
IWC 2013

2nd International Workshop on Confluence

Proceedings

Editors: Nao Hirokawa & Vincent van Oostrom

June 28, 2013, Eindhoven, The Netherlands

Preface

This report contains the proceedings of the 2nd International Workshop on Confluence (IWC
2013). The workshop was held in Eindhoven on June 28, 2013 as part of the 7th International
Conference on Rewriting, Deduction, and Programming (RDP 2013). The 1st IWC took place
in Nagoya (2012).

Recently there is a renewed interest in confluence research, resulting in new techniques,
tool support as well as new applications. The workshop promotes and stimulates research
and collaboration on confluence and related properties. It encourages the presentation of new
directions, developments, and results as well as surveys and tutorials on existing knowledge in
this area. In addition to original contributions, the workshop solicited short versions of recently
published articles and papers submitted elsewhere.

IWC 2013 received 10 submissions. Each submission was reviewed by 3 program committee
members. After deliberations the program committee decided to accept all submissions, which
are contained in this report. Apart from these contributed talks, the workshop had an invited
talk by Patrick Dehornoy on Three Termination Problems, and jointly with the 1st Workshop
on Infinitary Rewriting (WIR 2013), an invited talk by Jan Willem Klop on Confluence and
Infinity - a kaleidoscopic view. Their abstracts are also included in the report. Moreover, the
2nd Confluence Competition (CoCo 2013) was held during the workshop and the results are
available at http://coco.nue.riec.tohoku.ac.jp/2013/.

Several persons helped to make IWC 2013 a success. We are grateful to the members of the
program committee for their work. Special thanks go to Harald Zankl for organizing CoCo.
Last but not least, we thank Hans Zantema for his indispensable help.

Kanazawa & Utrecht, June 2013 Nao Hirokawa & Vincent van Oostrom

iii

http://coco.nue.riec.tohoku.ac.jp/2013/

Program Committee

Guillem Godoy Technical University of Catalonia
Nao Hirokawa JAIST (co-chair)
Barbara König University of Duisburg-Essen
Vincent van Oostrom Utrecht University (co-chair)
Michio Oyamaguchi Nagoya University
Harald Zankl University of Innsbruck
Hans Zantema Eindhoven University of Technology

iv

Table of Contents

Abstracts of Invited Talks

Three Termination Problems . 1
Patrick Dehornoy

Confluence and Infinity - a kaleidoscopic view . 3
Jan Willem Klop

Contributed Papers

Disproving Confluence of Term Rewriting Systems by Interpretation and
Ordering (extended abstract) . 5

Takahito Aoto

Automatically Finding Non-confluent Examples in Term Rewriting 11
Hans Zantema

Confluent Unfolding in the Lambda-Calculus with letrec . 17
Jan Rochel, Clemens Grabmayer

Rule Labeling for Confluence of Left-Linear Term Rewrite Systems 23
Bertram Felgenhauer

Commutation via Relative Termination . 29
Nao Hirokawa, Aart Middeldorp

Proving Confluence of Conditional Term Rewriting Systems via Unravelings . . . 35
Karl Gmeiner, Naoki Nishida, Bernhard Gramlich

A Confluent Pattern Calculus with Hedge Variables . 41
Sandra Alves, Besik Dundua, Mário Florido, Temur Kutsia

Synchronizing Applications of the Parallel Moves Lemma to Formalize
Confluence of Orthogonal TRSs in PVS . 47

Ana Cristina Rocha Oliveira, André Luiz Galdino, Mauricio Ayala-Rincón

KBCV 2.0 - Automatic Completion Experiments . 53
Thomas Sternagel

Confluent Let-Floating . 59
Clemens Grabmayer, Jan Rochel

v

Three Termination Problems

Patrick Dehornoy

University of Caen

We shall describe three termination problems originating from various areas of algebra.
These are the termination of handle reduction in braid theory, where termination is proved but
with a very coarse complexity bound, the termination of the Polish algorithm in the theory of
self-distributive systems, where termination is not yet proved, and the termination of subword
reversing in semigroup theory, where termination is proved in some cases. In all three situations,
the results known so far rely on the specific properties of the underlying objects, and it would
be highly desirable to know whether general techniques might help.

N. Hirokawa & V. van Oostrom (eds.); 2nd International Workshop on Confluence, pp. 1–1 1

Confluence and Infinity - a kaleidoscopic view

Jan Willem Klop

VU University Amsterdam and CWI Amsterdam

In this talk we will attempt to present some highlights in old and new studies concerning
the pivotal notion of confluence in lambda calculus, term rewriting and infinitary rewriting. We
first aim the kaleidoscope on the classics: lambda calculus (Tait-Martin-Löf, Aczel, superdevel-
opments, Parallel Moves Lemma), combinatory logic and other orthogonal systems, deviating
from that ideal setting by looking briefly at non-left-linear rules, such as Surjective Pairing (De
Vrijer), confluence for braids, and confluence by completion (Zantema, van Oostrom)

In a second part, we rotate the kaleidoscope and view some basic confluence methods,
Newman’s Lemma, De Bruijn’s Weak Diamond Property, Van Oostrom’s Decreasing Diagrams.

In a third twist of the kaleidoscope we invoke the setting of infinitary rewriting, for orthog-
onal rewriting, and also for lambda calculus. We briefly show a recent remarkable coinductive
setup of infinitary rewriting, and then return to infinitary confluence, signalling some striking
differences with the finitary rewriting world, with as motto: confluence lost, confluence re-
gained. We describe the Threefold Path to regain confluence, via the semantics of Böhm Trees
and its two variants. Speaking about Böhm trees, we (might) turn to a more refined notion,
clocked Böhm Trees, a recent method to discriminate lambda terms with respect to finitary
convertibility, very suitable for fixed point combinators.

Somewhere in between we (might) show that the eta-rule wreaks havoc in infinitary lambda
calculus. We conclude with the miracle of infinitary confluence for lambda-beta-Omega calculus.

N. Hirokawa & V. van Oostrom (eds.); 2nd International Workshop on Confluence, pp. 3–3 3

Disproving Confluence of Term Rewriting

Systems by Interpretation and Ordering

(extended abstract)

Takahito Aoto

RIEC, Tohoku University
2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan

aoto@nue.riec.tohoku.ac.jp

Abstract

We present new criteria for ensuring non-joinability of terms based on interpretation and
ordering, and report on an implementation of confluence disproving procedure based on
some instances of the criteria. The experiment reveals that our methods can be applied to
automatically disprove confluence of some term rewriting systems, on which state-of-the-
art automated confluence provers fail.

1 Introduction

In contrast to many dedicated techniques that have been developed to prove confluence of
term rewriting systems, not many techniques for disproving confluence are known. A typical
approach to disprove confluence of (non-terminating) TRSs is first to construct some candidates
of two terms that can be reduced from a common term, and then to show that these candidates
are not joinable, i.e. they do not have a common reduct. In this scenario, as well as the selection
of the candidates, proving non-joinability of terms is essential. So far, the only serious approach
to prove the non-joinability of terms is to use approximation by tree automata [4, 7].

In this paper, we give new methods for proving that given two terms s, t are not joinable.
The first method consists in giving an interpretation, e.g. a mapping from terms to natural
numbers, that is preserved by the application of usable rules and such that the interpretation
of s is different from that of t. The second method consists in giving an ordering > such
that s > t, and usable rules from s only increase or preserve w.r.t. > and the usable rules
from t only decrease or preserve w.r.t. >. These methods are implemented using polynomial
interpretations and recursive path orderings—interpretations and orderings that are widely
used in the literature for termination proving. The experiment reveals that our methods can
be applied to automatically disprove confluence of some term rewriting systems, on which
state-of-the-art automated confluence provers fail to disprove.

2 Preliminaries

We assume familiarity with standard notions and notations on term rewriting (see e.g. [3]).
Below we explain some extra notations used in the paper. The disjoint union of two sets A
and B is denoted by A] B, and that of all Ai (i ∈ I) by

⊎
i∈I Ai. The set of terms over a set

F of function symbols and the set V of variables is denoted by T(F ,V). The set of variables
in a term t is denoted by V(t). We write s E t to denote that s is a subterm of t. We write
Unif(s, t) to denote that the terms s and t are unifiable. A rewrite rule l → r is a pair of
terms; we here drop the usual restriction that l /∈ V and V(r) ⊆ V(l). A rewrite relation is a

N. Hirokawa & V. van Oostrom (eds.); 2nd International Workshop on Confluence, pp. 5–9 5

Disproving Confluence by Interpretation and Ordering Aoto

relation on terms that is closed under contexts and substitutions. A strict partial order (partial
order, quasi-order) is a rewrite strict partial order (rewrite partial order, rewrite quasi-order,
respectively) if it is a rewrite relation.

Given a term s, the sets of terms {t ∈ T(F ,V) | s ∗→ t} and {t ∈ T(F ,V) | t ∗→ s}
are denoted by [s](

∗→) and (
∗→)[s], respectively. Terms s and t are said to be joinable if

[s](
∗→) ∩ [t](

∗→) 6= ∅, and non-joinable otherwise. We write NJ(s, t) to denote that the terms s
and t are non-joinable. In order to disprove that a TRS R is confluent, we construct two terms
s and t such that (

∗→)[s] ∩ (
∗→)[t] 6= ∅ in some way, and then prove NJ(s, t). From here on, we

concentrate on the problem of proving NJ(s, t), the non-joinability problem.

3 Proving Non-Joinability by Interpretation

In this section, we present several criteria to prove non-joinability of terms based on their
interpretations in F-algebras.

An F-algebra A = 〈A, 〈fA〉f∈F 〉 is a pair of a set A and a tuple of functions fA : An → A
for each n-ary function symbol f ∈ F . The set A is called the carrier set of the F-algebra
A and is denoted by |A|. A valuation on the F-algebra A is a mapping V → A. Suppose an
F-algebra A = 〈A, (fA)f∈F 〉 is fixed. Then the interpretation of a term under the valuation σ
is denoted by [[t]]σ.

