Confluent Let-Floating

Clemens Grabmayer and Jan Rochel

Dept. of Philosophy
Dept. of Information \& Computing Sciences
Utrecht University

IWC 2013
28 June 2013

Motivation

$\boldsymbol{\lambda}_{\text {letrec }}$ as an abstraction \& the core of functional languages
(1) supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating

Motivation

$\boldsymbol{\lambda}_{\text {letrec }}$ as an abstraction \& the core of functional languages
(1) supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating
(2) optimizations of supercombinator transl. (Danvy, Schulz, 1990ies): converse of lambda-lifting:
lambda-dropping $=$ block-sinking + parameter dropping

Motivation

$\boldsymbol{\lambda}_{\text {letrec }}$ as an abstraction \& the core of functional languages
(1) supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating
(2) optimizations of supercombinator transl. (Danvy, Schulz, 1990ies): converse of lambda-lifting:
lambda-dropping $=$ block-sinking + parameter dropping
(3) term graph interpretations of $\boldsymbol{\lambda}_{\text {letrec }}$-terms (ignore let-bindings) for definition of a $\boldsymbol{\lambda}_{\text {letrec }}$-term readback desirable: canonical representatives of let-floating/block-sinking equiv. classes

Let-floating

(1) supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating

Let-floating

(1) supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating
$(\lambda x \cdot(\lambda y .+y x) x) 4$

Let-floating

(1) supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating
$(\lambda x .(\lambda y .+y x) x) 4$
(partial) supercombinator definition

$$
\begin{array}{|l|}
\hline Y=\lambda x y .+y x \\
X=\lambda x . Y x x \\
\hline X 4 \\
\hline
\end{array}
$$

supercombinator definition

Let-floating

(1) supercombinator translations of functional programs
(Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating
$(\lambda x .(\lambda y .+y x) x) 4$

$Y=\lambda x y .+y x$
$(\lambda x . \mathrm{Y} x x) 4$
$Y=\lambda x y .+y x$
$X=\lambda x . Y x x$
$X 4$

(partial) supercombinator definition
supercombinator definition

Let-floating

(1) supercombinator translations of functional programs
(Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating
$(\lambda x .(\lambda y .+y x) x) 4$
$(\lambda x .($ let $f=\lambda y .+y x \operatorname{in} f) x) 4$
(naming a subterm)

$Y=\lambda x y .+y x$
$(\lambda x . \mathrm{Y} x x) 4$
$Y=\lambda x y .+y x$
$X=\lambda x . \mathrm{Y} x x$
$X 4$

(partial) supercombinator definition
supercombinator definition

Let-floating

(1) supercombinator translations of functional programs
(Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating
$(\lambda x .(\lambda y .+y x) x) 4$
$(\lambda x .($ let $f=\lambda y .+y x$ in $f) x) 4 \quad$ (naming a subterm)
$\left(\lambda x .\left(\right.\right.$ let $Y=\lambda x^{\prime} y .+y x^{\prime}$ in $\left.\left.Y \notin\right) x\right) 4 \quad$ (parameter addition)

$Y=\lambda x y .+y x$
$(\lambda x . Y x x) 4$

(partial) supercombinator definition

$$
\begin{aligned}
& Y=\lambda x y .+y x \\
& X=\lambda x . Y x x \\
& X 4
\end{aligned}
$$

supercombinator definition

Let-floating

(1) supercombinator translations of functional programs
(Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating
$(\lambda x .(\lambda y .+y x) x) 4$
$\begin{array}{ll}(\lambda x .(\text { let } f=\lambda y .+y x \operatorname{in} f) x) 4 & \text { (naming a subterm) } \\ \left(\lambda x .\left(\text { let } Y=\lambda x^{\prime} y .+y x^{\prime} \text { in } Y \notin\right) x\right) 4 & \text { (parameter addition) }\end{array}$
let $\mathrm{Y}=\lambda x y .+y x$ in $(\lambda x . Y x x) 4$

$Y=\lambda x y .+y x$
$(\lambda x . Y x x) 4$

(partial) supercombinator definition

$Y=\lambda x y .+y x$
$X=\lambda x . Y x x$
$X 4$

supercombinator definition

Let-floating

(1) supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating
$(\lambda x .(\lambda y .+y x) x) 4$

$$
\begin{array}{ll}
(\lambda x .(\text { let } f=\lambda y .+y x \operatorname{in} f) x) 4 & \text { (naming a subterm) } \\
\left(\lambda x .\left(\text { let } Y=\lambda x^{\prime} y .+y x^{\prime} \text { in } Y \notin\right) x\right) 4 & \text { (parameter addition) }
\end{array}
$$

$$
\text { let } \mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime} \text { in }(\lambda x . Y x x) 4
$$

$$
=\text { let } Y=\lambda x y .+y x \text { in }(\lambda x . Y x x) 4 \quad(\alpha \text {-conversion })
$$

$Y=\lambda x y .+y x$
$(\lambda x . \mathrm{Y} x x) 4$

(partial) supercombinator definition

$Y=\lambda x y .+y x$
$X=\lambda x . Y x x$
$X 4$

supercombinator definition

Let-floating

(1) supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating
$(\lambda x .(\lambda y .+y x) x) 4$
$(\lambda x .($ let $f=\lambda y .+y x \operatorname{in} f) x) 4$
$\left(\lambda x .\left(\right.\right.$ let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $\left.\left.Y *\right) x\right) 4$
let $\nearrow\left(\lambda x\right.$. let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $\left.Y x x\right) 4$
let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $(\lambda x . Y x x) 4$
$=$ let $\mathrm{Y}=\lambda x y .+y x$ in $(\lambda x . \mathrm{Y} x x) 4 \quad$ (α-conversion)

