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Abstract

Creole is one of the main topics in various fields concerning the language origin and the
language change, such as sociolinguistics, the developmental psychology of language, paleoan-
thropology and so on. Our purpose in this paper is to develop an evolutionary theory of language
to study the emergence of creole. We discuss how the emergence of creole is dealt with in the
perspective of population dynamics. The proposal of evolutionary equations is a modification of
the language dynamics equations by Komarova et al. We show experimental results, in which we
could observe the emergence of creole. Furthermore, we analyze the condition of creolization in
terms of similarity among languages. We conclude that a creole becomes dominant when pre-
existing languages are not similar to each other and rather similar to the newly appeared language
(would-be-creole); however the new language must not be too similar, in which case pre-existing
languages remain and coexist.
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1 Introduction

Generally, all human beings can learn any human language in the first language acquisition. One of
the main purposes of language use is to communicate with others. Therefore, it is easy to consider
that the language learners come to obtain the language which they hear most in the community, i.e.,
in most cases, children will develop their parental languages correctly. When people do not have a
common language to communicate with each other, such as plantation economies, slave trade, and
so on, they come to use a simplified language called pidgin to bridge communication gaps between
speakers of mutually unintelligible languages. After that, the children of the pidgin speakers may
obtain a full-fledged new language called creole as their native language [6]. Thus, children have an
ability to learn and create the most communicative language in the community.

In the stream of simulation studies of language evolution [4], the emergence of creole is also
studied [10]. Briscoe [3] has reported sophisticated models of human language acquisition by means
of a multi-agent model. However, because the number of agents was finite, the results were often hard
to be generalized to explain general phenomena in the real world, from which the most multi-agent
models had suffered.

To overcome this drawback of multi-agent models from a different viewpoint, Nowak et al. devel-
oped mathematical theory of the evolutionary dynamics of language [13]. By defining similarity and
payoff between languages, based on the assumption of the universal grammar, Komarova et al. [8]



proposed language dynamics equations in which the transition of population among finite number of
languages described by differential equations. However, in the framework of evolutionary dynamics
of language, the emergence of creole was not discussed yet.

Our purpose in this paper is to develop the evolutionary theory of language in order to investigate
the emergence of creole. We have already seen creolization by introducing the assumption that lan-
guage acquisition of children is affected both by the distribution of population and by the exposure rate
to other languages than their parental one [9]. In this paper, we analyze the condition of relationship
among languages for creole to emerge and to be dominant.

In Section 2, we discuss how we consider creolization in the context of population dynamics.
In Section 3, we describe the language dynamics equations and our modification of the equations.
Section 4 reports our experiments. We present a discussion and a conclusion in the last two sections.

2 Creolization in Population Dynamics of Language

In this section, we describe creole from the viewpoint of population dynamics. We showed the emer-
gence of creole in population dynamics of language [9], which is caused by transition of population
among grammars and the exposure probability of children. Here, we discuss how the emergence of
creole is considered in population dynamics.

2.1 Creole and Population Dynamics

We presuppose that the emergence of creole strictly depends on the population distribution, as opposed
to traditional linguistic explanations [2, 6]. From the viewpoint, a creole is considered as such a
grammar Gc that; A) xc(0) = 0, xc(t) > θc or B) xc(0) = 0, xc(t) > θd, where xc(t) denotes the
distribution of the population of Gc at time t, and θc and θd denote certain thresholds to be regarded
as coexistent and dominant, respectively. These definitions represent that some individuals come
to speak a language that no one spoke at the initial state, and consequently, A) a fixed number of
individuals keeps the grammar, and B) the distribution of the language speaker occupies the most in
the community.

2.2 Similarity among Languages

The S matrix in population dynamics denotes the similarity between grammars, which is determined
by the probability sij that a speaker who uses a grammar Gi will say a sentence that is understandable
by speakers of another language Gj ; thus, each of S = {sij} is a constant diachronically. Generally,
the S matrix is uniquely calculated when the grammars and the probability for each sentence are
given. Suppose that an individual who uses Gi utters a sentence in L(Gi) with the uniformly same
probability, then sij is the number of common sentences between L(Gi) and L(Gj) divided by the
number of sentences in L(Gi). Therefore, diagonal elements of the S matrix are always 1. Under
the assumption, Fig. 1 shows the relationship among languages in the S matrix. The shaded part in
the figure denotes that L(G1) and L(G2) share common sentences. In this case, s12 is greater than
s21, because the common part is rather small in L(G1) than in L(G2). The size of L(G) concerns the
generative capability of the grammar. Because the power of expressiveness is considered to be similar
among languages, we should regard that the size of L(Gi)’s are same and that sij is nearly equal to
sji. Thus, the S matrix should be an approximately symmetrical matrix.

