N ∪ F .
• P ′ contains only productions satisfying the following restrictions:

– for any a ∈ A, S′ → aS ∈ P ′ and S′ → a ∈ P ′;
– for any α, β ∈ (N ∪ F)∗, if α → β ∈ P then α → β ∈ P ′;
– if f ∈ F and a ∈ A, then af → af(a) ∈ P ′;

Then G′ is a context sensitive grammar because if α → β ∈ P ′ then |α| ≤ |β|.
Let x ∈ L(G′). Since there is a block f ∈ L(G) = B(F) such that |f | = |x| − 1 and

xi+1 = fi(xi) for 1 ≤ i < |x|, then DF (0, x) 6= ∅. Thus limn→∞DF (n, x) 6= ∅ because every
function in F is a bijection, so that x ∈ B(XF) by lemma 4.3. Hence L(G′) ⊂ B(XF).

Conversely, let x ∈ B(XF). Clearly there is a block f ∈ B|x|−1(F) such that xi+1 = fi(xi)
for any 1 ≤ i < |x|. Thus f can be derived from S in G. Then

S′ =⇒
G′

x1S

∗=⇒
G′

x1f

∗=⇒
G′

x, (32)

so that x ∈ L(G′). Hence B(XF) ⊂ L(G′). Accordingly L(G′) = B(XF) and B(XF) is a
context sensitive language.

12

Theorem 4.9 Let F be a set of bijections on A, and F be a functional shift over F . If
B(F) is r.e., then B(XF) is r.e.

Proof. Suppose that G is a type-0 grammar to generate B(F), and G′ is defined in the
similar way to the proof of theorem 4.8. As discussed in that proof, G′ is also a type-0
grammar and L(G′) = B(XF).

In the general case in which some functions in F may be not bijections, it is difficult to
determine where the languages of generated shifts are located in the Chomsky hierarchy. To
locate a collection of forbidden blocks is, however, an easier task than studying this problem.

Theorem 4.10 Suppose that F is a functional shift and B(F) is context sensitive. Then
there is a context sensitive language F of forbidden blocks such that XF = XF .

Proof. Let
F = {x ∈ A∗|DF (0, x) = ∅}. (33)

Now we show that F is a collection of forbidden blocks such that XF = XF . Suppose that
x 6∈ XF . Then there is a block y, which is not contained in B(XF), occurring in x . Thus, by
lemma 4.3, a natural number n such as DF (n, y) = ∅ exists. For any a ∈ An, ay ∈ F because
DF (0, ay) = ∅. Since there is a block a ∈ An such that x contains ay, some blocks in F

occur in x. Conversely, suppose that x ∈ AZ contains a block y ∈ F. Then it is clear that
x 6∈ XF . Accordingly, x 6∈ XF iff there is a block in F which occurs in x. Hence XF = XF .

Next, we will explain the existence of a linear bounded automaton (LBA) which can
recognize F. Let M1 be a LBA to compute the following function

ϕ(x) =
{

1 if x ∈ B(F),
0 if x 6∈ B(F).

(34)

We construct a LBA M2 with two separate tapes as follows. First, a block x ∈ A∗ is
inscribed on tape-1, and f ∈ F |x|−1 on tape-2 (see Figure 1). Then M2 carries out the
following operations.

(1) The machine M2 begins with the head resting in anticipation on the left most cell.
The machine repeatedly moves right and reads the cell value beneath the head until
the right most cell. When the machine finds i such that xi+1 6= fi(xi), M2 accepts
〈x, f〉 and halts.

(2) The machine M2 calls the subroutine M1 with the block f on the tape-2, which returns
the answer “0” or “1” as appropriate. If the answer is “0”, that is, M1 does not accept
f , then M2 accepts 〈x, f〉. In the other case, M2 does not accept 〈x, f〉.

Now we consider a machine M such that, for any input x, if M2 accepts 〈x, f〉 for all
f ∈ F |x|−1 then M accepts x. Since to construct a LBA to enumerate F |x|−1 is an easy
task, from this explicit definition we can get the LBA M . For any x, M accepts x iff
DF (0, x) = ∅ because there is no f ∈ B|x|−1(F) such that xi+1 = fi(xi) for any 1 ≤ i < |x|.
Hence M is a LBA to recognize F.

Moreover, by using a proof similar to theorem 4.10, we can prove that if the language of
a functional shift is a recursive set, then F is also recursive. A language is a recursive set if
there exists a Turing machine which recognizes the language and always halts.

13

Figure 1: Illustration of the linear bounded automaton M2.