$Y=\lambda x y .+y x$
$(\lambda x . \mathrm{Y} x x) 4$

(partial) supercombinator definition

$Y=\lambda x y .+y x$
$X=\lambda x . Y x x$
$X 4$

supercombinator definition

Let-floating

(1) supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating
$(\lambda x .(\lambda y .+y x) x) 4$
$(\lambda x .($ let $f=\lambda y .+y x \operatorname{in} f) x) 4$
$\left(\lambda x .\left(\right.\right.$ let $Y=\lambda x^{\prime} y .+y x^{\prime}$ in $\left.\left.Y *\right) x\right) 4$
let $\nearrow\left(\lambda x\right.$. let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $\left.\mathrm{Y} x x\right) 4$
let $\neq \quad\left(\right.$ let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $\left.\lambda x . Y x x\right) 4$ let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $(\lambda x . Y x x) 4$
$=$ let $\mathrm{Y}=\lambda x y .+y x$ in $(\lambda x . Y x x) 4$
(naming a subterm)
(parameter addition)
(let-lifting over application)
(let-lifting over abstraction)
(α-conversion)

$Y=\lambda x y .+y x$
$(\lambda x . Y x x) 4$

(partial) supercombinator definition

$Y=\lambda x y .+y x$
$X=\lambda x . Y x x$
$X 4$

supercombinator definition

Let-floating

(1) supercombinator translations of functional programs (Hughes, Peyton-Jones, 1980ies)
lambda-lifting $=$ parameter addition + let-floating
$(\lambda x .(\lambda y .+y x) x) 4$
$(\lambda x .($ let $f=\lambda y .+y x \operatorname{in} f) x) 4$
$\left(\lambda x .\left(\right.\right.$ let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $\left.\left.Y \mathbb{X}\right) x\right) 4$
let $\nearrow\left(\lambda x\right.$. let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $\left.\mathrm{Y} x x\right) 4$
let ${ }^{\pi} \quad\left(\right.$ let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $\left.\lambda x . Y x x\right) 4$
let \nearrow let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $(\lambda x . Y x x) 4$
$=$ let $\mathrm{Y}=\lambda x y .+y x$ in $(\lambda x . \mathrm{Y} x x) 4$
(naming a subterm)
(parameter addition)
(let-lifting over application)
(let-lifting over abstraction)
(let-lifting over application)
(α-conversion)

$Y=\lambda x y .+y x$
$(\lambda x . Y \times x) 4$

(partial) supercombinator definition

$Y=\lambda x y .+y x$
$X=\lambda x . Y x x$
$X 4$

supercombinator definition

Contribution and terminology

we develop a rewrite analysis of let-floating:

direction	literature	here		sign
upward/outward	let-floating	let-lifting	let-floating	let \nearrow
	let \searrow			

Contribution and terminology

we develop a rewrite analysis of let-floating:

direction	literature	here		sign
upward/outward	let-floating	let-lifting	let-floating	let \nearrow
	let			
downward/inward	block-sinking	let-sinking		

introduce let-floating HRSs:

- upward/outward: a let-lifting HRS $\mathbf{R}_{\text {let }} \nearrow$
- downward/inward: a let-sinking HRS $\mathbf{R}^{\text {let }} \downarrow$
so that these are terminating

Contribution and terminology

we develop a rewrite analysis of let-floating:

direction	literature	here		sign
upward/outward	let-floating	let-lifting	let-floating	let \nearrow
	let			
downward/inward	block-sinking	let-sinking		

introduce let-floating HRSs:

- upward/outward: a let-lifting HRS $\mathbf{R}_{\text {let }} \nearrow$
- downward/inward: a let-sinking HRS $\mathbf{R}^{\text {let }} \searrow$
so that these are terminating
show their confluence by:
- critical pair analysis (\Rightarrow local confluence)
- termination
- Newman's Lemma

Contribution and terminology

we develop a rewrite analysis of let-floating:

direction	literature	here		sign
upward/outward	let-floating	let-lifting	let-floating	let \nearrow
	let			
downward/inward	block-sinking	let-sinking		

introduce let-floating HRSs:

- upward/outward: a let-lifting HRS $\mathbf{R}_{\text {let }} \nearrow$
- downward/inward: a let-sinking HRS $\mathbf{R}^{\text {let }} \downarrow$
so that these are terminating
show their confluence by:
- critical pair analysis modulo (\Rightarrow local confluence modulo)
- termination
- Newman's Lemma

Let-lifting

Abstractions may block ${ }_{\text {let }}{ }^{\nearrow}$-steps, but not applications:
$(\lambda x .($ let $f=\lambda y .+y x$ in $f) x) 4$
let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $(\lambda x . Y x x) 4$

Let-lifting

Abstractions may block let ${ }^{T}$-steps, but not applications:

$$
\begin{aligned}
& (\lambda x .(\text { let } f=\lambda y .+y x \text { in } f) x) 4 \\
& \text { let } \nearrow \quad(\lambda x . \text { let } f=\lambda y .+y x \text { in } f x) 4
\end{aligned}
$$

(let-lifting over application)
let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $(\lambda x . Y x x) 4$

Let-lifting

Abstractions may block let ${ }^{T}$-steps, but not applications:
$(\lambda x .($ let $f=\lambda y .+y \times$ in $f) x) 4$
${ }^{\operatorname{let} \pi}(\lambda x$. let $f=\lambda y .+y x$ in $f x) 4$
(let-lifting over application)
$\left(\lambda x\right.$. let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $\left.\mathrm{Y} * x\right) 4$ (parameter addition)
let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $(\lambda x . Y x x) 4$

Let-lifting

Abstractions may block let ${ }^{T}$-steps, but not applications:

$$
\begin{array}{ll}
(\lambda x .(\text { let } f=\lambda y .+y x \text { in } f) x) 4 & \\
\text { let } \nearrow(\lambda x . \text { let } f=\lambda y .+y \times \text { in } f x) 4 & \text { (let-lifting over application) } \\
\left(\lambda x . \text { let } \mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime} \text { in } \mathrm{Y} x x\right) 4 & \text { (parameter addition) } \\
\text { let } \not \subset & \left(\text { let } \mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime} \text { in } \lambda x . \mathrm{Y} x x\right) 4 \\
\text { let } \mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime} \text { in }(\lambda x . \mathrm{Y} x x) 4 & \text { (let-lifting over abstraction) }
\end{array}
$$

