A Confluent Pattern Calculus with Hedge Variables

Sandra Alves¹ Besik Dundua^{1,3} Mário Florido¹ Temur Kutsia²

DCC-FC & LIACC, University of Porto, Portugal

RISC, Johannes Kepler University, Linz, Austria

VIAM, Ivane Javakhishvili Tbilisi State University, Georgia

Outline

Introduction

Preliminaries

Pattern Calculus

Conclusions and Future Work

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 - のへで

Introduction

Preliminaries

Pattern Calculus

Conclusions and Future Work

Pattern Calculus

- Pattern calculi extend the lambda calculus with patterns.
- λ abstracts not only variables but also terms.
- Pattern calculi integrate pattern matching capabilities into the λ -calculus.
- Pattern calculi are expressive, but in general the confluence property is lost.
- To recover confluence, some restrictions on patterns and their applications are imposed.

◆□> ◆□> ◆三> ◆三> ・三> のへの

Pattern Calculus

- Lambda Calculus with Patterns was introduced by van Oostrom in 1990.
- Since then various formalisms that address integration of pattern matching capabilities with the lambda calculus have been investigated.
- In 2007, Cirstea and Faure proposed a generic confluence proof for the dynamic pattern calculus.
- The calculus is parametrized by a function that defines the unitary matching algorithm. There are some conditions the function should satisfy, in order the guarantee the confluence.
- We extended the dynamic pattern calculus with hedge variables and studied conditions that should be satisfied by the function that defines the finitary matching.

Introduction

Preliminaries

Pattern Calculus

Conclusions and Future Work

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

 $\bullet \ M, N ::= x \mid f \mid (MN) \mid (MX) \mid \lambda_{\mathcal{V}} M.N \mid M + N$

where

- x is a term variable
- X is a hedge variable
- f is a constant.
- (MN) is an application of a term to a term
- (MX) is an application of a term to a hedge variable

・ロト ・ 日 ・ モート ・ モー・ うへぐ

Defined by the grammar:

 $M, N ::= x \mid f \mid (MN) \mid (MX) \mid \lambda_{\mathcal{V}} M.N \mid M + N$

- $\lambda_{\mathcal{V}}M.N$ is an abstraction where the term M is called a pattern.
- \mathcal{V} is a subset of the set of free variables of M, representing the set of variables bound by the abstraction.

・ロト ・ 日 ・ モート ・ モー・ うへぐ

Defined by the grammar:

 $M, N ::= x \mid f \mid (MN) \mid (MX) \mid \lambda_{\mathcal{V}} M.N \mid M + N$

- $\lambda_{\mathcal{V}}M.N$ is an abstraction where the term M is called a pattern.
- \mathcal{V} is a subset of the set of free variables of M, representing the set of variables bound by the abstraction.
- For example, a term λ_{x,X} fxYX.gXyY has bound variables x, X and free variables y, Y.

◆□ → ◆□ → ◆ □ → ◆ □ → ● ● ● ● ●

Defined by the grammar:

 $M, N ::= x \mid f \mid (MN) \mid (MX) \mid \lambda_{\mathcal{V}} M.N \mid M + N$

- $\lambda_{\mathcal{V}}M.N$ is an abstraction where the term M is called a pattern.
- \mathcal{V} is a subset of the set of free variables of M, representing the set of variables bound by the abstraction.
- For example, a term $\lambda_{\{x,X\}}f_xYX.gXyY$ has bound variables x, X and free variables y, Y.
- ▶ + is a associative, commutative, and idempotent. Moreover, application distributes over + both from the left and from the right. We write ACID for this property.

ACID Normal Form

We work with terms in the ACID normal form with respect to + and application.

Example

 ${\scriptstyle \blacktriangleright}$ A term not in the ACID normal form

$$\lambda_{\{x,X\}}(f_X + g_X)X.f_X(g_X + g_X + g_X)$$

 ${\scriptstyle \blacktriangleright}$ A term in the ACID normal form

$$\lambda_{\{x,X\}}(fxX + gxX).(fx(gx) + fx(gX))$$

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

- Hedges are finite (possible empty) sequences of terms and hedge variables.
- Notation: *h* for hedges. ϵ for the empty hedge.
- For readability, we put hedges in angle brackets if they have more than one element, e.g., $\langle M, X, N \rangle$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

- Hedges are finite (possible empty) sequences of terms and hedge variables.
- Notation: *h* for hedges. ϵ for the empty hedge.
- For readability, we put hedges in angle brackets if they have more than one element, e.g., $\langle M, X, N \rangle$.
- A substitution is a mapping from term variables to terms, and from hedge variables to hedges, such that all but finitely many term and hedge variables are mapped to themselves.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

- Hedges are finite (possible empty) sequences of terms and hedge variables.
- Notation: *h* for hedges. ϵ for the empty hedge.
- For readability, we put hedges in angle brackets if they have more than one element, e.g., $\langle M, X, N \rangle$.
- A substitution is a mapping from term variables to terms, and from hedge variables to hedges, such that all but finitely many term and hedge variables are mapped to themselves.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

 \blacktriangleright Notation: σ and ϑ for substitutions.