The notion of usable rules [2] is well-known in the literature for proving termination of
TRSs. We introduce a notion of usable rules for non-joinability suitable for our setting. For
this, the notion of TCAP [5] is used. For terms t, TCAP(t) is defined recursively like this:
TCAP(x) = x′, TCAP(f(t1, . . . , tn)) = x′ if Unif(f(u1, . . . , un), l) for some l → r ∈ R, and
TCAP(f(t1, . . . , tn)) = f(u1, . . . , un) otherwise, where ui = TCAP(ti) (1 ≤ i ≤ arity(f)).
Here, a new fresh variable is taken for x′ every time it is used. Our notion of usable rules is
obtained from the one for innermost termination [5] by replacing ICAP with TCAP.

Definition 1 (usable rules). The set of usable rules for non-joinability w.r.t. TRS R and a
term s is the smallest set Unj(R, s) ⊆ R satisfying two conditions: (i) for any l → r ∈ R and
non-variable subterm f(u1, . . . , un) E s, if Unif(f(TCAP(u1), . . . ,TCAP(un)), l) then l → r ∈
Unj(R, s); (ii) if l′ → r′ ∈ Unj(R, s) and l→ r ∈ Unj(R, r′), then l→ r ∈ Unj(R, s).

The following is a key lemma for proving our theorem given below.

Lemma 2. Let R be a TRS, l → r ∈ R and s, t terms. If s
∗→R ◦ →{l→r} t then l → r ∈

Unj(R, s).

Theorem 3. Let s, t be terms and A = 〈A, 〈fA〉f∈F 〉 an F-algebra such that A =
⊎
i∈I Ai.

Suppose (i) for any valuation σ and l→ r ∈ Unj(R, s)∪Unj(R, t), if [[l]]σ ∈ Ai then [[r]]σ ∈ Ai, (ii)
for any f ∈ F , a ∈ A and i, j ∈ I, if a ∈ Ai implies fA(. . . , a, . . .) ∈ Aj, then fA(. . . , b, . . .) ∈
Aj for any b ∈ Ai and (iii) [[s]]ρ ∈ Ai and [[t]]ρ ∈ Aj for some valuation ρ and i 6= j. Then
NJ(s, t).

The criterion of Theorem 3, in general, is not amenable for automation, and one has to use
more concrete instances of the theorem such as given below.

Corollary 4. Let A be an F-algebra and s, t be terms. Suppose (i) [[l]]σ = [[r]]σ for any valuation
σ and l→ r ∈ Unj(R, s) ∪ Unj(R, t) and (ii) [[s]]ρ 6= [[t]]ρ for some valuation ρ. Then NJ(s, t).

6

Disproving Confluence by Interpretation and Ordering Aoto

Corollary 5. Let s, t be terms and A an F-algebra whose carrier set is a set of integers. Suppose
there exists an integer k ≥ 2 such that (i) for any valuation σ and l→ r ∈ Unj(R, s)∪Unj(R, t),
[[l]]σ ≡ [[r]]σ (mod k) and (ii) [[s]]ρ 6≡ [[t]]ρ (mod k) for some valuation ρ. Then NJ(s, t).

In following examples, non-confluence is shown using these corollaries.

Example 6. Let R = {(1) : a → h(c), (2) : a → h(f(c)), (3) : h(x) → h(h(x)), (4) : f(x) →
f(g(x))}. Let s = h(c) and t = h(f(c)). As a ∈ (

∗→)[s] ∩ (
∗→)[t], it suffices to show NJ(s, t) to

disprove the confluence of R. We have Unj(R, s) ∪ Unj(R, t) = {(3), (4)}. Take an F-algebra
A = 〈{0, 1}, 〈fA〉f∈F 〉 as aA = cA = 0, fA(n) = 1 − n, hA(n) = gA(n) = n. Then for
any valuation σ, we have [[h(x)]]σ = σ(x) = [[h(h(x))]]σ and [[f(x)]]σ = 1 − σ(x) = [[f(g(x))]]σ;
thus, [[l]]σ = [[r]]σ for each l → r ∈ Unj(R, s) ∪ Unj(R, t). Take an arbitrary valuation ρ. Then
[[s]]ρ = [[h(c)]]ρ = 0 6= 1 = [[t]]ρ = [[h(f(c))]]ρ. Therefore, NJ(s, t) by Corollary 4.

Example 7. Let R = {(1) : a→ f(c), (2) : a→ h(c), (3) : f(x)→ h(g(x)), (4) : h(x)→ f(g(x))}.
Let s = f(c) and t = h(c). We have Unj(R, s) ∪ Unj(R, t) = {(3), (4)}. Take an F-algebra
A = 〈N, 〈fA〉f∈F 〉 as aA = cA = 0, gA(n) = n + 1, fA(n) = n, hA(n) = n + 1. Then
[[f(x)]]σ−[[h(g(x))]]σ = σ(x)−(σ(x)+2) = −2 and [[h(x)]]σ−[[f(g(x))]]σ = (σ(x)+1)−(σ(x)+1) =
0. Take k = 2. Then [[f(x)]]σ ≡ [[h(g(x))]]σ (mod k) and [[h(x)]]σ ≡ [[f(g(x))]]σ (mod k) for
any valuation σ. Furthermore, since we have [[s]]ρ = [[f(c)]]ρ = 0 and [[t]]ρ = [[h(c)]]ρ = 1,
[[s]]ρ 6≡ [[t]]ρ (mod k). Hence, NJ(s, t) by Corollary 5.

4 Proving Non-Joinability by Ordering

In Corollary 5, we considered the case that the carrier set is a set of integers. In such a case,
another obvious choice to obtain a partition of the carrier set is to divide it as A = {n ∈ A |
n < k}] {n ∈ A | k ≤ n} for some k. We first formulate this idea in a more abstract setting,
using the notion of ordered F-algebra [10].

An ordered F-algebra A = 〈A,≤, 〈fA〉f∈F 〉 is a triple of a set A, a partial order ≤ on it and
a tuple of functions fA : An → A for each n-ary function symbol f ∈ F . We use < to denote
strict part of ≤, i.e. < = ≤\≥. An ordered F-algebra A = 〈A,≤, 〈fA〉f∈F 〉 is said to be weakly
monotone if a ≤ b implies fA(. . . , a, . . .) ≤ fA(. . . , b, . . .) for any a, b ∈ A and f ∈ F .

Theorem 8. Let A be a weakly monotone ordered F-algebra and s, t be terms. Suppose (i)
[[l]]σ ≤ [[r]]σ for any valuation σ and any l → r ∈ Unj(R, s), (ii) [[l]]σ ≥ [[r]]σ for any valuation σ
and any l→ r ∈ Unj(R, t) and (iii) [[s]]ρ > [[t]]ρ for some valuation ρ. Then NJ(s, t).

We next consider the case that term algebras are taken as F-algebras, and formulate the
theorem in a more general way using the notion of rewrite relation. For this, the following
notion is useful.

Definition 9 (discrimination pair). A pair 〈&,�〉 of two relations & and � is said to be
a discrimination pair if (i) & is a rewrite relation, (ii) � is a strict partial order and (iii)
& ◦ � ⊆ � and � ◦& ⊆ �.

Clearly, for any rewrite quasi-order &, the pair 〈&,& \.〉 forms a discrimination pair.
Before presenting the next theorem, another notion from termination proving is required.

An argument filtering [2] is a mapping such that π(f) ∈ {[i1, . . . , ik] | i1 < · · · < ik, 1 ≤
i1, . . . , ik ≤ arity(f)}∪ {i | 1 ≤ i ≤ arity(f)}. Then the application tπ of the argument filtering
π to terms t is given by xπ = x for x ∈ V, f(t1, . . . , tn)π = f(tπi1 , . . . , t

π
ik

) if π(f) = [i1, . . . , ik],
f(t1, . . . , tn)π = tπi if π(f) = i. For a TRS R, we put Rπ = {lπ → rπ | l→ r ∈ R}.

7

Disproving Confluence by Interpretation and Ordering Aoto

Theorem 10. Let R be a TRS and s, t terms. Suppose there exist a discrimination pair 〈&,�〉
and an argument filtering π such that Unj(Rπ, sπ) ⊆ ., Unj(Rπ, tπ) ⊆ & and sπ � tπ. Then
NJ(s, t).

In terms of interpretations, Theorem 10 amounts to take term algebras as F-algebras, while
Theorem 8 allows to take any F-algebra. On the other hand, in terms of discrimination pairs,
Theorem 8 amounts to take a discrimination pair of the form 〈&,& \.〉.

Example 11. Let R = {(1) : c → f(c, d), (2) : c → h(c, d), (3) : f(x, y) → h(g(y), x), (4) :
h(x, y) → f(g(y), x)}. Let s = h(f(c, d), d) and t = f(c, d). Take an argument filtering π as
π(g) = 1, π(f) = [2] and π(h) = [1]. Then we have Unj(Rπ, sπ) = Unj(Rπ, tπ) = {(3)π, (4)π}.
The constraint {h(f(d)) � f(d), f(y) ' h(y), h(x) ' f(x)} is satisfied by a discrimination pair
〈&rpo,&rpo \.rpo〉, where &rpo is the recursive path order based on the precedence f ' h. Thus
NJ(s, t) by Theorem 10.

5 Implementations and Experiments

Implementations The following instances of presented criteria have been implemented. We
assume below that we check non-joinability of ground terms s, t.

Cor. 5 (k = 2, 3) Corollary 5 applied for the polynomial interpretation with linear polynomials.
In case k = 2, we check whether [[l]]σ− [[r]]σ is even for all rewrite rules l→ r ∈ Unj(R, s)∪
Unj(R, t) and whether [[s]] − [[t]] is odd. We encode these constraints in boolean formulas
and check the constraints by an external SAT solver. We deal with integer variables of
the range between 0 and 15. The case k = 3 is similar.