Let-lifting

Abstractions may block let ${ }^{T}$-steps, but not applications:
$(\lambda x .($ let $f=\lambda y .+y \times$ in $f) x) 4$
let ${ }^{\pi}(\lambda x$. let $f=\lambda y .+y x$ in $f x) 4$
$\left(\lambda x\right.$. let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $\left.\mathrm{Y} * x\right) 4$
let $\neq\left(\right.$ let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $\left.\lambda x . Y x x\right) 4$
let \neq let $\mathrm{Y}=\lambda x^{\prime} y .+y x^{\prime}$ in $(\lambda x . Y x x) 4$
(let-lifting over application)
(parameter addition)
(let-lifting over abstraction)
(let-lifting over application)

Let-lifting rules

Let-lifting HRS $\mathbf{R}_{\text {let }^{\pi}}$ with rewrite relation let $^{\pi}$:

$$
\left(\operatorname{let} \nearrow @_{0}\right) \quad\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f})\right) E_{1} \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1}
$$

$$
\begin{aligned}
\left(\operatorname{let} \not @_{1}\right) & E_{0}\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{1}(\vec{f})\right) \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0} E_{1}(\vec{f}) \\
(\operatorname{let} \lambda) & \lambda x . \operatorname{let} \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x) \\
& \rightarrow\left\{\begin{array}{l}
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . E(\vec{f}, x) \\
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . \text { let } \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x)
\end{array}\right.
\end{aligned}
$$

(let-in- let \neq let $\vec{f}=\vec{F}(\vec{f})$ in let $\vec{g}=\vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}, \vec{g})$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E(\vec{f}, \vec{g})
$$

$\left(\right.$ let $\left._{- \text {let }} T\right)$ let $\vec{f}=\vec{F}(\vec{f}, g), g=$ let $\vec{h}=\vec{H}(\vec{f}, g, \vec{h})$ in $G(\vec{f}, g, \vec{h})$ in $E(\vec{f}, g)$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}, g), g=G(\vec{f}, g, \vec{h}), \vec{h}=\vec{H}(\vec{f}, g, \vec{h}) \text { in } E(\vec{f}, g)
$$

Let-lifting rules

Let-lifting HRS $\mathbf{R}_{\text {let }^{\pi}}$ with rewrite relation let $^{\pi}$:

$$
\begin{aligned}
& \left({ }_{\text {let }} \not \subset @_{0}\right) \quad\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f})\right) E_{1} \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1} \\
& \operatorname{app}\left(\left(\operatorname{let}_{n-} \operatorname{in}\left(\vec{y} \cdot\left(x_{1}(\vec{y}), \ldots, x_{n}(\vec{y}), z_{0}(\vec{y})\right)\right)\right), z_{1}\right) \\
& \rightarrow \operatorname{let}_{n-} \operatorname{in}\left(\vec{y} \cdot\left(x_{1}(\vec{y}), \ldots, x_{n}(\vec{y}), \operatorname{app}\left(z_{0}(\vec{y}), z_{1}\right)\right)\right) \\
& \left(\text { let } \nearrow @_{1}\right) \quad E_{0}\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{1}(\vec{f})\right) \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0} E_{1}(\vec{f}) \\
& \left({ }_{\text {let }} \nmid \lambda\right) \quad \lambda x \text {. let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x) \\
& \rightarrow\left\{\begin{array}{l}
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x \cdot E(\vec{f}, x) \quad \text { if } \vec{g} \text { is empty } \\
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . \text { let } \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x)
\end{array}\right.
\end{aligned}
$$

(let-in- let \neq let $\vec{f}=\vec{F}(\vec{f})$ in let $\vec{g}=\vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}, \vec{g})$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E(\vec{f}, \vec{g})
$$

$\left(\right.$ let $\left._{- \text {let } t} T\right) \quad$ let $\vec{f}=\vec{F}(\vec{f}, g), g=\operatorname{let} \vec{h}=\vec{H}(\vec{f}, g, \vec{h})$ in $G(\vec{f}, g, \vec{h})$ in $E(\vec{f}, g)$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}, g), g=G(\vec{f}, g, \vec{h}), \vec{h}=\vec{H}(\vec{f}, g, \vec{h}) \text { in } E(\vec{f}, g)
$$

Let-lifting rules

Let-lifting HRS $\mathbf{R}_{\text {let }^{\pi}}$ with rewrite relation let $^{\pi}$:

$$
\left(\text { let } \nearrow @_{0}\right) \quad\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f})\right) E_{1} \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1}
$$

$$
\begin{aligned}
\left(\operatorname{let} \not @_{1}\right) & E_{0}\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{1}(\vec{f})\right) \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0} E_{1}(\vec{f}) \\
(\operatorname{let} \lambda) & \lambda x . \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x) \\
& \rightarrow\left\{\begin{array}{l}
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . E(\vec{f}, x) \\
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . \operatorname{let} \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x)
\end{array}\right.
\end{aligned}
$$

(let-in- let \neq let $\vec{f}=\vec{F}(\vec{f})$ in let $\vec{g}=\vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}, \vec{g})$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E(\vec{f}, \vec{g})
$$

$\left(\right.$ let $\left._{- \text {let }} T\right)$ let $\vec{f}=\vec{F}(\vec{f}, g), g=$ let $\vec{h}=\vec{H}(\vec{f}, g, \vec{h})$ in $G(\vec{f}, g, \vec{h})$ in $E(\vec{f}, g)$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}, g), g=G(\vec{f}, g, \vec{h}), \vec{h}=\vec{H}(\vec{f}, g, \vec{h}) \text { in } E(\vec{f}, g)
$$