Theorem 4.11 Suppose that F is a functional shift and B(F) is recursive. Then there is
a recursive set F of forbidden blocks such that XF = XF .

Proof. Since B(F) is a recursive set, there is a Turing machine M3 to compute the function
ϕ in equation (34). Suppose that M2 in the proof of theorem 4.10 calls subroutine M3 instead
of M1. Then M2 and M are Turing machines which always halt after a finite amount of
time, and M recognizes F. Thus, F is a recursive set.

4.4 The language of a generated shift beyond r.e.

In this last subsection, we prove that there is a functional shift F satisfying that B(F) is
r.e. and B(XF) is not r.e. Here a set A is r.e. iff the predicate x ∈ A is partially decidable,
i.e., the partial characteristic function

f(x) =
{

1 if x ∈ A,

undefined if x 6∈ A,
(35)

is computable. Note that if a predicate P (x) is partially decidable and undecidable, then
¬P (x) is not partially decidable. For example, the following predicate

‘a Turing machine of the Gödel number x eventually stops on input x’

is partially decidable and undecidable. In the proof of the next theorem, we show that
x ∈ B(XF) iff a Turing machine of the Gödel number x never halts on input x, in order to
prove x ∈ B(XF) is not partially decidable.

Theorem 4.12 There is a function shift F such that B(F) is r.e. and B(XF) is not r.e.

Proof. For any x ∈ {01n0|n ∈ N}, let

num(x) = the number of 1’s occurring in x (36)

and a Turing machine of the Gödel number n be denoted by Tn. We will show a functional
shift F such that B(F) is r.e. and

x ∈ B(XF) ⇔ Tnum(x) never halts on input x. (37)

Let A = {0, 1, δ}, F = {f, g, h} be a set of maps defined by

x f(x) g(x) h(x)
0 0 1 δ

1 0 1 δ

δ δ δ δ

14

and F be a functional shift over F such that B(F) is r.e. Suppose that a Turing machine
M to recognize B(F) satisfies the following conditions:

• Tnum(x) does not halt on input x before time t iff M accepts f tgnum(x)f ,
• Tnum(x) halts on input x at time t iff M accepts hf tgnum(x)f ,

where x ∈ {01n0|n ∈ N}. Since it is clear that num(x) and the emulation of Tnum(x) are in
fact computable functions, M exists, by Church’s thesis.

For any x ∈ {01n0|n ∈ N}, DF (t, x) 6= ∅ iff Tnum(x) does not halt on input x before time
t + 1. Accordingly,

Tnum(x) never halts on input x ⇔ lim
t→∞

DF (t, x) 6= ∅
⇔ x ∈ B(XF), (38)

by lemma 4.3. Hence the predicate x ∈ B(XF) is not partially decidable, so that B(XF) is
not r.e.

5 Discussion

To study the relation between functional shifts and generated shifts, we have compared them
in both dynamical systems and computational terms. In section 3, we have proved that the
entropy of a functional shift gives the upper limit for that of a generated shift given by the
functional shift. In other words, every functional shift is at least as complex as the gener-
ated shift from the standpoint of dynamics. In section 4, considering the language of a shift
space as a formal language, we have shown that there is a case in which the language of a
functional shift is simpler than that of a shift space generated by the functional shift. Figure
2 shows the summary of results, in which the languages of functional shifts and generated
shifts are located in the Chomsky hierarchy. It shows clearly that the class of the languages
of functional shifts is the same as or smaller than that of the generated shifts given by them.
From those results, we may consider that the complexity of dynamics does not correspond
to that of computation under the generative operation introduced here. Moreover, the view-
points of both dynamics and computation give us opposite results concerning the complexity
of systems. This means that an analysis of the complexity of systems surely depends on how
we select a measure of complexity. Thus it is important to study dynamical systems from
several viewpoints, for example, those of both dynamics and computation, when we analyze
the complexity of the systems.

It is interesting that the class of languages of functional shifts is equal to that of generated
shifts, in the case in which the languages of the functional shifts are regular or context
free, while there is not equivalence in r.e. cases. The cause is conjectured to be that the
equivalency depends on whether there exists a natural number n such that DF (n, x) 6= ∅ iff
x ∈ B(XF) for any x ∈ A∗. Lemma 4.6 and theorem 4.7 confirm our presumption. Theorem
4.8 and theorem 4.9 also support it, because if any functions are bijections then DF (0, x) 6= ∅
iff x ∈ B(XF).