Th. 8 (poly) Theorem 8 applied for polynomial interpretation with linear polynomials. Sim-
ilar to the case Cor. 5 (k = 2, 3), we encode the constraints in boolean formulas and
check the constraints by an external SAT solver. Our implementation tries two possible
applications of the Theorem to show NJ(s, t), namely that (1) [[s]] > [[t]], [[l]]σ ≥ [[r]]σ for
l → r ∈ Unj(R, t) and [[l]]σ ≤ [[r]]σ for l → r ∈ Unj(R, s), and (2) [[t]] > [[s]], [[l]]σ ≥ [[r]]σ for
l→ r ∈ Unj(R, s) and [[l]]σ ≤ [[r]]σ for l→ r ∈ Unj(R, t).

Th. 10 (rpo) Theorem 10 applied for recursive path order with argument filtering. Similar
to the cases Cor. 5 (k = 2, 3) and Th. 8 (poly), we encode the constraints in boolean
formulas and check the constraints by an external SAT solver. We approximate the set
of usable rules Unj(Rπ, sπ) first by S = Unj(R, s) before encoding and then U(Sπ, sπ), the
set of usable rules for dependency pairs [2], at the time of encoding (and similarly for
Unj(Rπ, tπ)).

Candidates for the non-joinability test are generated from the input TRS R like this: (1)
first compute the one-step unfolding R′ of R [8] and then (2) compute critical pairs of R∪R′,
and finally, (3) all critical pairs are sorted w.r.t. term size and at most 100 crucial pairs are
considered for candidates for non-joinability test.

Experiments Experiments have been performed on our implementation and the state-of-the-
art confluence provers ACP [1] (ver. 0.31), CSI [9] (ver. 0.2) and Saigawa [6] (ver. 1.4). Each test
is performed on a PC with one 2.50GHz CPU and 4G memory; the timeout is set to 60 seconds.
We have tested a collection of 23 new examples which includes Examples 6, 7, 11 and their

8

Disproving Confluence by Interpretation and Ordering Aoto

Table 1: Summary of experiments

ACP CSI Saigawa Cor. 5 Cor. 5 Th. 8 Th. 10 all
(k = 2) (k = 3) (poly) (rpo)

Example 6 × × × X X X X X
Example 7 × × × X X × × X
Example 11 × × × × × × X X
23 examples (success) 9 12 3 16 16 14 19 21
23 examples (time in sec.) 2 2107 228 25 293 206 26 84
35 examples (success) 18 21 17 17 16 17 17 16
35 examples (time in sec.) 71 485 482 318 562 446 106 761

variants, and a collection of 35 examples from the 1st Confluence Competition (CoCo 2012)
that were not proved to be confluent by any of participating provers.

A summary of the experiments is shown in Table 1. The column below all denotes
the result for the combination of the four instances. All provers ACP, CSI and Saigawa fail
on Examples 6, 7 and 11. For the collection of 23 new examples, the following are ob-
served: Cor. 5 (k = 2) and Cor. 5 (k = 3) succeed at the same examples. Examples
handled by Th. 8 (poly) are also handled by Th. 10 (rpo) and also by Cor. 5. Exam-
ples handled by any of the provers ACP, CSI and Saigawa also are handled by all. For the
collection of 35 examples from CoCo 2012, the following are observed: All instances suc-
ceed on the same examples, except for Cor. 5 (k = 3), in which one timeouts. The num-
bers of examples on which ACP, CSI and Saigawa succeed but all fails are 4, 5, 3, respec-
tively. Finally, the running time is observed like this: Th. 10 (rpo) < Cor. 5 (k = 2) �
Th. 8 (poly) � Cor. 5 (k = 3). All details of the experiments are available on the webpage:
http://www.nue.riec.tohoku.ac.jp/tools/acp/experiments/iwc13/all.html.

References

[1] T. Aoto, Y. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems automatically.
In Proc. of 20th RTA, volume 5595 of LNCS, pages 93–102. Springer-Verlag, 2009.

[2] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical Computer
Science, 236(1–2):133–178, 2000.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[4] T. Genet. Decidable approximations of sets of descendants and sets of normal forms. In Proc. of
9th RTA, volume 1379 of LNCS, pages 151–165. Springer-Verlag, 1998.

[5] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination of higher-
order functions. In Proc. of 5th FroCoS, volume 3717, pages 216–231. Springer-Verlag, 2005.

[6] N. Hirokawa and D. Klein. Saigawa: A confluence tool. In Proc. of 1st IWC, page 49, 2012.

[7] A. Middeldorp. Approximating dependency graphs using tree automata techniques. In Proc. of
the 1st IJCAR, volume 2083 of LNAI, pages 593–610. Springer-Verlag, 2001.

[8] É. Payet. Loop detection in term rewriting using eliminating unfoldings. Theoretical Computer
Science, 403:307–327, 2008.

[9] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc. of 23rd CADE,
volume 6803 of LNAI, pages 499–505. Springer-Verlag, 2011.

[10] H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informaticae,
24:89–105, 1995.

9

Automatically Finding Non-confluent Examples

in Term Rewriting
Hans Zantema

University of Technology, Eindhoven, The Netherlands
Radboud University, Nijmegen, The Netherlands

h.zantema@tue.nl

Abstract

Last year we presented a technique based on SAT solving to find counter examples in
finite abstract rewriting fully automatically, in particular satisfying non-confluence. This
note extends this work to term rewriting.

1 Introduction

It is well-known that local confluence does not imply confluence; the simplest example is the
rewriting system on four constants a, b, c, d having the four rules a→ b, b→ a, a→ c, b→ d.

In our earlier paper [7] the main goal was to find such examples fully automatically, that is,
given a combination of properties like termination, confluence and several variants, an example
of a rewriting system is found over finitely many constants satisfying the given properties.
We described our tool Carpa together with its input language for giving such a combination
of properties, that automatically generates such examples via a SAT solver. Indeed the above
example is found automatically by entering the combination of local confluence and the negation
of confluence.

However, Carpa looks for rewriting systems only over constants, that is, for finite abstract
reduction systems (ARSs). For some combinations of properties such a finite ARS does not
exist, while in a richer class of rewriting systems examples are found easily. As a simple example
of this phenomenon assume we are looking for a rewriting system that is terminating, but for
which its inverse is not terminating. In the world of finite ARSs such a rewriting system does
not exist: if the system is terminating then it does not admit a cycle, and then also its inverse
is terminating. But as soon as we allow a unary symbol in our rewriting system the situation
is different: the single rewrite rule f(a) → a is terminating, while its inverse a → f(a) admits
an infinite reduction.

The goal of the current note is to automatically find examples in this richer class of rewriting
systems. For the underlying machinery this is a much harder job: instead of dealing with only
finitely many elements, now we have infinitely many terms, and then describing properties like
termination and confluence in a SAT formula is much harder. To keep it feasible we decided
to restrict to a quite limited class of term rewriting systems (TRSs): we only consider ground
TRSs over constants and a single unary operation symbol. On the one hand this looks quite
restrictive, on the other hand it is rich enough to cover the behavior just sketched: this class
covers the single rewrite rule f(a) → a which is terminating but for which its inverse is not.
We even make a further restriction: in the basic TRSs we are looking for, we only allow rules of
the shape a→ b, f(a)→ b and a→ f(b), where a, b are constants and f is the unary symbol.

Our leading example is finding a TRS which is locally confluent but not confluent, and for
which the inverse is terminating. In the world of finite ARSs this does not have a solution: if
for such a finite ARS the inverse is terminating then the system itself is terminating, and then
by Newman’s Lemma local confluence implies confluence, see e.g. [1, 5]. But our prototype tool
Carpa+ based on the techniques of this note finds the following example satisfying the given
properties fully automatically:

N. Hirokawa & V. van Oostrom (eds.); 2nd International Workshop on Confluence, pp. 11–15 11

Automatically Finding Non-confluent Examples in Term Rewriting Zantema

1 -> 2

1 -> f(1)

2 -> f(3)

3 -> f(2)

In fact, the above text is the literal output of Carpa+.
Indeed, this TRS is locally confluent as is easily checked by finding the common reduct

f(f(2)) for the only critical pair [2, f(1)]. Its inverse is terminating since this inverse consists
of the single rule 2 → 1 and three rules all removing a symbol f . The TRS has the following
reduction graph:

From this reduction graph we easily see that it is not confluent: 1 rewrites both to 2 in the
left column and to f(2) in the right column, while 2 and f(2) have no common reduct since all
reducts of 2 are in the left column and all reducts of f(2) are in the right column.

For main properties like confluence and local confluence we did not succeed in describing
them exactly, in the sense of creating a formula that is satisfiable if and only if the desired
property holds. For ground TRSs it is known that confluence is decidable, see e.g. [2]. However,
for encoding confluence in satisfiability the corresponding algorithm is not suitable. Instead for
the confluence related properties we deal with approximations. A main problem is to describe
the relation →∗R: this can typically not be described as a single step with respect to a finite
TRS. For instance, if R contains the rule f(a) → a, then fn(a) →∗R a for every n. In our
approach we represent a subset→∗R by finitely many rewrite rules, and use this to approximate
→∗R in the definition of local confluence. In this way we succeed in describing a property being
slightly stronger than local confluence, and if local confluence is required instead we require
this slightly stronger property, by which the approach remains sound.

For requiring non-confluence we need an approximation in the other direction. Here we
project a TRS to a finite ARS by identifying fk(a) and fn(a) for all k, n that are equal modulo

12

Automatically Finding Non-confluent Examples in Term Rewriting Zantema

m for some given number m, typically m = 2. We prove that confluence is preserved by
projection. So instead of requiring non-confluence it is sound to require non-confluence of the
finite ARS obtained by projection, and then for describing non-confluence of this finite ARS
we exploit the techniques of [7].