Let-lifting rules

Let-lifting HRS $\mathbf{R}_{\text {let }^{\pi}}$ with rewrite relation let $^{\pi}$:

$$
\left(\text { let } \nearrow @_{0}\right) \quad\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f})\right) E_{1} \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1}
$$

$$
\begin{aligned}
\left(\operatorname{let} \not @_{1}\right) & E_{0}\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{1}(\vec{f})\right) \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0} E_{1}(\vec{f}) \\
(\operatorname{let} \lambda) & \lambda x . \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x) \\
& \rightarrow\left\{\begin{array}{l}
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . E(\vec{f}, x) \\
\operatorname{let} \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . \operatorname{let} \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x)
\end{array}\right.
\end{aligned}
$$

(let-in-let ${ }_{-1}$ let $\vec{f}=\vec{F}(\vec{f})$ in let $\vec{g}=\vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}, \vec{g})$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E(\vec{f}, \vec{g})
$$

$\left(\right.$ let $\left._{- \text {let }} T\right)$ let $\vec{f}=\vec{F}(\vec{f}, g), g=$ let $\vec{h}=\vec{H}(\vec{f}, g, \vec{h})$ in $G(\vec{f}, g, \vec{h})$ in $E(\vec{f}, g)$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}, g), g=G(\vec{f}, g, \vec{h}), \vec{h}=\vec{H}(\vec{f}, g, \vec{h}) \text { in } E(\vec{f}, g)
$$

Let-lifting rules

Let-lifting HRS $\mathbf{R}_{\text {let }^{\pi}}$ with rewrite relation let $^{\pi}$:

$$
\left(\text { let } \nearrow @_{0}\right) \quad\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f})\right) E_{1} \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1}
$$

$$
\begin{aligned}
\left(\operatorname{let} \not @_{1}\right) & E_{0}\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{1}(\vec{f})\right) \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0} E_{1}(\vec{f}) \\
(\operatorname{let} \lambda \lambda) & \lambda x . \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x) \\
& \rightarrow\left\{\begin{array}{l}
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . E(\vec{f}, x) \\
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . \operatorname{let} \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x)
\end{array}\right.
\end{aligned}
$$

(let-in-let ${ }_{-1}$ let $\vec{f}=\vec{F}(\vec{f})$ in let $\vec{g}=\vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}, \vec{g})$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E(\vec{f}, \vec{g})
$$

$\left(\right.$ let $\left._{- \text {let }} T\right)$ let $\vec{f}=\vec{F}(\vec{f}, g), g=$ let $\vec{h}=\vec{H}(\vec{f}, g, \vec{h})$ in $G(\vec{f}, g, \vec{h})$ in $E(\vec{f}, g)$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}, g), g=G(\vec{f}, g, \vec{h}), \vec{h}=\vec{H}(\vec{f}, g, \vec{h}) \text { in } E(\vec{f}, g)
$$

Let-lifting rules

Let-lifting HRS $\mathbf{R}_{\text {let }^{\pi}}$ with rewrite relation let $^{\pi}$:

$$
\left(\text { let } \nearrow @_{0}\right) \quad\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f})\right) E_{1} \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1}
$$

$$
\begin{aligned}
\left(\operatorname{let} \not @_{1}\right) & E_{0}\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{1}(\vec{f})\right) \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0} E_{1}(\vec{f}) \\
(\operatorname{let} \lambda) & \lambda x . \operatorname{let} \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x) \\
& \rightarrow\left\{\begin{array}{l}
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . E(\vec{f}, x) \\
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . \text { let } \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x)
\end{array}\right.
\end{aligned}
$$

(let-in-let $\left.{ }^{T}\right) \quad$ let $\vec{f}=\vec{f}(\vec{f})$ in let $\vec{g}=\vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}, \vec{g})$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E(\vec{f}, \vec{g})
$$

$\left(\right.$ let $_{- \text {let } T)}$ let $\vec{f}=\vec{F}(\vec{f}, g), g=\operatorname{let} \vec{h}=\vec{H}(\vec{f}, g, \vec{h})$ in $G(\vec{f}, g, \vec{h})$ in $E(\vec{f}, g)$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}, g), g=G(\vec{f}, g, \vec{h}), \vec{h}=\vec{H}(\vec{f}, g, \vec{h}) \text { in } E(\vec{f}, g)
$$

Let-lifting rules

Let-lifting HRS $\mathbf{R}_{\text {let }^{\pi}}$ with rewrite relation let $^{\pi}$:

$$
\left(\text { let } \nearrow @_{0}\right) \quad\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f})\right) E_{1} \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1}
$$

$$
\begin{aligned}
\left(\operatorname{let} \not @_{1}\right) & E_{0}\left(\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{1}(\vec{f})\right) \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0} E_{1}(\vec{f}) \\
(\operatorname{let} \lambda) & \lambda x . \operatorname{let} \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x) \\
& \rightarrow\left\{\begin{array}{l}
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . E(\vec{f}, x) \\
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . \text { let } \vec{g}=\vec{G}(\vec{f}, \vec{g}, x) \text { in } E(\vec{f}, \vec{g}, x)
\end{array}\right.
\end{aligned}
$$

(let-in-let ${ }_{-1}$ let $\vec{f}=\vec{F}(\vec{f})$ in let $\vec{g}=\vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}, \vec{g})$

$$
\rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E(\vec{f}, \vec{g})
$$

$$
\begin{aligned}
\left(\text { let }_{-} \text {let } \tau\right) \quad \text { let } \vec{f} & =\vec{F}(\vec{f}, g), g=\text { let } \vec{h}=\vec{H}(\vec{f}, g, \vec{h}) \text { in } G(\vec{f}, g, \vec{h}) \text { in } E(\vec{f}, g) \\
& \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}, g), g=G(\vec{f}, g, \vec{h}), \vec{h}=\vec{H}(\vec{f}, g, \vec{h}) \text { in } E(\vec{f}, g)
\end{aligned}
$$