Let us discuss the existence of systems in which some predicates of dynamical systems
theory are not partially decidable. In theorem 4.12, we have proved that there is a functional
shift F satisfying that the language of F is r.e. and that of XF is not r.e. Note that the
predicate x ∈ B(X) means that the subset {y ∈ AZ| y[1,|x|] = x} of AZ contains part
of a invariant set X. Many problems about dynamical systems can be resolved into this
predicate. For example, we can consider such problems as follows:

15

Shifts of Finite Type
Hyperbolic

DFA/NFA/RG
Sofic

NPDA/CFG

NLBA/CSG
NSPACE(n)

Recursive Set

TM/UTM/RE

D
e
s
c
r
i
p
t
i
v
e

C
a
p
a
b
i
l
i
t
y

Infinite
 Finite

 partially decidable

Figure 2: The computational hierarchy of the languages of functional shifts and generated
shifts. Every class of the languages of functional shifts is the same as or smaller than
that of generated shifts. For functional shifts with r.e. language, we have generated shifts
whose language is beyond r.e. The solid arrow from A to B denotes that A is a class of
the languages of functional shifts and B is that of shift spaces generated by the functional
shifts. The broken arrow from A to B denotes that A is the same as the case of solid arrow
and B is a class of sets of forbidden blocks which can describe generated shifts given by the
functional shifts. D = deterministic, N = nondeterministic, U = universal, G = grammar, A
= automata, TM = Turing machine, RE = recursively enumerable, LBA = linear bounded
A, PDA = pushdown A, FA = Finite A, CSG = context sensitive G, CFG = context free
G, RG = regular G.

16

(1) Given open sets Y, Z ⊂ X, is there a point z ∈ Y that falls into Z under the shift map
on X?

(2) Is the shift map on X topologically transitive?

Problem (1) is considered to be a prediction problem of orbits in a dynamics system. The
reason why problem (1) resolves itself into the predicate x ∈ B(X) is that if u, v ∈ B(X),
Y = {y ∈ X| y[1,|u|] = u} and Z = {y ∈ X| y[1,|v|] = v}, then there is a block w such that
uwv ∈ B(X) iff (1) is true. Since problem (2) can be reduced to (1), problem (2) contains
the predicate as a subproblem. Thus, a shift space XF is so complex that those predicates
are not necessarily partially decidable, even if such predicates of F are partially decidable.
As a dynamical system in which those problems are not partially decidable, we may consider
the system with riddled basins. In fact, probably no algorithm exists which is able to assess
problem (1) in a finite number of steps if Z is a riddled basin [12, 16].

Generally, the automaton to recognize a set not to be r.e. is called a super-Turing machine
[13, 14]. Every super-Turing machine recognizes a set to be beyond r.e. by using infiniteness,
for example the property of the real number, which usual Turing machines do not have.
Since the languages of shift spaces generated by functional shifts with r.e. languages are
not r.e., those shift spaces have relevance to super-Turing machines. Some classes of sets
to be beyond r.e. have been discussed in the field of analog computation [2, 15]. Hamkins
and Lewis, for instance, analyze classes of computations with infinitely many steps, and
investigate computability and decidability on the reals [15]. Notice that every shift space
is a continuous space, because a shift space is defined as a set of bi-infinite sequences, so
that any class of shift spaces are related to analog computation. For example, in the proof
of theorem 4.12, it is used that a shift space is a set of bi-infinite sequences, when we show
that the predicate x ∈ B(XF) is not partially decidable.

We have introduced the framework of functional shifts as a model of dynamic change of
functions. Since we can consider that a bi-infinite sequence of function (fi)i∈Z denotes the
evolution of maps, functional shifts represent dynamics of functions. Generated shifts also
represent the dynamics determined by xi+1 = fi(xi). Considering the shift map on XF as
dynamics, we can regard that on F as meta-dynamics. Let us focus on the operation to
generate shift spaces from functional shifts, i.e., to construct dynamics from meta-dynamics.
By theorem 4.12, such operation includes a task to generate sets not to be r.e. in spite that
any functions in F are computable. Thus, as we discussed, when we study dynamical
systems modified by meta-dynamics, the existence of complex dynamics should be taken
into account.