For termination we succeed in giving an exact description: for a ground TRS over constants
and a single unary symbol we succeed in finding a formula that is satisfiable if and only if
the TRS is terminating. This formula is not a propositional formula in boolean variables,
but involves real valued variables and linear inequalities among them. So instead of SAT we
now need SMT (satisfiability modulo theories), for the theory consisting of linear inequalities.
Fortunately, current tools like yices easily deal with this kind of SMT, so that is what we use
in our approach.

This note is an extended abstract of the full paper [6]. For the proofs of theorems we refer
to this full paper.

2 Theory

We fix a number n and define A = {1, 2, . . . , n}. We choose the signature Σ = {f} ∪ A, where
f has arity 1 and all elements of A have arity zero. Let T be the set of all ground terms over
Σ, that is, the set of terms of the shape f i(a) for i ≥ 0 and a ∈ A.

For i, j ≥ 0 and X ⊆ A × A write RijX for the ground TRS over Σ consisting of the rules
f i(a)→ f j(b) for (a, b) ∈ X.

We define the ground TRS T1 over Σ to consist of all rules of the shape a → b, a → f(b)
and f(a)→ b for a, b ∈ A, so T1 = R00A2 ∪ R01A2 ∪ R10A2 . Note that T1 has 3n2 rules. Every
subTRS of T1 can be written as R(X00, X01, X10) = R00X00 ∪ R01X01 ∪ R10X10 for three sets
X00, X01, X10 ⊆ A×A.

Similarly, we define the ground TRS T2 to consist of the 6n2 rules of the shape a → b,
a → f(b), f(a) → b, f(a) → f(b), a → f(f(b)) and f(f(a)) → b, for a, b ∈ A, so T2 =
R00A2 ∪R01A2 ∪R10A2 ∪R11A2 ∪R02A2 ∪R20A2 . SubTRSs of T2 can be written as

R(X00, X01, X10, X11, X02, X20) = R00X00 ∪R01X01 ∪R10X10∪R11X11 ∪R02X02 ∪R20X20

for six sets X00, X01, X10, X11, X02, X20 ⊆ A×A. Observe that T1 ⊆ T2 and R(X00, X01, X10) =
R(X00, X01, X10, ∅, ∅, ∅).

For TRSs R = R(X00, X01, X10, X11, X02, X20) and S = R(X ′00, X
′
01, X

′
10, X

′
11, X

′
02, X

′
20),

both subTRSs of T2, we define comp(R,S) = R(Y00, Y01, Y10, Y11, Y02, Y20) for Y00, Y01, Y10,
Y11, Y02, Y20 defined by

Y00 = X00 ·X ′00 ∪X01 ·X ′10 ∪X02 ·X ′20
Y01 = X00 ·X ′01 ∪X01 ·X ′00 ∪X01 ·X ′11 ∪X02 ·X ′10
Y10 = X00 ·X ′10 ∪X10 ·X ′00 ∪X11 ·X ′10 ∪X01 ·X ′20
Y11 = X10 ·X ′01 ∪X00 ·X ′11 ∪X11 ·X ′00 ∪X11 ·X ′11 ∪X00 ·X ′00 ∪X01 ·X ′10 ∪X02 ·X ′20
Y02 = X01 ·X ′01 ∪X00 ·X ′02 ∪X02 ·X ′00 ∪X02 ·X ′11
Y20 = X10 ·X ′10 ∪X00 ·X ′20 ∪X20 ·X ′00 ∪X11 ·X ′20.

Define
inv(R) = {r → ` | `→ r ∈ R} and rc(R) = R ∪ {a→ a | a ∈ A}.

Theorem 1. Let R ⊆ T1, R1 = rc(R), Ri+1 = comp(Ri, Ri) for i > 0, and

comp(inv(R), R) ⊆ comp(Ri, inv(Ri))

13

Automatically Finding Non-confluent Examples in Term Rewriting Zantema

for some i > 0. Then R is locally confluent.

For Theorem 1 the requirement R ⊆ T1 is essential: R = {a→ f(f(b)), a→ f(f(c))} is not
locally confluent but comp(inv(R), R) ⊆ comp(Ri, inv(Ri)) holds.

The local confluence criterion of Theorem 1 is sufficient, but not necessary. As an example
consider R = {a → f(b), f(a) → c, b → f(c), c → f(c)} ⊆ T1. This TRS is locally confluent as
the only critical pair [c, f(f(b))] converges via c →3 f3(c) ← f2(b). However, c → f(f(b)) ∈
comp(inv(R), R), but c→ f(f(b)) is not in comp(Ri, inv(Ri)) for any i, since the convergence of
the critical pair requires c→Ri

f3(c), which is impossible for Ri ⊆ T2.
We failed to give a full characterization of local confluence and only could give the sufficient

criterion from Theorem 1. Next we show that by using functions from ground terms to real
numbers, we can give a full characterization of termination of any finite ground TRS over
Σ = {f} ∪ A. This characterization is expressed as the existence of a number of real values
satisfying a number of linear inequalities, so it is a feasibility requirement in linear programming.
Where for local confluence the requirements from Theorem 1 were in propositional satisfiability
(SAT), here we obtain a formula in a richer theory: SMT (satisfiability modulo theories), for
the theory consisting of linear inequalities.

Theorem 2. A ground TRS R over {f} ∪ A for A finite is terminating if and only if a map
W : A→ R exists such that W (a) + n > W (b) + k for every fn(a)→ fk(b) ∈ R.

Choosing reals rather than integers in Theorem 2 is essential: {a → b, f(b) → a} is
terminating but does not allow an integer valued weight function W satisfying W (a) > W (b)
and W (b) + 1 > W (a).

Next we investigate how a TRS can be projected to a finite ARS in such a way that some
properties preserve. In particular, the projection of a confluent TRS is again confluent, so if
the projection is not confluent, we can conclude that neither the original TRS is confluent.

Fix an integer m > 1. For a signature Σ = {f} ∪A, where f has arity 1 and all elements of
the finite set A have arity zero, we define a new signature Σ′ = {ai | a ∈ A ∧ 0 ≤ i < m}, in
which all elements of Σ′ are constants. For a ground TRS R over Σ we define the finite ARS
R′ on Σ′ by defining ai →R′ bj if and only if there exists a rule fn(a) → fk(b) in R for which
i− j ≡ n− k mod m.

Theorem 3. In the above setting, if R is confluent, then R′ is confluent too.

3 Implementation

In earlier work [7] we developed a tool Carpa reading a list of desired properties in a corre-
sponding input language, looking for finite ARSs. In this input language one can specify the
number of ARSs one is looking for, the number of elements on which these ARSs act, several
constructions to combine ARSs like union, composition, peaks and valleys, and properties like
(local) confluence and termination. When Carpa is executed on such an input then it tries to
construct a corresponding set of finite ARSs satisfying all specified properties, and in case of
success it yields these ARSs as output.

Now we developed a prototype tool Carpa+ that does the same for a simple class of TRSs
rather than finite ARSs, namely the class of subTRSs of T1, exploiting the theory as presented
in this paper. As some constructions are specific for TRSs, like the projection to finite ARSs,
we decided to keep the input language for Carpa+ closely related to that for Carpa, but not
exactly the same. For instance, Carpa+ admits an operation mod2 to project a TRS to a finite

14

Automatically Finding Non-confluent Examples in Term Rewriting Zantema

ARS as described above for m = 2, which is not in Carpa. Conversely, Carpa admits operations
like tc for transitive closure which are not in Carpa+. Just like Carpa, also Carpa+ can be
downloaded in zip format from

http://www.win.tue.nl/~hzantema/carpa.html

including the source code, a Linux executable and several examples. For instance, after extract-
ing the zip file in a directory in a Linux environment, by calling ./carpa+ ex10, the tool is
applied on the leading example of this note, and the output as announced in the introduction
is generated within a fraction of a second. Internally, here for local confluence, termination and
non-confluence the implementation follows the encodings from Theorems 1, 2 and 3, respec-
tively.

4 Conclusion

In earlier work [7] we described how to find finite ARSs fully automatically satisfying a given
list of properties, based upon transforming the requirements to a SAT problem. This work
was inspired and initiated by [3, 4]. In this note we did some first steps to extend this work
to automatically finding TRSs rather than finite ARSs. This turned out to be a hard job:
many questions become much harder when lifting a setting of finitely many elements to a
setting of infinitely many terms. Restricting to a very limited class of term rewriting systems
we developed a prototype tool Carpa+ in which the requirements are entered, a corresponding
formula is composed, the SMT solver yices is called on this formula, and the output is inspected
to obtain the desired result for our leading example. This approach also applies on some variants
and other properties, but we fully realize that as a first step this is more a case study than
a general tool for finding TRSs with a given list of properties. Next steps in this direction
would include both extension to richer classes of TRSs and better approximations of the basic
rewriting properties.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[2] B. Felgenhauer. Deciding Confluence of Ground Term Rewrite Systems in Cubic Time. In Ashish
Tiwari, editor, 23rd International Conference on Rewriting Techniques and Applications (RTA’12),
volume 15 of Leibniz International Proceedings in Informatics (LIPIcs), pages 165–175, Dagstuhl,
Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[3] A. Stump, G. Kimmell, and R. El Haj Omar. Type Preservation as a Confluence Problem. In
Manfred Schmidt-Schauß, editor, Proceedings of the 22nd International Conference on Rewriting
Techniques and Applications (RTA), volume 10 of LIPIcs, pages 345–360, 2011.

[4] A. Stump, G. Kimmell, H. Zantema, and R. El Haj Omar. A rewriting view of simple typing.
Logical Methods in Computer Science, 9(1), 2012.

[5] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

[6] H. Zantema. Automatically finding particular term rewriting systems. Available via
http://www.win.tue.nl/~hzantema/carpa.html, 2013.