Let-lifting rewrite relations

Needed: conversion $=$ ex induced by rule:

$$
\begin{aligned}
\text { (exchange) let } B_{0}, & f_{i}=F_{i}(\vec{f}), f_{i+1}=F_{i+1}(\vec{f}), B_{1} \text { in } E(\vec{f}) \\
\rightarrow & \text { let } B_{0}, f_{i+1}=F_{i+1}(\vec{f}), f_{i}=F_{i}(\vec{f}), B_{1} \text { in } E(\vec{f})
\end{aligned}
$$

Let-lifting rewrite relations

Needed: conversion $=$ ex induced by rule:

$$
\begin{aligned}
\text { (exchange) let } B_{0} & , f_{i}=F_{i}(\vec{f}), f_{i+1}=F_{i+1}(\vec{f}), B_{1} \text { in } E(\vec{f}) \\
& \rightarrow \text { let } B_{0}, f_{i+1}=F_{i+1}(\vec{f}), f_{i}=F_{i}(\vec{f}), B_{1} \text { in } E(\vec{f})
\end{aligned}
$$

Define:

$$
L_{\text {let }} \not L^{\prime}: \Longleftrightarrow L==_{\mathrm{ex}} \cdot \operatorname{let},^{\pi} \cdot==_{\mathrm{ex}} L^{\prime} \quad\left(\text { let }^{\pi} \text { modulo }==_{\mathrm{ex}}\right)
$$

Let-lifting rewrite relations

Needed: conversion $=$ ex induced by rule:

$$
\begin{aligned}
\text { (exchange) let } B_{0} & , f_{i}=F_{i}(\vec{f}), f_{i+1}=F_{i+1}(\vec{f}), B_{1} \text { in } E(\vec{f}) \\
& \rightarrow \text { let } B_{0}, f_{i+1}=F_{i+1}(\vec{f}), f_{i}=F_{i}(\vec{f}), B_{1} \text { in } E(\vec{f})
\end{aligned}
$$

Define:

$$
\begin{array}{rlr}
L_{\mathrm{let}} \nearrow L^{\prime} & : \Longleftrightarrow L=_{\mathrm{ex}} \cdot \text { let }^{\pi} \cdot=_{\mathrm{ex}} L^{\prime} & \left(\text { let }^{\pi} \text { modulo }=_{\mathrm{ex}}\right) \\
{[L]_{\mathrm{eex}[\mathrm{let}]^{\nearrow}\left[L^{\prime}\right]_{=\mathrm{ex}}}: \Longleftrightarrow L_{\text {let }} \nmid L^{\prime}} & \left(\text { on }={ }_{\mathrm{ex}} \text {-equivalence classes }\right)
\end{array}
$$

Let-lifting rewrite relations

Needed: conversion $=$ ex induced by rule:

$$
\begin{aligned}
\text { (exchange) let } B_{0} & , f_{i}=F_{i}(\vec{f}), f_{i+1}=F_{i+1}(\vec{f}), B_{1} \text { in } E(\vec{f}) \\
& \rightarrow \text { let } B_{0}, f_{i+1}=F_{i+1}(\vec{f}), f_{i}=F_{i}(\vec{f}), B_{1} \text { in } E(\vec{f})
\end{aligned}
$$

Define:

$$
\begin{aligned}
& {[L]_{=\mathrm{ex}}[\mathrm{et}] \neq\left[L^{\prime}\right]_{=_{\mathrm{ex}}}: \Longleftrightarrow L_{\text {let } \nrightarrow} L^{\prime} \quad \text { (on }=\text { ex-equivalence classes) }^{\prime}}
\end{aligned}
$$

\rightarrow is called locally confluent modulo \sim if $\leftarrow \cdot \rightarrow \subseteq \rightarrow \cdot \sim \cdot \leftarrow$.

Lemma

(i) let ${ }^{\pi}$ is locally confluent modulo $=$ ex.
(ii) $[\mathrm{let}]^{\pi}$ is locally confluent.

Critical pair example

Proof.
(i) define HRS $\mathbf{R}_{\text {let }} \lambda_{\text {ex }}$ with rewrite rel. $={ }_{\text {ex }} \rightarrow_{\text {let }}{ }^{\pi}$ [Peterson, Stickel, '81]

- rule scheme (σ) of $\mathbf{R}_{\text {let },} \quad \longmapsto$ rule scheme $(\sigma)_{=_{\text {ex }}}$ of $\mathbf{R}_{\text {let }} \lambda_{\text {ex }}$

Critical pair example

Proof.
(i) define HRS $\mathbf{R}_{\text {let }} \lambda_{\text {ex }}$ with rewrite rel. $=_{\text {ex }} \rightarrow_{\text {let } ~_{\pi}}$ [Peterson, Stickel, ${ }^{81]}$

(ii) carry out a critical pair analysis

Critical pair example

Proof.

(i) define HRS $\mathbf{R}_{\text {let }} \lambda_{\text {ex }}$ with rewrite rel. $=_{\text {ex }} \rightarrow_{\text {let } ~_{\pi}}$ [Peterson, Stickel, '81]

(ii) carry out a critical pair analysis
$\left({ }_{\text {let }} \nearrow @_{0}\right)_{=\mathrm{ex}} /\left(\operatorname{let}^{\nearrow} @_{1}\right)_{=_{\mathrm{ex}}}$:

$$
\begin{aligned}
& \text { (let } \left.\vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f})\right)\left(\text { let } \vec{g}=G(\vec{g}) \text { in } E_{1}(\vec{g})\right) \xrightarrow[\left({ }_{\operatorname{let} \nearrow} \not @_{0}\right)]{ } \text { let } \vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f}) \text { let } \vec{g}=G(\vec{g}) \text { in } E_{1}(\vec{g})
\end{aligned}
$$

$$
\begin{aligned}
& \text { let } \vec{g}=G(\vec{g}) \text { in }\left(\text { let } \vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f})\right) E_{1}(\vec{g}) \\
& \left(\operatorname{let} \not @_{0}\right)_{V} \\
& \text { let } \vec{f}=F(\vec{f}) \text { in let } \vec{g}=G(\vec{g}) \text { in } E_{0}(\vec{f}) E_{1}(\vec{g})
\end{aligned}
$$

$$
\begin{aligned}
& \text { let } \vec{g}=G(\vec{g}) \text { in let } \vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1}(\vec{g})\left(\begin{array}{c}
(\text { let-in-let } \bar{\prime})
\end{array} \text { let } \vec{g}=G(\vec{g}), \vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1}(\vec{g})\right.
\end{aligned}
$$

Critical pair example

Proof.