- Hedges are finite (possible empty) sequences of terms and hedge variables.
- Notation: *h* for hedges. ϵ for the empty hedge.
- For readability, we put hedges in angle brackets if they have more than one element, e.g., $\langle M, X, N \rangle$.
- A substitution is a mapping from term variables to terms, and from hedge variables to hedges, such that all but finitely many term and hedge variables are mapped to themselves.

◆□ → ◆□ → ◆ □ → ◆ □ → ● ● ● ● ●

- \blacktriangleright Notation: σ and ϑ for substitutions.
- The composition is defined in the standard way.

Substitution Application

Term:

$$M = \lambda_{\{x,Y\}} \overbrace{fXxY}^{P} \cdot \overbrace{y(gX)xZ}^{N}$$
Substitution:

$$\sigma = \{x \mapsto gx, y \mapsto \lambda_x x. fxa, Z \mapsto \epsilon, X \mapsto \langle \lambda_x x. x, \lambda_x x. (x + fx) \rangle \}$$

$$M\sigma = \lambda_{\{x',Y\}} \overbrace{f(\lambda_x x.x)(\lambda_x x.(x+fx))x'Y}^{P\sigma}.$$

$$\overbrace{(\lambda_x x.fxa)(g(\lambda_x x.x)(\lambda_x x.(x+fx)))x'}^{N\sigma}$$

Matching Equation and Solution

Equation: $fX \times Y \ll^{?} fabcde$

Solutions:

$$\sigma_{1} = \{X \to \epsilon, x \to a, Y \to \langle b, c, d, e \rangle\}$$

$$\sigma_{2} = \{X \to a, x \to b, Y \to \langle c, d, e \rangle\}$$

$$\sigma_{3} = \{X \to \langle a, b \rangle, x \to c, Y \to \langle d, e \rangle\}$$

$$\sigma_{4} = \{X \to \langle a, b, c \rangle, x \to d, Y \to e\}$$

$$\sigma_{5} = \{X \to \langle a, b, c, d \rangle, x \to e, Y \to \epsilon\}$$

Introduction

Preliminaries

Pattern Calculus

Conclusions and Future Work

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Sol: A function which takes a pattern matching equation and returns a set of solutions.

Sol: A function which takes a pattern matching equation and returns a set of solutions.

$$\begin{array}{ll} \beta_{p}: & (\lambda_{\mathcal{V}}M.N) \: Q \to N\sigma_{1} + \dots + N\sigma_{n}, \\ & \text{where} \: N\sigma_{1}, \dots, N\sigma_{n}, \: n \geq 1, \: \text{are terms} \\ & \: Sol(M \ll_{\mathcal{V}} Q) = \{\sigma_{1}, \dots, \sigma_{n}\}, \: n \geq 1, \\ & \: M \: \text{and} \: Q \: \text{are not of the form} \: W_{1} + W_{2}. \end{array}$$

Sol: A function which takes a pattern matching equation and returns a set of solutions.

$$\begin{split} \beta_{\mathsf{p}} : & (\lambda_{\mathcal{V}} M.N) \: Q \to N \sigma_1 + \dots + N \sigma_n, \\ & \text{where} \: N \sigma_1, \dots, N \sigma_n, \: n \geqslant 1, \: \text{are terms} \\ & Sol(M \ll_{\mathcal{V}} Q) = \{\sigma_1, \dots, \sigma_n\}, \: n \geqslant 1, \\ & M \: \text{and} \: Q \: \text{are not of the form} \: W_1 + W_2 \end{split}$$

$$\mathsf{D}_{\mathsf{I}}: \qquad \lambda_{\mathcal{V}} M_1 + M_2. N \to \lambda_{\mathcal{V}} M_1. N + \lambda_{\mathcal{V}} M_2. N.$$

Sol: A function which takes a pattern matching equation and returns a set of solutions.

$$\begin{split} \beta_{\mathsf{p}} : & (\lambda_{\mathcal{V}} M.N) \ Q \to N \sigma_1 + \dots + N \sigma_n, \\ & \text{where } N \sigma_1, \dots, N \sigma_n, \ n \geq 1, \text{ are terms} \\ & Sol(M \ll_{\mathcal{V}} Q) = \{\sigma_1, \dots, \sigma_n\}, \ n \geq 1, \\ & M \text{ and } Q \text{ are not of the form } W_1 + W_2 \end{split}$$

$$\mathsf{D}_{\mathsf{I}}: \qquad \lambda_{\mathcal{V}} M_1 + M_2. N \to \lambda_{\mathcal{V}} M_1. N + \lambda_{\mathcal{V}} M_2. N.$$

$$\mathsf{D}_{\mathsf{r}}: \qquad \lambda_{\mathcal{V}} M.N_1 + N_2 \to \lambda_{\mathcal{V}} M.N_1 + \lambda_{\mathcal{V}} M.N_2.$$