[7] H. Zantema. Finding small counter examples for abstract rewriting properties. Mathe-
matical Structures in Computer Science, 2013. Accepted, preliminary version available via
http://www.win.tue.nl/~hzantema/carpa.html.

15

Confluent Unfolding in the λ-calculus with letrec

Jan Rochel1 and Clemens Grabmayer2

1 Department of Information and Computing Sciences, Utrecht University, The Netherlands
2 Department of Philosophy, Utrecht University, The Netherlands

Abstract

We show that a rewriting system for unfolding terms in the λ-calculus with letrec is
confluent. This system is from previous work, where we formulate letrec-unfolding as a
Combinatory Reduction System (CRS). We prove confluence by applying the decreasing
diagrams method to a partitioning of the parallel rewriting relation into relations that are
induced by parallel steps in which a given rule contracts redexes at a given letrec-depth.

In [1] (see also [2])1 we study infinite λ-terms and present two characterisations of those
λ-terms that are expressible in the λ-calculus with letrec (λletrec), in the sense that they can
be obtained as the infinite unfoldings of a λletrec-term. One characterisation is by a structural
analysis of the term: a term is λletrec-expressible if and only if there it has no infinite ‘binding–
capturing chains’. The other characterisation is via the concept of ‘strong regularity’: a term is
λletrec-expressible if and only if it is strongly regular.

We define a Combinatory Reduction System (CRS) for unfolding λletrec-terms. In the paper
confluence of the CRS is important since it guarantees that the unfolding of a term is unique.
We think however, that the proof itself is of independent interest. For simplicity we use in this
extended abstract an informal formulation of λletrec-terms and the unfolding rewriting system
instead. The set of λletrec-terms Ter(λletrec) is inductively defined by the following grammar:

(term) L ∶∶= λx.L (abstraction)∣ LL (application)∣ x (variable)∣ letrecB inL (letrec)(binding group) B ∶∶= f1 = L . . . fn = L (equations)
On this set we describe letrec-unfolding in the rewriting system R▽ as follows. The names of the
first four rules are chosen to reflect the kind of term that resides directly inside of the in-part of
the letrec-term, which helps to see that the rules are complete in the sense that every term of
the form letrecB inL is a redex.

(%@▽) ∶ letrecB inL0L1 → (letrecB inL0) (letrecB inL1)(%λ▽) ∶ letrecB in λx.L0 → λx.letrecB inL0(%letrec▽) ∶ letrecB0 in letrecB1 inL → letrecB0,B1 inL

(%rec▽) ∶ letrecB in fi → letrecB inLi (if B is f1 = L1 . . . fn = Ln)

(%nil▽) ∶ letrec inL → L

(%red▽) ∶ letrec f1 = L1 . . . fn = Ln inL → letrec fj1 = Lj1 . . . fjn′ = Ljn′ inL
(if fj1 , . . . , fjn′ are the recursion variables reachable from L)

‘Reachable’ from L in the last rule refers to recursion variables that either occur in L or on
the right hand side of any equation that is reachable from L. Thus, the condition on the rule
ensures that only superfluous equations are removed from the binding group.

1In [2] (to appear) we consider the simpler case of expressibility in the λ-calculus with µ.

N. Hirokawa & V. van Oostrom (eds.); 2nd International Workshop on Confluence, pp. 17–22 17

Confluent Unfolding in the λ-calculus with letrec Rochel and Grabmayer

Theorem. R▽ is confluent.

Proof sketch. First all, we cannot use Newman’s Lemma to prove the theorem, since R▽ is
not terminating. To show confluence of R▽ we use the method of ‘decreasing diagrams’ [4,
Sec. 2.3] [3, Sec. 14.2]. We use it however not to prove confluence of R▽ directly, but of the
abstract reduction system A = (Ter(λletrec),{ ∣∣Ð→ρd ∣ (d, ρ) ∈ N ×R}) with R as the set of rules
of R▽ where ∣∣Ð→ρd denotes the parallel rewriting relation on Ter(λletrec) induced by rule ρ at
letrec-depth d. As a precedence order we take the order induced by the letrec-depth:

ρd ≥ σd′ ⇐⇒ d ≥ d′
The letrec-depth of a redex in λletrec-term denotes the number of letrec-nodes passed on the

path from the root of the term tree to the corresponding position. We write →ρd to denote the
relation induced by applying rule ρ contracting a redex at letrec-depth d.

Let us denote the rewriting relation induced by A by →A:

→A =⋃{ ∣∣Ð→ρd ∣ (d, ρ) ∈ N ×R}
If →A is confluent then the rewriting relation →▽ induced by R▽ is confluent because it

holds: →▽ ⊆→A ⊆↠▽ or equivalently ↠A =↠▽ (see also [4, Lemma 2.2.5]).
We use the approach with the parallel steps because the preceding attempt to prove confluence

of R▽-steps by decreasing diagrams more directly was unsuccessful. As a precedent order we
considered an ordering on the rules and lexicographic extensions of such orderings with the
letrec-depth of the contracted redex. We came to the conclusion that no such order could ensure
decreasingness of the elementary diagrams of both the critical pairs as well as the strictly nested
redexes. This was due to redex duplication induced by the diverging steps, so that joining the
diagram required a multi-step that disrupted decreasingness. In order to resolve this problem we
considered parallel steps as above such that the problematic multi-step would become a single
parallel step. This led to more intricate diagrams but turned out to be a viable solution.

We will prove confluence of →A by showing that two diverging parallel steps in R▽ can be
joined in an elementary diagram of the following form with d ≤ e.

∣∣ρd
=σe

∣∣
σe−1

∣∣
ρd

=σe
=σe−1 (1)

With the precedence as above the diagram is decreasing. Note that in all the diagrams we
implicitly assume the reflexive closure for all arrows. The rest of the proof is structured as
follows. To justify the diagram we distinguish the cases d = e and d < e, for which we construct
diagrams that are instances of (1).
Case 1. For d = e we need to consider parallel diverging steps contracting redexes at the same
letrec-depth d. We construct the diagram below which is an instance of the diagram above where
the diverging parallel steps are in sequentialised form. We write terms as fillings of a multihole
context C with all its holes at letrec-depth d such that the contracted ρd- and σd-redexes are
filled into these holes. In this way we can make explicit at which position a step takes place, i.e.

18

Confluent Unfolding in the λ-calculus with letrec Rochel and Grabmayer

at the root of the context hole fillings. The topmost row and the leftmost column are respective
sequentialisations of the parallel diverging ρd- and σd-steps into single steps.

C[L0, . . . , Ln] C[L q
0, L1 . . . , Ln] C[L q

0, L
q
1, L2 . . . , Ln] . . . C[L q

0, . . . , L
q
n]

C[L c
0, L1, . . . , Ln] C[L⊙0 , L1, . . . , Ln] C[L⊙0 , L q

1, L2, . . . , Ln] . . . C[L⊙0 , L q
1, . . . , L

q
n]

C[L c
0, L

c
1, L2, . . . , Ln] C[L⊙0 , L c

1, L2, . . . , Ln] C[L⊙0 , L⊙1 , L2, . . . , Ln] . . . C[L⊙0 , L⊙1 , L q
2, . . . , L

q
n]

⋮ ⋮ ⋮ ⋱ ⋮

C[L c
0, . . . , L

c
n] C[L⊙0 , L c

1, . . . , L
c
n] C[L⊙0 , L⊙1 , L c

2, . . . , L
c
n] . . . C[L⊙0 , . . . , L⊙n]

ρd ρd ρd ρd

∣∣ρd ρd ρd ρd

∣∣ρd ∣∣ρd ρd ρd

∣∣ρd ∣∣ρd ∣∣ρd ∣∣ρd

σd =σd =σd =σd

σd σd =σd =σd

σd σd σd =σd

σd σd σd =σd

Only the tiles on the diagonal require closer attention because for all other tiles the vertical
and horizontal steps take place in different holes of the context, therefore they are disjoint and
consequently commute. In the tiles on the diagonal the diverging steps may be either due to
a critical pair or to identical steps. In the latter case the diagram is easily joined. In case of
a critical pair, since all steps take place at the same letrec-depth any such critical pair must
arise from a root overlap. An exhaustive scrutiny of all these critical pairs reveals that they can
be joined in a way that conforms to the tiles on the diagonal. Below two exemplary cases are
shown. Note that the letrec-depths of the steps have to be increased by d according to the lifting
into a context with its hole at letrec-depth d.

letrec inLP (letrec inL) (letrec in P)

LP LP

@0

nil0 =nil0

letrecB inLP
(letrecB inL)(letrecB in P)

letrecB′ inLP
(letrecB′ inL)(letrecB′ in P)

@0

red0 =red0

@0

Case 2. For d < e we use the same approach as for d = e, the diagram is however more involved.
Again, we use a context C with context holes at letrec-depth d. But since e > d, more than one
σe-contraction may take place in one such hole. Therefore a per-hole partitioning of the vertical
steps requires a sequence of parallel steps.

The diagram below fits the scheme of the elementary diagram (1) when interleaving the
σe-steps with the σe−1-steps in the rightmost column such that steps at depth e preceed those at
depth e− 1. Similarly for the bottommost row where the ρe−1-steps have to preceed the σd-steps.
These reorderings are possible since the segments represent contractions within different holes of
C. As in the previous diagram the tiles which do not lie on the diagonal are unproblematic,
which leaves us to complete the proof by constructing the tiles on the diagonal.