(i) define HRS $\mathbf{R}_{\text {let }} \lambda_{\text {ex }}$ with rewrite rel. $={ }_{\text {ex }} \rightarrow_{\text {let } ~_{\lambda}}$ [Peterson, Stickel,'81]

(ii) carry out a critical pair analysis
(iii) Critical Pair Theorem for HRS [Mayr, Nipkow,'96] implies local confluence of $={ }_{e x} \hookrightarrow_{\mid e t}{ }^{\pi}$
$\left(\operatorname{let} \nmid @_{0}\right)_{=\mathrm{ex}} /\left({ }_{\text {let }} \nmid @_{1}\right)_{=_{\mathrm{ex}}}:$

$$
\begin{aligned}
& \text { (let } \left.\vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f})\right)\left(\text { let } \vec{g}=G(\vec{g}) \text { in } E_{1}(\vec{g})\right) \xrightarrow[\left(\operatorname{let} \not \bigotimes_{0}\right)]{ } \text { let } \vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f}) \text { let } \vec{g}=G(\vec{g}) \text { in } E_{1}(\vec{g}) \\
& \left.\left(\operatorname{let} \not \mathfrak{Q}_{1}\right) \downarrow \quad\left(\operatorname{let} \neq \varrho_{0}\right) \quad @_{1}\right) \\
& \text { let } \vec{g}=G(\vec{g}) \text { in }\left(\text { let } \vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f})\right) E_{1}(\vec{g}) \\
& \left(\operatorname{let} \not \varrho_{0}\right)_{V} \\
& \text { let } \vec{f}=F(\vec{f}) \text { in let } \vec{g}=G(\vec{g}) \text { in } E_{0}(\vec{f}) E_{1}(\vec{g}) \\
& (\text { let-in- let } \tau) \cdot={ }_{\text {ex }}^{\vdots} \\
& \text { let } \vec{g}=G(\vec{g}) \text { in let } \vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1}(\vec{g})\left(\begin{array}{c}
(\text { let-in-let } \bar{\prime})
\end{array} \text { let } \vec{g}=G(\vec{g}), \vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1}(\vec{g})\right.
\end{aligned}
$$

Critical pair example

Proof.

(i) define HRS $\mathbf{R}_{\text {let }} \lambda_{\text {ex }}$ with rewrite rel. $=_{\text {ex }} \rightarrow_{\mathrm{let},}$ [Peterson, Stickel, '81]

- rule scheme (σ) of $\mathbf{R}_{\text {let }}, \pi \longrightarrow$ rule scheme $(\sigma)_{\text {eex }}$ of $\mathbf{R}_{\text {let }} \lambda_{\text {ex }}$
(ii) carry out a critical pair analysis
(iii) Critical Pair Theorem for HRS [Mayr, Nipkow,'96] implies local confluence of $={ }_{\text {ex }} \rightarrow_{\text {let }}{ }^{\pi}$
(iv) let, ${ }^{\pi}$-steps and $={ }_{\text {ex }}$-steps at different positions commute
(v) then it follows:
local confluence of ${ }_{l e t} \pi$ modulo $={ }_{e x}$, and local confluence of $[\mathrm{let}]^{\pi}$
$\left(\operatorname{let} \not \subset @_{0}\right)_{=\mathrm{ex}} /\left({ }_{\text {let }} \not @_{1}\right)_{=_{\mathrm{ex}}}:$

$$
\begin{aligned}
& \text { (let } \left.\vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f})\right)\left(\text { let } \vec{g}=G(\vec{g}) \text { in } E_{1}(\vec{g})\right) \xrightarrow[\left(\operatorname{let} \not @_{0}\right)]{ } \text { let } \vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f}) \text { let } \vec{g}=G(\vec{g}) \text { in } E_{1}(\vec{g}) \\
& \left(\operatorname{let} \not \mathbb{Q}_{1}\right) \downarrow \quad\left(\operatorname{let} \nrightarrow @_{0}\right) \quad\left(\operatorname{let} \not @_{1}\right) \\
& \text { let } \vec{g}=G(\vec{g}) \text { in }\left(\text { let } \vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f})\right) E_{1}(\vec{g}) \\
& \left(\operatorname{let} \pi @_{0}\right)_{V} \\
& \text { let } \vec{f}=F(\vec{f}) \text { in let } \vec{g}=G(\vec{g}) \text { in } E_{0}(\vec{f}) E_{1}(\vec{g}) \\
& (\text { let-in- let } \tau) \cdot={ }_{\text {ex }}^{\boldsymbol{\vdots}} \\
& \text { let } \vec{g}=G(\vec{g}) \text { in let } \vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1}(\vec{g})\left(\begin{array}{c}
(\text { let-in-let } \bar{\prime})
\end{array} \text { let } \vec{g}=G(\vec{g}), \vec{f}=F(\vec{f}) \text { in } E_{0}(\vec{f}) E_{1}(\vec{g})\right.
\end{aligned}
$$

Let-lifting is confluent

Lemma

let^{\nearrow} and ${ }_{[\mathrm{let}]^{\nearrow}}$ are terminating.

Proposition

In every let ${ }^{\nearrow}$ or ${ }_{[l \mathrm{let}]^{\nearrow} \text {-normal }}$ form, let-subterms occur only:

- at the root;
- immediately below λ-abstractions.

Theorem

[let] ${ }^{\nearrow}$ is confluent, terminating, and uniquely normalizing.

Proof.