Sol: A function which takes a pattern matching equation and returns a set of solutions.

$$\begin{array}{ll} \beta_{\mathsf{p}}: & (\lambda_{\mathcal{V}}M.N) \: Q \to N\sigma_1 + \dots + N\sigma_n, \\ & \text{where } N\sigma_1, \dots, N\sigma_n, \: n \ge 1, \: \text{are terms} \\ & \: Sol(M \ll_{\mathcal{V}} Q) = \{\sigma_1, \dots, \sigma_n\}, \: n \ge 1, \\ & \: M \: \text{and} \: Q \: \text{are not of the form} \: W_1 + W_2. \end{array}$$

$$\mathsf{D}_{\mathsf{I}}: \qquad \lambda_{\mathcal{V}} M_1 + M_2 . N \to \lambda_{\mathcal{V}} M_1 . N + \lambda_{\mathcal{V}} M_2 . N.$$

$$\mathsf{D}_{\mathsf{r}}: \qquad \lambda_{\mathcal{V}} M.N_1 + N_2 \to \lambda_{\mathcal{V}} M.N_1 + \lambda_{\mathcal{V}} M.N_2.$$

Pattern reduction \rightarrow_P is a compatible closure of the union of relations β_p , D_l and D_r .

Example: No Confluence

The example shows that we do not have confluence in general!

・ロン ・回と ・ヨン・

How to Obtain Confluence

Goal: Impose restrictions on Sol to guarantee confluence.

Sufficient Conditions for Confluence

Condition 1: Preservation of Free Variables

$$\sigma \in Sol(P \ll_{\mathcal{V}} M) \quad \text{implies} \quad \begin{cases} Dom(\sigma) = \mathcal{V} \\ fv(Ran(\sigma)) \subseteq fv(M) \end{cases}$$

・ロト ・ 日 ・ モート ・ モー・ うへぐ

Example

- Assume that the term $(\lambda_{\mathcal{V}}P.N) M$ reduces to the term $N\sigma_1 + \cdots + N\sigma_n$ with $Sol(P \ll_{\mathcal{V}} M) = \{\sigma_1, \ldots, \sigma_n\}.$
- ▶ Then the inclusion $fv(N\sigma_i) \subseteq (\lambda_V P.N) M$ should hold for any σ_i , $0 < i \leq n$.

Sufficient Conditions for Confluence

Condition 2: Stability by Substitution

$$Sol(P \ll_{\mathcal{V}} M) = \overline{\sigma} \text{ implies } \begin{cases} \forall \theta \text{ s.t. } Var(\vartheta) \cap \mathcal{V} = \emptyset\\ Sol(P\theta \ll_{\mathcal{V}} M\theta) = \overline{\sigma}\theta \end{cases}$$

where $\overline{\sigma} = \{\sigma_1, \dots, \sigma_n\}$ and $\overline{\sigma}\theta = \{(\sigma_1\theta)|_{\mathcal{V}}, \dots, (\sigma_n\theta)|_{\mathcal{V}}\}, n \ge 1$

Example

Violation of the Stability by Substitution Leads to Non-Confluence:

・ロン ・回と ・ヨン・

Sufficient Conditions for Confluence

Condition 3: Stability by Reduction

4

$$\begin{cases} Sol(P \ll_{\mathcal{V}} M) = \overline{\sigma} \\ P \Rightarrow_{P} P', \\ M \Rightarrow_{P} M', \end{cases} \quad \text{implies} \begin{cases} Sol(P' \ll_{\mathcal{V}} M') = \overline{\theta} \\ \forall_{1 \leq i \leq n} \exists_{1 \leq j \leq m} \text{ s.t. } \sigma_{i} \Rightarrow_{P} \theta_{j} \\ \forall_{1 \leq j \leq m} \exists_{1 \leq i \leq n} \text{ s.t } \sigma_{i} \Rightarrow_{P} \theta_{j}. \end{cases}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

where $\overline{\sigma} = \{\sigma_1, \dots, \sigma_n\}, n \ge 1$ and $\overline{\theta} = \{\theta_1, \dots, \theta_m\}, m \ge 1$.

 \Rightarrow_P is the parallel reduction (details on the next slide).