19

Confluent Unfolding in the λ-calculus with letrec Rochel and Grabmayer

C[L0, . . . , Ln] C[L q
0, L1 . . . , Ln] C[L q

0, L
q
1, L2 . . . , Ln] . . . C[L q

0, . . . , L
q
n]

C[L c
0, L1, . . . , Ln] C[L⊙0 , L1, . . . , Ln] C[L⊙0 , L q

1, L2, . . . , Ln] . . . C[L⊙0 , L q
1, . . . , L

q
n]

C[L c
0, L

c
1, L2, . . . , Ln] C[L⊙0 , L c

1, L2, . . . , Ln] C[L⊙0 , L⊙1 , L2, . . . , Ln] . . . C[L⊙0 , L⊙1 , L q
2, . . . , L

q
n]

⋮ ⋮ ⋮ ⋱ ⋮

C[L c
0, . . . , L

c
n] C[L⊙0 , L c

1, . . . , L
c
n] C[L⊙0 , L⊙1 , L c

2, . . . , L
c
n] . . . C[L⊙0 , . . . , L⊙n]

ρd ρd ρd ρd

σe−1 ∣∣ρd ρd ρd ρd

σe−1 ∣∣ρd σe−1 ∣∣ρd ρd ρd

σe−1 ∣∣ρd σe−1 ∣∣ρd

=σe

=σe
=σe−1

=σe
=σe−1

=σe
=σe−1

=σe =σe

=σe
=σe−1

=σe
=σe−1

=σe =σe =σe

=σe
=σe−1

=σe =σe =σe

=σe
=σe−1

Every hole on the diagonal is filled with at most one ρd-redex (at the root of the context
hole fillings) but because of d < e with possibly many σe-redexes (properly inside of the fillings).
There may or may not be an overlap between the ρd-step and a σe-step, but there can be at
most one, which is due to the rules of R▽.

d

e

Therefore σe contracts either an overlap and a number
of nested redexes, or only nested redexes without an
overlap. These constellations are depicted on the
figure on the left. There is one ρd-redex and three
σe-redexes. On the left, one of the σe-redexes overlaps
with the ρd-redex while on the right all σe-redexes
are strictly nested inside the ρd-redex.

For the critical pairs due to a non-root overlap, and for all situations with nested redexes,
we construct diagrams of the following shape, respectively:

ρ0

σ1

σ0
∣∣
ρ0

σ0

(2)

ρ0

σe

ρ0

σe′ e′ ∈ {e, e − 1}
(3)

20

Confluent Unfolding in the λ-calculus with letrec Rochel and Grabmayer

When lifted into a context of letrec-depth d both of the diagrams comply to the shape
necessary for the diagonal tiles, but we need to be able to handle situations as on the left of the
above figure, where both nested redexes as well as the overlapping redex are contracted. Firstly,
since all σ-redexes occur at the same letrec-depth, it must hold that d = 0 and e = 1, which is due
to the rules of R▽. Secondly, none of the involved redex contractions affect any of the nested
redexes except for duplicating or erasing them, which means that the residuals of the σ-steps
after these steps are part of a parallel σe′ -step (mind that we assume the reflexive closure of all
steps). Or in a diagram:

⋮
ρ0

=σ1

σ1

ρ0

σ0

σ0
∣∣
ρ0

=σe1
=σen ei ∈ {0,1}

The diagram is composed from the previous two diagrams. A parallel version of (3) constitutes
the top part, while the bottom part is an exact replica of (2). The top part settles the portion
arising from the nested redexes, the bottom part settles the portion arising from the overlapping
redex.

At last in order to fit that diagram into the scheme of the diagonal tiles the steps on the
right have to be reordered such that σei-steps with ei = 1 preceed σei-steps with ei = 0. The
reordering is viable because every σei-step takes place in its own residual of the σ1-step from
the left.

We conclude the proof by a comprehensive analysis of all critical pairs that arise from
non-root overlaps in R▽ as well as the diagrams for joining nested redexes. Below, one critical
pair is shown for each case. See [1] for an exhaustive scrutinisation.

letrecB in letrecC inLP letrecB C inLP

letrecB in
(letrecC inL)(letrecC in P)

(letrecB in letrecC inL)(letrecB in letrecC in P) (letrecB C inL)(letrecB C in P)

letrec0

@1

@0

@0

∣∣
letrec0

letrecB inL0L1
(letrecB inL0)(letrecB inL1)

letrecB′ inL′0L′1 (letrecB′ inL′0)(letrecB′ inL′1)

@0

σe =σe
@0

21

Confluent Unfolding in the λ-calculus with letrec Rochel and Grabmayer

A generalisation of the proof to obtain a theorem is still very much work in progress. Below
are preliminary propositions that are to capture the essential properties of R▽ that made the
above approach possible.

The following lemma requires the rewriting steps to be partitioned in a way such that
diverging parallel steps cannot be ‘intertwined’, permitting the construction of a decreasing
diagram using parallel steps as in the proof above.

Lemma 1. Let A be an ARS (A,{→α ∣ α ∈ I}) that is induced by a TRS/CRS/HRS, where
the index set I is equipped with a well-founded partial order. The steps Φ of A are equipped
with respective indices from I as well as with the position (pos ∶ Φ→ N) of the contracted redex.
Indexed single steps →α induce indexed parallel steps ∣∣Ð→α (for all α ∈ I). If the following
conditions are met, then →I = ⋃i∈I →i is confluent.

1. There do not exist α,β ∈ I, two α-steps ρ1, ρ2, and two β-steps σ1, σ2 such that it holds:

pos(ρ1) ∣∣ pos(ρ2) ∧ pos(σ1) ∣∣ pos(σ2)
pos(ρ1) < pos(σ1) ∧ pos(ρ2) > pos(σ2)

Here we use ∣∣ for incomparable (‘parallel’) positions: p ∣∣ q⇔ p /≤ q ∧ q /≤ p.

2. A diverging α-step at position p and a parallel β-step with positions q1, . . . , qn below p
(∀i ∈ {1, . . . , n} ∶ p ≤ qi) can be joined by a diagram of the following form:

α

=β

< β ∣∣
α < βor < α

< α
=β
< βor < α

Thereby all closing steps need to take place below p, i.e. at positions ≥ p.

A second specialised lemma is to be more concrete and easier to apply. It includes in the
index a notion of depth (cf. letrec-depth), to which the order on the index is linked, such that
condition 1 of Lemma 1 is met. Furthermore we stipulate properties of the rewriting relation,
that allow for an order-respecting context embedding of rewriting steps. This will simplify
condition 2 of Lemma 1 such that the diagram has only to be constructed for critical overlaps
at the root of a term.

References

[1] Clemens Grabmayer and Jan Rochel. Expressibility in the Lambda Calculus with Letrec. Technical
report, August 2012. http://arxiv.org/abs/1208.2383.

[2] Clemens Grabmayer and Jan Rochel. Expressibility in the Lambda Calculus with Mu. In Proceedings
of RTA 2013, 2013. To appear.

[3] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

[4] Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije
Universiteit Amsterdam, 1994.

22

Rule Labeling for Confluence of

Left-Linear Term Rewrite Systems∗

Bertram Felgenhauer

Institute of Computer Science, University of Innsbruck, Austria
bertram.felgenhauer@uibk.ac.at

Abstract

Rule labeling is a heuristic, suggested by van Oostrom, for applying decreasing diagrams
to linear TRSs. The heuristic also works for left-linear TRSs under certain relative termi-
nation conditions. In this note we apply the rule labeling heuristic to arbitrary left-linear
TRSs, based on considering parallel reduction relations and parallel critical peaks.

1 Introduction

The decreasing diagrams technique by van Oostrom [6] is a powerful criterion for showing
confluence of abstract rewrite systems. In [7], van Oostrom suggested the rule labeling heuristic
for establishing confluence of linear term rewrite systems. The heuristic consists of labeling each
rewrite step with the used rule. Confluence can be established by showing that all critical pairs
can be joined decreasingly. Rule labeling can also be applied to certain duplicating left-linear
TRSs, by combining it lexicographically with other labelings [7, 3, 9].

In this note we revisit the rule labeling heuristic and show how it can be applied to arbitrary
left-linear TRSs, if parallel reduction and parallel critical pairs are considered.

The paper is organized as follows. Section 2 is devoted to preliminaries. Then, in Section 3,
we present a confluence criterion for left-linear systems based on rule labeling. In Section 4 we
sketch how this idea extends to weak ll-labelings from [9]. Finally, we conclude in Section 5.

2 Preliminaries

We assume that the reader is familiar with standard term rewriting terminology [1, 5].

Given a rewrite relation →, we use
=−→ and

∗−→ to denote its reflexive closure and reflexive,
transitive closure, respectively. The space below the arrows is reserved for labels: −→

α
denotes

a rewrite step labeled with α. Given a set of labels L with well-founded precedence �, and a
family (−→

α
)α∈L, we let −−→

gα
=

⋃
α�β(−→

β
) and −−−→

gαβ
= −−→

gα
∪ −−→

gβ
. A local peak s ←−

α
· −→
β
t is

said to be joined decreasingly if s
∗←→

gα
· =−→
β
· ∗←−→

gαβ
· =←−
α
· ∗←→

gβ
t. If all local peaks can be joined

decreasingly, then −→ =
⋃
α∈L(−→

α
) is confluent [7].

We denote parallel rewrite steps by→pp . If we wish to indicate the set of positions involved in a

parallel rewrite step, we write
P−→pp . For a set of positions P and term t we let t|P = {t|p | p ∈ P}.

Parallel critical pairs [2] arise similarly to critical pairs: whereas we obtain a critical pair
l[r′]pσ ←o→ rσ whenever p ∈ PosF (l) and σ is a most general unifier of l|p and l′, where
l→ r and l′ → r′ are variants of rules in R with no common variables, a parallel critical pair is
conceived as l[rp]p∈Pσ ←pp o→ rσ if P ⊆ PosF (l) is a set of mutually parallel positions, l → r,

∗This research was supported by the Austrian Science Fund (FWF) project P22467-N23.

N. Hirokawa & V. van Oostrom (eds.); 2nd International Workshop on Confluence, pp. 23–27 23

Labelings for Confluence of Left-Linear Term Rewrite Systems Felgenhauer

lp → rp are variants of rules in R with no common variables, and σ is a most general solution
to the set of equations l|pσ = lpσ for p ∈ P . If R is finite, then the set of its parallel critical
pairs is finite as well.