In the above discussion, it is assumed that the member of conceivable grammars is finite and
predefined. In this sense, creole is also included in them and has the similarity with the other languages
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Fig. 1 The relationship among languages in the S matrix

in the S matrix. This is justified by the perspective of the universal grammar. We presuppose that
creole may occur according to the similarity to the other languages, and thus we study the conditions
of the similarity for creolization.

3 Population Dynamics of Grammar Acquisition

We introduce modified language dynamics equations after reviewing Komarova et al. [8]’s original
ones.

3.1 Komarova et al.’s Language Dynamic Equations

Komarova et al. [8,13] proposed a mathematical theory for the evolutionary and population dynamics
of grammar acquisition. In their model, given the principles in the universal grammar, the search
space for candidate grammars is assumed to be finite, that is {G1, . . . , Gn}. Let xj(t) be the ratio
of the population of Gj speakers, where

∑n
j=1 xj(t) = 1. Thus, the model is defined in population

dynamics in which individuals change their own grammar from generation to generation. The lan-
guage dynamics equations are mainly composed by (i) the similarity between languages as the matrix
S = {sij} and (ii) the probability that children fail to acquire their parental language as the matrix
Q = {qij}. Individuals reproduce children, the number of which is determined by the fitness such
as: fi(t) =

∑n
j=1(sij + sji)xj(t)/2. The language dynamics equations are given by the following

differential equations:

dxj(t)
dt

=
n∑

i=1

qijfi(t)xi(t) − φ(t)xj(t) (j = 1, . . . , n), (1)

where φ(t) =
∑n

i=1 fi(t)xi(t) and the term ‘−φ(t)xj(t)’ makes the total population size keep con-
stant.

In those equations, the fitness fi for each grammar is regarded as its communicability, which
represents a probability that a sentence uttered by an individual is recognized in the community. Total
distribution of children of Gi speakers becomes fixi. By the definition of the Q matrix, children are
allowed to make mistakes during language acquisition. It is possible for a child to learn grammar Gi

from her parents and to end up speaking grammar Gj . The probability of such transition is defined
as Q = {qij}. In their work, it is also assumed that only adult individuals talk to the other language
groups, while children communicate with only their parents. In this circumstance, it may be difficult
to consider that the children mistake their parental grammar for another one.



3.2 Niyogi’s Model

Niyogi [11, 12] gives actual examples of the Q matrix with linguistically well-grounded grammars
together with the trigger learning algorithm (TLA) [7]. However, there is an unrealistic Markov
structure which implies that some children cannot learn certain kinds of language, as we pointed out
in [9].

3.3 Our Modification

Thus far, we have modified the language dynamics equations to include some constraints concerning
transition among languages [9]. We have shown by computer simulations [10] that the population
could be changed when children are exposed not only to their parental language but also to other
languages. It is reasonably supposed that the transitions depend on the distribution of population of
languages for children to be exposed. Therefore, the Q matrix should change through generations.
Our prime revision is to introduce the probability α that children are affected by the other language
speakers than their parents. We call α the exposure probability. A child hears not only parental lan-
guage but also other languages in proportion both to the rate of the exposure α and to the distribution
of population of grammars (See Fig. 2(a)). The probability which the children learn a language from
their parents comes to (1 − α). Note that α does not exclude children’s parental language; it is also
included in α in proportion to the distribution of population as well as the other languages.

Since the distribution of population changes in time, the Q matrix should include the time param-
eter t, that is, Q is redefined as Q(X(t)) = {qij(t)}, where X(t) = (x1(t), x2(t), . . . , xn(t)). We
call Q(X(t)) the modified accuracy matrix. Together with the S matrix and a given α, a learning
algorithm determines Q(X(t)). Thus, the new language dynamics equation is as follows:

dxj(t)
dt

=
n∑

i=1

qij(t)fi(t)xi(t) − φ(t)xj(t) (j = 1, . . . , n). (2)

3.4 The Learning Algorithm

We introduce a simple learning algorithm which resolves Niyogi [11]’s problem mentioned above.
The learning algorithm becomes as follows (See also Fig. 2(b)):

1) In a child’s memory, there supposed to be a score table of grammars.

2) The child receives a sentence uttered by an adult.

3) For each grammar, if a sentence is acceptable for the child, the grammar scores a point in her
memory.

4) 2) and 3) are repeated until the child receives a fixed number of sentences that is regarded as
enough for the estimation of the grammar.

5) The child adopts the grammar with the highest score.