By using Newman's Lemma.

Let-sinking

Applications may 'block' let ${ }_{\downarrow}$-steps, but not abstractions:

$$
\text { let } f=\lambda y . y \text { in } \lambda x . f f x
$$

Let-sinking

Applications may 'block' let ${ }_{\downarrow}$-steps, but not abstractions:
let $f=\lambda y . y$ in $\lambda x . f f x$
${ }^{\text {let }} \downarrow \lambda x$. let $f=\lambda y . y$ in $f f x$
(let-sinking over abstraction)

Let-sinking

Applications may 'block' let ${ }_{\downarrow}$-steps, but not abstractions:

$$
\text { let } f=\lambda y . y \text { in } \lambda x . f f x
$$

${ }^{\text {let }} \searrow \lambda x$. let $f=\lambda y . y$ in $f f x \quad$ (let-sinking over abstraction)
${ }^{\text {let }} \searrow \lambda x .($ let $f=\lambda y \cdot y$ in $f f) x \quad$ (let-sinking over application)

Let-sinking

Applications may 'block' let ${ }_{\downarrow}$-steps, but not abstractions:

$$
\begin{array}{ll}
\text { let } f=\lambda y \cdot y \text { in } \lambda x \cdot f f x & \\
\text { let } \searrow \lambda x . \text { let } f=\lambda y \cdot y \text { in } f f x & \text { (let-sinking over abstraction) } \\
\text { let } \searrow \lambda x .(\text { let } f=\lambda y \cdot y \text { in } f f) x & \text { (let-sinking over application) }
\end{array}
$$

in the sense that further sinking needs duplication:

$$
\lambda x \cdot(\text { let } f=\lambda y \cdot y \text { in } f)(\text { let } f=\lambda y \cdot y \text { in } f) x \quad \text { (unfolding) }
$$

which decreases (here looses) sharing (changes graph interpretation).

Let-sinking rules

Let-sinking HRS $\mathbf{R}^{\text {let }} \star$ with rewrite relation let \star :

$$
\begin{aligned}
& \text { (let } \left.\nearrow @_{0}\right) \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E_{0}(\vec{f}, \vec{g}) E_{1}(\vec{f}) \\
& \rightarrow\left\{\begin{array}{l}
\left(\text { let } \vec{g}=\vec{G}(\vec{g}) \text { in } E_{0}(\vec{g})\right) E_{1} \quad \text { if } \vec{f} \text { is empty } \\
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in }\left(\text { let } \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E_{0}(\vec{f}, \vec{g})\right) E_{1}(\vec{f})
\end{array}\right. \\
& \left(\text { let } \nearrow @_{1}\right) \quad \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E_{0}(\vec{f}) E_{1}(\vec{f}, \vec{g}) \\
& \rightarrow\left\{\begin{array}{l}
E_{0}\left(\text { let } \vec{g}=\vec{G}(\vec{g}) \text { in } E_{1}(\vec{g})\right) \quad \text { if } \vec{f} \text { is empty } \\
\text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } E_{0}(\vec{f})\left(\text { let } \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E_{1}(\vec{f}, \vec{g})\right)
\end{array}\right. \\
& \left(^{\text {let }} \searrow \lambda\right) \text { let } \vec{f}=\vec{F}(\vec{f}) \text { in } \lambda x . E(\vec{f}, x) \rightarrow \lambda x \text {. let } \vec{f}=\vec{F}(\vec{f}) \text { in } E(\vec{f}, x) \\
& { }^{\text {let }} \searrow \text { let_) let } \vec{f}=\vec{F}(\vec{f}) \text { in let } \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E(\vec{f}, \vec{g}) \\
& \rightarrow \text { let } \vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g}) \text { in } E(\vec{f}, \vec{g})
\end{aligned}
$$

(let_ ${ }^{\text {let }} \searrow$) let $\vec{f}=\vec{F}(\vec{f}, g), g=G(\vec{f}, g, \vec{h}), \vec{h}=\vec{H}(\vec{f}, g, \vec{h})$ in $E(\vec{f}, g)$
\rightarrow let $\vec{f}=\vec{F}(\vec{f}, g), g=\operatorname{let} \vec{h}=\vec{H}(\vec{f}, g, \vec{h})$ in $G(\vec{f}, g, \vec{h})$ in $E(\vec{f}, g)$

Garbage collection

$$
\lambda x . \lambda y . \text { let } f=\lambda z . z \text { in } x y
$$

Garbage collection

$$
\begin{gathered}
\iota^{\lambda x . \lambda y . \operatorname{let} f=\lambda z . z \text { in } x y_{\text {let }}} \\
\lambda x . \lambda y .(\text { let } f=\lambda z . z \text { in } x) y \quad \lambda x . \lambda y \cdot x(\text { let } f=\lambda z . z \text { in } y)
\end{gathered}
$$

Garbage collection

$$
\begin{gathered}
\iota^{\lambda x . \lambda y . \text { let } f=\lambda z . z \text { in } x y_{\text {let }}} \\
\lambda x . \lambda y .(\text { let } f=\lambda z . z \text { in } x) y \quad \lambda x . \lambda y \cdot x(\text { let } f=\lambda z . z \text { in } y)
\end{gathered}
$$

Needed: garbage collection rules with rewrite relation $\rightarrow_{\mathrm{gc}}$ (reduce) let $\vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}) \rightarrow$ let $\vec{f}=\vec{F}(\vec{f})$ in $E(\vec{f})$

Garbage collection

$$
\begin{aligned}
& \swarrow^{\text {let }} \quad \lambda x . \lambda y . \text { let } f=\lambda z . z \operatorname{in} x y_{\text {let }} \\
& \lambda x . \lambda y .(\text { let } f=\lambda z . z \text { in } x) y \quad \lambda x . \lambda y . x(\text { let } f=\lambda z . z \text { in } y) \\
& \lambda x \cdot \lambda y \cdot(\text { let in } x) y \quad \lambda x \cdot \lambda y \cdot x(\text { let in } y)
\end{aligned}
$$