Finally, we consider self-modifying systems, in which rules governing a system are used
to change the rules themselves. We have difficulty in achieving a direct representation of
the dynamics of a self-modifying type. The cause of the difficulty is that functions and
states cannot be perfectly separated in self-modifying systems. Research into the dynamical
evolution of function caused by self-interaction has recently become a subject of special
interest in the study of these systems. Functional dynamics is an example of a self-modifying
system, because change of function f is determined by a self-reference term f ◦ f [6, 7]. As
another example, objects in algorithmic chemistry encode functions which change the objects
themselves [8, 9]. To describe self-modifying systems, we must take the self-referential
nature of a dynamical system into account. We can represent this characteristic using
functional shifts as follows [17]. Let us consider that a conjugacy from a functional shift to
a generated shift given by the functional shift is a ‘self-reference code’ between functions

17

and states. Considering that each sequence of functions is equal to a sequence of symbols
corresponding to itself under the code, we can regard the functional shift as self-modifying.
For instance, the functional shift F given in example 2.3 or 2.5 has conjugacy to XF , so that
the functional shifts in these examples are regarded as self-modifying systems. However, the
relationship between the systems described by functional shifts and other systems introduced
by [6, 7, 8, 9] is not clear. The applicability of the framework of functional shifts may become
clearer by considering this relationship.

6 Conclusion

We have investigated shift dynamics called functional shifts within both dynamics and com-
putational frameworks. From the dynamical viewpoint, we have proved that the entropy
of a functional shift is not less than that of a shift space generated by the functional shift.
This means that functional shifts generate less complex shift spaces than themselves. On
the other hand, we have compared functional shifts with generated shifts in terms of the
Chomsky hierarchy (see Figure 2). We have proved that any class of the languages of shift
spaces is at least the same as that of the functional shifts that generate the shift spaces.
Furthermore, we have shown that there is a class of the languages of functional shifts, which
is strictly smaller than that of generated shifts given by the functional shifts. From those
results, we have argued that the viewpoints of dynamics and computation give us opposite
results about complexity of systems.

We have shown a new class of shift spaces, generated shifts whose languages are not r.e.
if the languages of functional shifts to give the generated shifts are r.e. The shift map over
some shift spaces in the class has very unpredictable dynamics. This new class gives us a
way to study dynamical systems from the viewpoint of analog computation.

Acknowledgment

The authors wish to thank Yuzuru Sato, Ichiro Tsuda, Hiroakira Ono, and Naoto Kataoka
for helpful discussions and comments. We would like to thank Judith Anne Steeh for her
assistance in English editing. This work is partly supported by Research Fellowship Program
of Canon Foundation in Europe, and a Grant-in-Aid for Scientific Research (No.12780269)
from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by
the Japan Society for the Promotion of Science.

References

References

[1] Moore C 1991 Generalized shifts: unpredictability and undecidability in dynamical
systems Nonlinearity 4 199-230.

[2] Siegelmann H T 1995 Computation Beyond the Turing Limit Science 268 545-548.

[3] Crutchfield J P and Young K 1990 Computation at the onset of chaos Complexity,
Entropy and the Physics of Information Addison Wesley 223-269.

18

[4] Lakdawala P 1996 Computational complexity of symbolic dynamics at the onset of
chaos Physical Review E 53 4477-4485.

[5] Sato Y and Ikegami T 2000 Nonlinear computation with switching map systems Journal
of Universal Computer Science 6 881-905.

[6] Kataoka N and Kaneko K 2000 Functional dynamics I: articulation process Physica D
138 225-250.

[7] Kataoka N and Kaneko K 2001 Functional dynamics II: syntactic structure Physica D
149 174-196.

[8] Fontana W 1990 Algorithmic Chemistry Artificial Life II SFI Studied in the Sciences
of Complexity X 159-209.

[9] Fontana W and Buss L W 1994 “The arrival of the fittest”: toward a theory of biological
organization Bulletin of Mathematical Biology 56 1-64.

[10] Tsuda I 1994 Can stochastic renewal of maps be a model for cerebral cortex? Physica
D 75 165-178.

[11] Lind D and Marcus B 1995 An introduction to symbolic dynamics and coding (Cam-
bridge:Cambridge University Press).

[12] Badii R and Politi A 1997 Complexity: hierarchical structures and scaling in physics
(Cambridge:Cambridge University Press).

[13] Stannett M 1990 X-machines and the halting problem: Building a super-Turing machine
Formal Aspects of Computing 2 331-341.

[14] Copeland B J 1998 Super Turing-machines Complexity 4 30-32.

[15] Hamkins J D and Lewis A 2000 Infinite time Turing machines Journal of Symbolic Logic
65 567-604.

[16] Blum L and Smale S 1993 The Gödel incompleteness theorem and decidability over a
ring From Topology to Computation (edited by Hirsch M W Marsden J E and Shub M
Springer New York) 321-339.

[17] Namikawa J and Hashimoto T 2002 Functional shifts: hierarchy and self-modification
of rules in dynamics The Third International Conference on Discrete Chaotic Dynamics
in Nature and Society in printing.

[18] Chomsky N 1959 On certain formal properties of grammars Information and Control
2 393-395.