Here, we introduced the exposure probability α that prescribes the ratio a child talks to people other
than her parents. Thus, the estimated grammar of the child is Gj∗ such that:

j∗ = argmax
j

{α
∑

k

skjxk(t) + (1 − α)spj}. (3)
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Fig. 2 Introducing the exposure probability and the learning algorithm

From the learning algorithm, we give the modified accuracy matrix Q(X(t)) = {qij(t)} in [9] as
follows:

qij(X(t)) =
(α

∑
k skjxk(t) + (1 − α)sij)n−1

∑
l(α

∑
k sklxk(t) + (1 − α)sil)n−1

. (4)

4 Experiments

In this section, we show the experimental result of the language dynamics equations of population-
based transition in Section 3. We examine the conditions that creole appears and comes to be dominant
in combinations of the S matrix.

4.1 Settings

Here, we give parameters for the experiments. Since it is clear that creolization is the most observable
in case α = 1, we examine this case through the experiments. We analyze the case of three languages
with the symmetry in sij and sji from the reason explained in Section 2.2, that is, the S matrix is
formed as below:

S =




1 a b
a 1 c
b c 1


 . (5)

The initial populations are given as x1(0) = x2(0) = 0.5, x3(0) = 0. Therefore, we parametrize a, b
and c in Eqn (5), and then research the mutual dependency in which G3 becomes creole.

4.2 Conditions of Creole to be Dominant

The experiment aims at finding boundaries in the parameter space as to which language would be
dominant. We refer to this situation as dominant creolization. Fig. 3(a) shows that the creole G3 is
dominant, in which the threshold for a language to be dominant is defined as θd = 0.9. The S matrix is
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(d) (a, b, c) = (0, 0.188, 0.189), Not-
Dominant, Creolized

Fig. 3 The relationship between dominant creole and the S matrix

set to (a, b, c) = (0, 0.174, 0.174), that is b = c. The value of a = 0 denotes that there is no common
sentence in G1 and G2. Because the languages G1 and G2 play same roles, the dynamics of x1 and
x2 are completely the same. In the figure, the language G3 which no one spoke at the initial state
comes to occupy the population with the rate of more than θd, while x1 and x2 declined concurrently.
Namely, this is the emergence of a dominant creole in population dynamics.

When the values b and c increases slightly, the dominant language changes to another one while
the share of creole G3 is getting smaller. Fig. 3(b) represents the dynamics with the S matrix set
to (a, b, c) = (0, 0.176, 0.182). The figure denotes that G2 becomes dominant, while G1 eventually
disappeared though it had the same population with G2 at the initial state. When we transposed the
value of b and c as (a, b, c) = (0, 0.182, 0.176), the dynamics does not change but the dominant
language is replaced (See Fig. 3(c)).

Changing the values of b and c continuously, we observed the sheer boundary of the change of the
dominant language between them. Fig. 4 shows that the boundaries for the creole (G3) to be dominant
for several values of a. The crosses ( × ) in the figure represent the parameter values corresponding to
Fig. 3(a)–(d), respectively. Because the parameters b and c work similarly G1 and G2, the boundaries
are symmetric along the line b = c. In the figure, the long curve of the outmost boundary (a = 0.00)
intersecting between (a) and (b) in Fig. 4 stands for the boundary of the change of the dominant
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Fig. 4 Conditions for Dominant Creole (θd = 0.9)

language. Inside of the lines, G3 is the dominant language (Fig. 3(a)), above of the upper line, G2 is
dominant (Fig. 3(b)) and below of the lower line, G1 is (Fig. 3(c)). Even if the threshold for dominant
language, θd, were eased to be lower, this boundary had not changed. It is also the case with the
different value of a. Thus, the long side of boundaries among dominant language is independent of θd
for a given value of a. The broken lines in Fig. 4 are the boundaries of the dominant creolization for
smaller values of θd at a = 0.00.

Next, we consider the short side of the boundaries in Fig. 4, that is the line crossing perpendicu-
larly to the line b = c (dotted line). This also represents critical conditions whether creole occurred or
not for several values of a. These boundaries are, however, different from the one mentioned above.
In Fig. 3(d) with (a, b, c) = (0, 0.188, 0.189), we observed that G3 still remained as the most popu-
lous language although the rate x3 was a little less than θd = 0.9. If θd was eased to lower, G3 at the
parameters of (c) would be regarded as creole. Hence, the position of the short line can shift along
the line b = c with the value of θd. It is easy for us to recognize that higher θd shrinks the area of
creolization in the parameter space and vice versa.

As the larger the values b and c, the larger population transfer from G1 and G2 to G3, respectively,
and the width between the upper and lower boundaries grows. At the same time, however, x3(t)
converges to smaller values at t → ∞ with larger b and c. At last, x3(t → ∞) falls short of θd at the
short side boundaries in Fig. 4. This is because the more population shifts from G3 to G1 and G2 by
the larger values of b and c. Inversely, for the smaller b and c, say b ≈ c � 0.135, in spite of the large
share of x3, the time needed for G3 to dominate the all population comes to be longer that we could
not observe further creolization.