Proposition 1. Let R be a left-linear TRS and t
P←−pp s

ε−→ u. Then there are substitutions

σ →pp σ′ and a parallel critical pair t′ ←pp o→ u′ such that t = t′σ′
P\P ′
←−−−pp t′σ

P ′
←−pp s → u′σ = u,

where P ′ ⊆ P . (Note that left-linearity is essential for the substitutions σ and σ′ to exist.)

3 Confluence by Rule Labeling

Throughout this section we assume a given left-linear TRS R, and a set of labels L equipped
with a well-founded order �. Furthermore, let ˆ̀ : R → L map rewrite rules to labels. The rule
labeling heuristic labels rewrite steps according to the used rule, `(t→l→r t′) = ˆ̀(l→ r).

Definition 2. Consider a parallel step t
P−→pp t′. For each p ∈ P , we have a rewrite step

t→ t[t′|p]p at position p. The set Γ ⊆ L is a valid label for t −→pp t′ if `‖(t −→pp t′) ⊆ Γ, where

`‖(t
P−→pp t′) = {`(t→ t[t′|p]p) | p ∈ P}

This means that a parallel rewrite step is labeled—at least—by the set of the labels of the rules
used in the step. We indicate labels along with the step, writing t −→

Γ
pp t′. A step t −→

Γ
pp t′ is

homogeneous if all its labels are the same, i.e., #Γ 6 1, and heterogeneous otherwise.

Parallel labels are ordered by the (multi-)set extension of �, which we also denote by �.
The interest in homogeneous and heterogeneous steps stems from the following proposition:

Proposition 3. If s
P−→
Γ
pp t is a heterogeneous step, i.e., #Γ > 1, then we can split it into a

sequence of individual steps whose labels are smaller than Γ w.r.t. �.

We are now ready to state and prove the main theorem of this section.

Theorem 4. A left-linear TRS R is confluent if all its parallel critical peaks t
P←−
Γ
pp s −→

∆
u with

homogeneous parallel step, i.e., #Γ = #∆ = 1 can be joined decreasingly as

t
∗−−→

gΓ
· −→

∆
pp · ∗−−−→

gΓ∆
· ∗←−−−

gΓ∆
v

Q←−
Γ
pp · ∗←−−

g∆
u

such that Var(v|Q) ⊆ Var(s|P).

Proof. We show that →pp is locally decreasing, which implies confluence of R. Let t
P←−
Γ
pp s Q−→

∆
pp u,

where Γ,∆ ⊆ L. If #Γ > 1 then we can join t and u by replacing s →pp t by a sequence of
smaller steps using Proposition 3. We obtain a conversion s

∗←−−
gΓ
· −→

∆
pp u, resulting in a locally

decreasing diagram. The case #∆ > 1 is handled symmetrically. If Γ = ∅ or ∆ = ∅, then t
and u can be joined by the other rewrite step, also resulting in a decreasing diagram.

In the remaining case, #Γ = 1 and #∆ = 1, that is, we have a peak between homogeneous

parallel steps steps. Let α ∈ Γ and β ∈ ∆. Then t
P←−
Γ
pp s Q−→

∆
pp u. It suffices to show that

t
∗−−→

gΓ
· −→

∆
pp · ∗−−−→

gΓ∆
· ∗←−−−

gΓ∆
· ←−

Γ
pp · ∗←−−

g∆
u (1)

24

Labelings for Confluence of Left-Linear Term Rewrite Systems Felgenhauer

s = s′σ

t′σ u = u′σ

• u′′σ

t = t′σ′ • vσ

• v′σ

• vσ′

v′σ′

ppP′

Γ ∆

ε

∗
gΓ

pp
∆

∗
gΓ∆

∗
gΓ∆

ppQ′
Γ

∗
g∆

∗
gΓ

pp
∆

∗
gΓ∆

∗
gΓ∆

pp Γ

pp Γ

pp Γ

pp Γ

pp Γ

pp

Γ

Figure 1: Proof of Theorem 4

We claim that (1) holds whenever P = {ε} or Q = {ε}. Then for all p ∈ min(P∪Q), t
P←−
Γ
pp s Q−→

∆
pp u

induces a peak t|p P ′
←−

Γ
pp s|p Q′

−→
∆
pp u|p, where P ′ = {ε} or Q′ = {ε}. So for each p, we obtain a

joining sequence for t|p and u|p of the shape (1). Since the positions in min(P ∪Q) are mutually
parallel, these sequences for each p ∈ min(P ∪Q) can be combined into a single sequence of the
same shape without any difficulties. In particular, the −→

∆
pp steps combine into a single −→

∆
pp step

and likewise, the ←−
Γ
pp steps can be combined into a single ←−

Γ
pp step.

In order to show (1) for P = {ε} or Q = {ε}, assume w.l.o.g. that Q = {ε}. By Proposition 1,

there are a parallel critical peak t′
P ′
←−pp s′ −→ u′ and substitutions σ, σ′ such that σ −→

Γ
pp σ′ and

t = t′σ′
P\P ′
←−−−

Γ
pp t′σ

P ′
←−

Γ
pp s′σ = s

ε−→
∆

u′σ = u, where P ′ ⊆ P . By assumption we can join t′ and u′

decreasingly, and consequently there are v, u′′ and v′ such that

t′
∗−−→

gΓ
· −→

∆
pp · ∗−−−→

gΓ∆
v′

∗←−−−
gΓ∆

v
Q′
←−

Γ
pp u′′

∗←−−
g∆

u′

with Var(v|Q′) ⊆ Var(s|P ′). Consequently,

t = t′σ′
∗−−→

gΓ
· −→

∆
pp · ∗−−−→

gΓ∆
v′σ′

∗←−−−
gΓ∆

vσ′ ←−
Γ
pp vσ Q′

←−
Γ
pp u′′

∗←−−
g∆

u′σ = u

Since σ(x) = σ′(x) for x ∈ Var(s|P ′) (otherwise s −→
Γ
pp t would not be a parallel step), and

because Var(v|Q′) ⊆ Var(s|P ′), the two parallel steps in the leftward sequence can be combined
into a single one. Thus we can join t and u decreasingly with common reduct v′σ′, completing
the proof. See also Figure 1.

To conclude the section we demonstrate Theorem 4 on two examples.

Example 1. Consider the TRS R consisting of the following five rules with labels 2 � 1 � 0:

a −→
1

b b −→
0

a f(a, a) −→
1

c f(b, b) −→
2

c h(x) −→
0

h(f(x, x))

25

Labelings for Confluence of Left-Linear Term Rewrite Systems Felgenhauer

There are six parallel critical pairs that can all be joined decreasingly as required by Theorem 4:

f({a, b}, {a, b})←−−
{1}
pp f(a, a) −−→

{1}
c : f({a, b}, {a, b}) −−→

{0}
pp f(a, a) −−→

{1}
c

f({a, b}, {a, b})←−−
{0}
pp f(b, b) −−→

{2}
c : f({a, b}, {a, b}) −−→

{0}
pp f(a, a) −−→

{1}
c

Therefore, R is confluent.

Example 2. Let O be the TRS consisting of the rules (confluence of O was shown in [4])

x− 0 −→
0
x 0− x −→

0
0 s(x)− s(y) −→

0
x− y if(true, x, y) −→

0
x

0 < s(x) −→
0

true x < 0 −→
0

false s(x) < s(y) −→
0
x < y if(false, x, y) −→

0
y

mod(x, 0) −→
0
x mod(0, x) −→

0
0 mod(x, s(y)) −→

1
if(x < s(y), x,mod(x−s(y), s(y)))

gcd(x, 0) −→
0
x gcd(0, x) −→

0
x gcd(x, y) −→

1
gcd(y,mod(x, y))

There are 12 critical pairs, of which 6 are trivial, and the remaining 6 come in 3 symmetrical
pairs. They can all be joined decreasingly, using the precedence 1 � 0:

if(0 < s(y), 0,mod(0− s(y), s(y)))←−−
{1}
pp mod(0, s(y)) −−→

{0}
0 : . . . −−→

{0}
if(true, 0, . . .) −−→

{0}
0

gcd(0,mod(x, 0))←−−
{1}
pp gcd(x, 0) −−→

{0}
x : . . . −−→

{0}
gcd(x, 0) −−→

{0}
x

gcd(x,mod(0, x))←−−
{1}
pp gcd(0, x) −−→

{0}
x : . . . −−→

{0}
gcd(0, x) −−→

{0}
x

There are no inner critical pairs, so this accounts for all parallel critical pairs, and we can
conclude that O is confluent by Theorem 4.

4 Generalized Labelings

We implemented rule-labeling for left-linear TRSs in the confluence tool CSI [8]. However, the
implementation does not use Theorem 4. Instead, we use the framework of labelings from [9],
in particular weak ll-labelings, which we recall below. Let L be a set of labels equipped with a
well-founded order �, and a quasi-order � on L that is compatible with �, i.e., � ·� ·� ⊆ �.1

Definition 5. A labeling is a function ` mapping rewrite steps to labels such that comparing
labels is closed under contexts and substitutions, that is, for all contexts C[·], substitutions σ
and rewrite steps s→ t, s′ → t′, we have

`(C[sσ]→ C[tσ]) � `(C[s′σ]→ C[t′σ]) if `(s→ t) � `(s′ → t′)

`(C[sσ]→ C[tσ]) � `(C[s′σ]→ C[t′σ]) if `(s→ t) � `(s′ → t′)

A labeling is a weak ll-labeling if for all s
p−→ t and s

p′−→ t′ with p ‖ p′ (parallel overlap), we have

`(s→ t) � `(t→ t′[t|p]p) (2)

and whenever s
ε−→l→r t, s

pq−→ t′ with p ∈ PosV(l) (variable overlap), if l|p = r|p′ , we have2

`(s→ t′) � `(t→ t[t′|p]p′) (3)

1Another common definition is � · � ⊆ �, in which case �′ = � · � satisfies � · �′ · � ⊆ �′.
2Condition (3) is stronger than the left-linear variable overlap condition in [9], where the parallel step of the

joining valley is a rewrite sequence, but the weak ll-labelings presented there satisfy our new condition as well.