Parallel Reduction

s stands for a hedge variable or a term.

$$\frac{s_{1} \Rightarrow_{P} s'_{1} \dots s_{n} \Rightarrow_{P} s'_{n}}{\langle s_{1}, \dots, s_{n} \rangle \Rightarrow_{P} \langle s'_{1}, \dots, s'_{n} \rangle} \qquad \frac{M \Rightarrow_{P} M' \quad s \Rightarrow_{P} s'}{M \, s \Rightarrow_{P} M' \, s'}$$

$$\frac{M \Rightarrow_{P} M' \quad N \Rightarrow_{P} N'}{\lambda_{\mathcal{V}} M.N \Rightarrow_{P} \lambda_{\mathcal{V}} M'.N'} \qquad \frac{M_{1} \Rightarrow_{P} M'_{1} \quad M_{2} \Rightarrow_{P} M'_{2} \quad N \Rightarrow_{P} N'}{\lambda_{\mathcal{V}} (M_{1} + M_{2}).N \Rightarrow_{P} \lambda_{\mathcal{V}} M'_{1}.N' + \lambda_{\mathcal{V}} M'_{2}.N'}$$

$$\frac{M \Rightarrow_{P} M' \quad N \Rightarrow_{P} N'}{M + N \Rightarrow_{P} M' + N'} \qquad \frac{M \Rightarrow_{P} M' \quad N_{1} \Rightarrow_{P} N'_{1} \quad N_{2} \Rightarrow_{P} N'_{2}}{\lambda_{\mathcal{V}} M.(N_{1} + N_{2}) \Rightarrow_{P} \lambda_{\mathcal{V}} M'.N'_{1} + \lambda_{\mathcal{V}} M'.N'_{2}}$$

$$\frac{M \Rightarrow_{P} M' \quad N \Rightarrow_{P} N' \quad Q \Rightarrow_{P} Q'}{(\lambda_{\mathcal{V}} M.N)Q \Rightarrow_{P} N'\sigma_{1} + \dots + N'\sigma_{n}} \text{ where } Sol(M' \ll_{\mathcal{V}} Q') = \{\sigma_{1}, \dots, \sigma_{n}\}$$

Definition of parallel reduction is extended to substitutions having the same domain by setting $\theta \Rightarrow_P \theta'$ if for all $v \in Dom(\theta) = Dom(\theta')$, we have $v\theta \Rightarrow_P v\theta'$.

Example

Violation of the Stability by Reduction Leads to Non-Confluence.

イロン 不通 と 不通 と 不通 と 一道

Confluence

Theorem

The pattern calculus with hedge variables where Sol satisfies preservation of free variables, stability by substitution and stability by reduction properties is confluent.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Matching with Hedge Variables

We can define $Sol(P \ll_{\mathcal{V}} M)$ as a partial function with the following conditions:

- If P contains a λ-abstraction or a +, or if P = x and M contains a λ-abstraction or a + or a hedge variables, or if fv(P) = V, then undifiend.
- Otherwise, $Sol(P \ll_{\mathcal{V}} M)$ normalizes the matching problem $P \ll^{?} M$ with respect to following rules and collects substitutions σ from the success states.

$$M \ll^{?} M \leadsto_{\varepsilon} \emptyset.$$

$$P_{1} P_{2} \ll^{?} M_{1} M_{2} \leadsto_{\varepsilon} \{P_{1} \ll^{?} M_{1}, P_{2} \ll^{?} M_{2}\}$$

$$x \ll^{?} M \leadsto_{\{x \mapsto M\}} \emptyset.$$

$$P X \ll^{?} Ms_{1} \cdots s_{n} s'_{1} \cdots s'_{m} \leadsto_{\{X \mapsto \langle s'_{1}, \dots, s'_{m} \rangle\}} \{P \ll^{?} Ms_{1} \cdots s_{n}\}.$$

・ロト ・ 日 ・ モート ・ モー・ うへぐ

Introduction

Preliminaries

Pattern Calculus

Conclusions and Future Work

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• We integrated hedge variables in the pattern calculus.

◆□ > ◆□ > ◆臣 > ◆臣 > □ = −の < ⊙

- We integrated hedge variables in the pattern calculus.
- Studied operational semantics of the derived calculus, parametrized by the function *Sol* for finitary matching.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

- We integrated hedge variables in the pattern calculus.
- Studied operational semantics of the derived calculus, parametrized by the function *Sol* for finitary matching.
- Imposed conditions on the Sol function under which the calculus is confluent.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

- We integrated hedge variables in the pattern calculus.
- Studied operational semantics of the derived calculus, parametrized by the function *Sol* for finitary matching.
- Imposed conditions on the Sol function under which the calculus is confluent.
- A concrete example of *Sol* which satisfies those conditions is hedge matching.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Work in Progress

- Relaxing conditions for the Sol function under which confluence is guaranteed.
- Introduction of types and studying properties such as subject reduction, strong normalization, etc.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●