A Review of the Chomsky hierarchy

The Chomsky hierarchy is a containment hierarchy of classes of formal grammars that
generate formal languages. This hierarchy was described by Noam Chomsky[18].

A formal grammar (or type-0 grammar) is a 4-tuple (VN , VT , P, S), where

• VN is a finite set of nonterminal symbols;

19

• VT is a finite set of terminal symbols such as VN ∩ VT = ∅, and V = VN ∪ VT is called
the set of grammar symbols;

• P is a finite collection of productions which are of the form α → β with α ∈ V + and
β ∈ V ∗,

• S ∈ VN is a designated symbol called the start symbol.

Given a formal grammar G = (VN , VT , P, S), the derivation relation =⇒
G
⊂ V ∗×V ∗ is defined

by
γαδ =⇒

G
γβδ iff α → β ∈ P, (39)

where α, β, γ, δ ∈ V ∗. The transitive closure of =⇒
G

is denoted by +=⇒
G

, and the reflexive and

transitive closure of =⇒
G

is denoted by ∗=⇒
G

. The language generated by G is the set

L(G) = {w ∈ V ∗
T |S ∗=⇒

G
w}. (40)

A language L ⊂ V ∗
T is a formal language (or type-0 language) iff L = L(G) for some formal

grammar G.
The Chomsky hierarchy consists of classes of regular grammars, context free grammars,

context sensitive grammars, and type-0 grammars. Regular, context free, and context sen-
sitive grammars are more restrictive than formal grammars.

• A regular grammar (type-3 grammar) is a formal grammar G = (VN , VT , P, S), such
that the productions are of the form α → β with α ∈ VN and β ∈ VT ∪ VT × VN . A
language L ⊂ V ∗

T is a regular language iff L = L(G) for some regular grammar G.
• A context free grammar (type-2 grammar) is a formal grammar G = (VN , VT , P, S),

such that the productions are of the form α → β with α ∈ VN and β ∈ V +. A language
L ⊂ V ∗

T is a context free language iff L = L(G) for some context free grammar G.
• A context sensitive grammar (type-1 grammar) is a formal grammar G =

(VN , VT , P, S), such that the productions are of the form α → β satisfying |α| ≤ |β|.
A language L ⊂ V ∗

T is a context sensitive language iff L = L(G) for some context
sensitive grammar G.

From the above definition, every regular grammar is context free, every context free grammar
is context sensitive and every context sensitive grammar is type-0. Moreover, these are all
proper inclusions.

It is known that there exists automata corresponding to each formal languages belonging
to the Chomsky hierarchy. Every type-0 language can be recognized by a Turing machine,
where a Turing machine is a finite state machine moving left and right on a tape, on which
a string of symbols in some finite alphabet is written. The language recognized by a Turing
machine is defined as all the strings on which it halts. These languages are also known
as the recursively enumerable (r.e.) languages. Every context sensitive language can be
recognized by a linear bounded automaton which is a nondeterministic Turing machine
whose tape is bounded by the length of the input string. Every context free language can
be recognized by a nondeterministic pushdown automaton which is a finite state automaton
having stack. Every regular language can be recognized by a finite state automaton which
has no memory. Thus, the complexity from the Chomsky hierarchy is based on the memory
size of automata to recognize languages. The table 1 summarizes each of the Chomsky’s
four types of grammars, the class of languages each grammar generates, and the type of
automaton that recognizes each language.

20

Table 1 Summarize each of the Chomsky’s four types of grammars, languages, and automata.

Grammar Language Automaton
Type-0 Recursively enumerable Turing machine
Type-1 Context sensitive Linear bounded automaton
Type-2 Context free Nondeterministic pushdown automaton
Type-3 Regular Finite state automaton

Figure captions

Figure 1 Illustration of the linear bounded automaton M2.

Figure 2 The computational hierarchy of the languages of functional shifts and generated
shifts. Every class of the languages of functional shifts is the same as or smaller than
that of generated shifts. For functional shifts with r.e. language, we have generated
shifts whose language is beyond r.e. The solid arrow from A to B denotes that A is a
class of the languages of functional shifts and B is that of shift spaces generated by the
functional shifts. The broken arrow from A to B denotes that A is the same as the case
of solid arrow and B is a class of sets of forbidden blocks which can describe generated
shifts given by the functional shifts. D = deterministic, N = nondeterministic, U =
universal, G = grammar, A = automata, TM = Turing machine, RE = recursively
enumerable, LBA = linear bounded A, PDA = pushdown A, FA = Finite A, CSG =
context sensitive G, CFG = context free G, RG = regular G.

21