Needed: garbage collection rules with rewrite relation $\rightarrow \mathrm{gc}$ (reduce) let $\vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}) \rightarrow$ let $\vec{f}=\vec{F}(\vec{f})$ in $E(\vec{f})$

Garbage collection

$$
\begin{aligned}
& \underset{\alpha^{\text {let }}}{\lambda x . \lambda y . \text { let } f=\lambda z . z \text { in } x y_{\text {let }} \text {, }} \\
& \lambda x . \lambda y .(\text { let } f=\lambda z . z \text { in } x) y \quad \lambda x . \lambda y . x(\text { let } f=\lambda z . z \text { in } y) \\
& \begin{array}{ll}
\rightarrow \cdot \lambda y \cdot(\text { let in } x) y & \lambda x \cdot \lambda y \cdot x(\text { let in } y)
\end{array}
\end{aligned}
$$

Needed: garbage collection rules with rewrite relation $\rightarrow_{\mathrm{gc}}$
(reduce) let $\vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}) \rightarrow$ let $\vec{f}=\vec{F}(\vec{f})$ in $E(\vec{f})$
(nil) let in $L \rightarrow L$

Garbage collection

$$
\begin{aligned}
& \lambda x . \lambda y .(\text { let } f=\lambda z . z \text { in } x) y \quad \lambda x . \lambda y . x(\text { let } f=\lambda z . z \text { in } y) \\
& \begin{array}{l}
\overrightarrow{\mathrm{gc}} \\
\lambda x \cdot \lambda y \cdot(\text { let in } x) y
\end{array} \lambda x \cdot \lambda y \cdot x\left(\begin{array}{c}
\text { (let in } y)
\end{array}\right. \\
& { }_{\mathrm{gc}}^{\lambda x . \lambda y \cdot x y}{ }^{\leftarrow \mathrm{gc}}
\end{aligned}
$$

Needed: garbage collection rules with rewrite relation $\rightarrow_{\mathrm{gc}}$
(reduce) let $\vec{f}=\vec{F}(\vec{f}), \vec{g}=\vec{G}(\vec{f}, \vec{g})$ in $E(\vec{f}) \rightarrow$ let $\vec{f}=\vec{F}(\vec{f})$ in $E(\vec{f})$
(nil) let in $L \rightarrow L$

Let-sinking is confluent

Lemma

${ }^{\text {let }} \backslash \mathrm{gc}$ is locally confluent modulo $=_{\text {ex }}$, and ${ }^{[\mathrm{let}]}{ }_{\star}{ }^{[\mathrm{gc]}]}$ is locally confluent.

Proposition

```
let\, gc and [ef]}\\\mp@code{[gc] are terminating.
```


Theorem

$[\mathrm{let}] \Downarrow[\mathrm{gc}]$ is confluent, terminating, and uniquely normalizing.

Envisaged application: lambda-lifting

Extend $\mathbf{R}_{\mathrm{let}, \neq}$ with a parameter-addition rule:

$$
\begin{aligned}
& \lambda x . \text { let } f=F(f, \vec{g}, x), \vec{g}=\vec{G}(f, \vec{g}, x) \text { in } E(f, \vec{g}, x) \\
& \quad \rightarrow \lambda x . \text { let } \hat{f}=\lambda x^{\prime} . F\left(\hat{f} x^{\prime}, \vec{g}, x^{\prime}\right), \vec{g}=\vec{G}(\hat{f} \notin, \vec{g}, x) \text { in } E(\hat{f} \notin, \vec{g}, x)
\end{aligned}
$$

to enable further let-lifting.

Envisaged application: lambda-lifting

Extend $\mathbf{R}_{\mathrm{let}, \neq}$ with a parameter-addition rule:

$$
\begin{aligned}
& \lambda x . \text { let } f=F(f, \vec{g}, x), \vec{g}=\vec{G}(f, \vec{g}, x) \text { in } E(f, \vec{g}, x) \\
& \quad \rightarrow \lambda x . \text { let } \hat{f}=\lambda x^{\prime} . F\left(\hat{f} x^{\prime}, \vec{g}, x^{\prime}\right), \vec{g}=\vec{G}(\hat{f} \notin, \vec{g}, x) \text { in } E(\hat{f} \notin, \vec{g}, x)
\end{aligned}
$$

to enable further let-lifting.

Aim:

- enable to let-lift ('float out') all let-bindings to create a single outermost let-binding
- model a lambda-lifting translation into supercombinators
- show confluence modulo order of combinator arguments
- perhaps use normalized rewriting on let-floating equivalence classes

Summary

(1) Let-lifting

- let-lifting HRS $\mathbf{R}_{\text {let }}$, ${ }^{\text {with }}$ with rewrite relation ${ }_{\text {let }}{ }^{\pi}$
- exchange conversion $=$ ex
- rewrite relation ${ }_{\text {let }} \neq\left(=\left(=_{\text {ex }} \cdot \mid l e t^{\pi} \cdot=_{\text {ex }}\right)\right.$ is confluent modulo $={ }_{\text {ex }}$
- $={ }_{e x}$-class rewrite relation $\left[\mathrm{let}^{\nearrow}{ }^{\nearrow}\right.$ is confluent and terminating
(2) Let-sinking rewrite relation ${ }^{[l e t]} \downarrow[\mathrm{gc}]$
- let-sinking HRS $\mathbf{R}^{\text {let. }}$ » with rewrite relation let` \star
- rewrite relation ${ }^{\text {let }}{ }_{\downarrow} \mathrm{gc}:==_{\mathrm{ex}} \cdot\left(\mathrm{let}^{\pi} \cup \rightarrow_{\mathrm{gc}}\right) \cdot=_{\mathrm{ex}}$ is confluent modulo $={ }_{\mathrm{ex}}$
- =ex-class rewrite relation ${ }^{[l e t]} \downarrow{ }^{[\mathrm{gc]}]}$ and confluent and terminating