To observe further details of the region of creole, we parametrized a in Eqn (5). In Fig. 4, regions
of creole come to narrow with increasing a. Since a large value of a promotes communicability
between G1 and G2 and enlarges the transition between them, no large population shifts from them to
G3. Therefore, the increase of a results in no dominant creolization.
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Fig. 5 Coexistent-language set

4.3 Summary of the Results

The conditions of the off-diagonal elements a, b and c in the symmetric similarity matrix S for the
emergence of dominant creole is:

a � 0.1 (6)

0.13 � b � c � 0.2 (7)

In this range, changes of a, b and c result in the followings:

1) When b and c are large, a must be small; in which case b and c might much differ. In this case,
the share rate of G3 becomes rather small at the time of convergence.

2) On the contrary, when a is small enough, b and c should be small. In this case G3 dominates
and converges in a short period.

5 Discussion

5.1 Conditions of Creolization in Natural Language

We obtained the condition of similarities among languages, in which a creole emerges and is to be
dominant. Let us consider what this condition implies in the context of natural language. Suppose two
languages, say super-stratum and sub-stratum languages. The condition a � 0.1 (Eqn (6)) indicates
that these two languages are not similar. The two languages must be less similar to each other than
to creole. If they are similar enough, the communication gap between users of these two languages
is not so wide that they can understand each other to some extent. Thus, no pidgin or creole is
needed. The condition, Eqn (7), says that the values b and c should not be too small but should be
relatively small. If the pre-existing languages are similar enough to the creole, that is, the second in
equality of the condition, Eqn (7), does not hold, the creole emerges but the users of the pre-existing
languages can communicate with the creole users, then the speakers of the pre-existing languages do
not diminish. The former part of the condition, Eqn (7), means that when a newly appeared language



has no similarity to two pre-existing languages, it hardly becomes a creole.1 Eqn (7) also confines
the similarity of the pre-existing languages to the creole within a narrow range (b � c). When the
similarity of creole to the super-stratum language is enough larger than that of to the sub-stratum
language, the super-stratum language comes to be dominant, and vice versa.

5.2 Language and Dialect

In this paper, we thoroughly analyzed the parameter region at which creole is dominant. When we
look at the whole parameter space, we found the following four categories about dominance and
creolization:

i) Dominant and Creolized; like Fig. 3(a)

ii) Dominant and Not Creolized; like Fig. 3(b)

iii) Coexistent (no dominant language) and Creolized like; Fig. 5(a)

iv) Coexistent and Not Creolized; like Fig. 5(b)

According to our preliminary investigation, the parameter region of the coexistent categories (
iii) and iv) ) is a, b, c � 0.3, where the similarities among languages are relatively high and at this
rate the language users can communicate with each other to some extent. This situation is better to
be regarded as dialects rather than different independent languages. There is, in general, no clear
boundary between dialects in a language and different languages from the pure-linguistic viewpoint.2

From our results, the similarity of 0.3 may be a rough criterion for dividing between them.

6 Conclusion

In this paper, we argued that the emergence of creole in population dynamics of languages and showed
that the emergence is affected by the similarity among languages as well as the distribution of popu-
lation of the languages in the community. We obtained results for the condition of the similarity for
dominant creolization as follows.

A) The pre-existent languages are not similar to each other, but to the newly appeared language.

B) The newly appeared language must not be too similar to the pre-existent languages. Otherwise,
the pre-existent languages remain and coexist.

C) The pre-existent languages have approximately same distance to the newly appeared language
with regard to similarity.

Creolization has not been dealt from the viewpoint of population dynamics and similarity among
pre-existing and a creole, although similarity among creoles has been investigated [1]. Our contribu-
tion is to address a prediction about similarity among languages for creole to develop. This prediction
should be tested empirically by observing grammars of various creoles and their original super- and
sub-stratum languages.

1Since the similarity here is not the extent of the mixture of grammars in two languages, this implication does not
contradict the fact that grammar of a creole is not a blend of those of super- and sub-stratum languages.

2The boundary is often settled politically such as Serbian, Croatian and Bosnian in Bosnia and Herzegovina. [5]



We argued the relationship between a language and dialects. Since the difference between lan-
guage and dialect concerns the grammatical features, it is not possible to distinguish them only with
the similarity, much less creole. This is an important problem in the present population dynamics.
Therefore, further progress is needed to develop linguistic features into the population dynamics. We
need to study in further generalized and actual conditions, to clarify the boundary conditions of cre-
olization.
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