26

Labelings for Confluence of Left-Linear Term Rewrite Systems Felgenhauer

Given a weak ll-labeling `, we can define `‖ as before in Definition 2. However, it appears
that we cannot use the multiset extension of (�,�) for comparing labels. Instead, we use the
Hoare order on sets,3

Γ � ∆ ⇐⇒ Γ 6= ∅ ∧ ∀β ∈ ∆ ∃α ∈ Γ (α � β) and Γ � ∆ ⇐⇒ ∀β ∈ ∆ ∃α ∈ Γ (α � β)

The implementation is based on the following theorem.

Theorem 6. A left-linear TRS R is confluent if all its parallel critical peaks t
P←−
Γ
pp s −→

∆
u can be

joined decreasingly (with respect to some ll-labeling) as t
∗−−→

gΓ
· −−→

∆′
pp · ∗−−−→

gΓ∆
· ∗←−−−

gΓ∆
v

Q←−
Γ′
pp · ∗←−−

g∆
u

such that Var(v|Q) ⊆ Var(s|P) and ∆ � ∆′, Γ � Γ′.

The proof of Theorem 6 is similar to that of Theorem 4, but note that we have to consider
all parallel critical pairs now; there is no analogue of Proposition 3. In order to find suitable
labelings, we use the techniques of [9] on joining sequences for critical pairs, and finally check
whether the resulting labeling allows joining parallel critical pairs decreasingly as well.

5 Conclusion

We have demonstrated a rule labeling technique based on parallel reductions and parallel critical
pairs that works for general left-linear term rewrite systems. A variant of the approach is
implemented in CSI, which found the proofs for Examples 1,2. As future work we plan to flesh
out the generalization from Section 4, explore the different orders on sets. There is also room
for better heuristics for finding suitable ll-labelings. We would also like to investigate whether
the variable condition Var(v|Q) ⊆ Var(s|P) in Theorems 4, 6 can be relaxed.

It would also be interesting to devise a conversion version of Theorem 6. This should be
straightforward in the pure rule labeling setting (Theorem 4), but it is unclear whether the
generalization to weak ll-labelings would work out.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[2] B. Gramlich. Confluence without termination via parallel critical pairs. In Proc. 21st CAAP,
volume 1059 of LNCS, pages 211–225, 1996.

[3] N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termination. In Proc. 5th
IJCAR, volume 6173 of LNCS (LNAI), pages 487–501, 2010.

[4] M. Oyamaguchi and Y. Ohta. On the Church-Rosser property of left-linear term rewriting systems.
IEICE TIS, E86-D(1):131–135, 2003.

[5] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

[6] V. van Oostrom. Confluence by decreasing diagrams. TCS, 126(2):259–280, 1994.

[7] V. van Oostrom. Confluence by decreasing diagrams – converted. In Proc. 19th RTA, volume 5117
of LNCS, pages 306–320, 2008.

[8] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc. 23rd CADE,
volume 6803 of LNCS (LNAI), pages 499–505, 2011.

[9] H. Zankl, B. Felgenhauer, and A. Middeldorp. Labelings for decreasing diagrams. In Proc. 22nd
RTA, volume 10 of LIPIcs, pages 377–392, 2011.

3This order was introduced for power domains in domain theory.

27

Commutation via Relative Termination∗

Nao Hirokawa
JAIST, Japan

hirokawa@jaist.ac.jp

Aart Middeldorp
University of Innsbruck, Austria
aart.middeldorp@uibk.ac.at

Abstract

We present a generalisation of a commutation criterion by Rosen (1973), the develop-
ment closedness theorem by van Oostrom (1994), and a confluence criterion by Hirokawa
and Middeldorp (2011).

1 Introduction

This note is about sufficient conditions for the commutation of two left-linear TRSs R and S.
Commutation means that the inclusion

∗←−
R
· ∗−→
S
⊆ ∗−→

S
· ∗←−
R

holds. When R = S, commutation amounts to confluence. Furthermore, commutation is a
sufficient condition for the confluence of the union of two confluent TRSs. It is well-known that
R and S commute when there are no critical pairs between the rules of R and the rules of S.
Toyama [6] generalized this result of Rosen [4] (and Raoult and Vuillemin [3, Proposition 10])
by admitting critical pairs between R and S but restricting the way in which they are joined.
More precisely, Toyama showed that R and S commute if the following two conditions are
satisfied:

←−
R
o−→
S
⊆ ‖−→

S
· ∗←−
R

and
>ε←−−
S
o−→
R
⊆ ‖−→

R

As observed in [7, Corollaries 24 and 28] and [1, Proposition 7], Toyama’s result is further
generalized by adopting multi-steps:

←−
R
o−→
S
⊆ ◦−−→

S
· ∗←−
R

and
>ε←−−
S
o−→
R
⊆ ◦−−→

R

We present a generalisation of these results by incorporating the confluence result based on
relative termination [2].

2 Preliminaries

We assume familiarity with the conversion version of the decreasing diagrams technique for
proving commutation, due to van Oostrom [8, Theorem 3]. Familiarity with proof terms wit-
nessing multi-steps ([5, Chapter 8], [2]) is also helpful. Below we recall some basic definitions
and recast a measure used in [7] as a measure on co-initial proof terms.

Let R be a TRS over a signature F . For each rule ` → r ∈ R we introduce a fresh rule
symbol `→ r whose arity is given by the number of variables in `. Proof terms are terms over
functions in F and rule symbols. We write v for the smallest rewrite preorder on proof terms
such that ` v `→ r(x1, . . . , xn) for all rules `→ r ∈ R with var(`) = (x1, . . . , xn). Here var(`)
denotes a sequence consisting of all variables in Var(`) in some fixed order. Given co-initial

∗Supported by the JSPS KAKENHI Grant Number 25730004 and the Austrian Science Fund (FWF) P22467.

N. Hirokawa & V. van Oostrom (eds.); 2nd International Workshop on Confluence, pp. 29–33 29

Commutation via Relative Termination Hirokawa and Middeldorp

proof terms A and B, the (partial) residual operation is the proof term A \B defined by the
following clauses (here 〈A1, . . . , An〉` stands for the substitution {xi 7→ Ai | 1 6 i 6 n}):

x \x = x

f(A1, . . . , An) \ f(B1, . . . , Bn) = f(A1 \B1, . . . , An \Bn)

`→ r(A1, . . . , An) \ `→ r(B1, . . . , Bn) = r〈A1 \B1, . . . , An \Bn〉`
`→ r(A1, . . . , An) \ `〈B1, . . . , Bn〉` = `→ r(A1 \B1, . . . , An \Bn)

`〈A1, . . . , An〉` \ `→ r(B1, . . . , Bn) = r〈A1 \B1, . . . , An \Bn〉`
When we use A \B below, it is guaranteed to be defined. (If A v B then A \B is a proof term
without rule symbols.) A redex is a proof term that contains exactly one rule symbol. For a
redex ∆ we write ∆ ∈ A if ∆ v A. Given a proof term A and a redex ∆ ∈ A, we find it
convenient to write A−∆ for the proof term that is obtained from A by replacing the subterm
occurrence `→ r(A1, . . . , An) corresponding to ∆ by `〈A1, . . . , An〉`.

For redexes ∆1,∆2 ∈ A we write ∆1 > ∆2 if the rule symbol of ∆1 appears at or below
that of ∆2 in A. The set N(A) of positions is inductively defined on A as follows:

N(x) = ∅
N(f(A1, . . . , An)) = {iq | 1 6 i 6 n and q ∈ N(Ai)}
N(`→ r(A1, . . . , An)) = PosF (`) ∪ {pq | p ∈ Pos{xi}(`) and q ∈ N(Ai)}

where x ∈ V, f ∈ F , and var(`) = (x1, . . . , xn). So N(A) consists of all function positions of the
redex patterns contracted in the multi-step of A. We write N(A,B) for N(A) ∩ N(B). The set
N(A,B) is used below as a measure for the amount of overlap between the proof terms A and
B. A pair (∆1,∆2) of co-initial redexes is an overlap if N(∆1,∆2) 6= ∅.

Lemma 2.1. Let A and B be proof terms of left-linear TRSs R and S respectively. If N(A,B) 6=
∅ then there exist a trivial or critical peak t ∆1←−−R s ∆2−−→S u, a context C, and a substitution σ

such that C[∆1σ] ∈ A and C[∆2σ] ∈ B. If N(A,B) = ∅ then
A◦←−−
R
· B◦−−→
S
⊆ B \A◦−−−→

S
· A \B◦←−−−
R

.

3 Commutation by Relative Termination

Let R and S be TRSs. The set of critical peak steps of S for R is defined as follows:

CPSR(S) = {s→ u | t R← s→S u is a critical peak}
Lemma 3.1. Let R and S be left-linear TRSs. If t R ◦←−− s ◦−−→S u then t ◦−−→S · R ◦←−− u or
t R ◦←−− · CPSS(R)← s→CPSR(S) · ◦−−→S u.
Theorem 3.2. Left-linear locally commuting TRSs R and S commute if CPSS(R)∪CPSR(S)
is relatively terminating over R∪ S.
Proof. We use decreasing diagrams with the predecessor labeling. To this end we define t ◦−−→R,s
u if and only if s→∗R∪S t ◦−−→R u. The labeled relation ◦−−→S,s is defined similarly. We write >
to denote→+

(CPSR(S)∪CPSS(R))/(R∪S). By the relative termination condition, > is a well-founded

order. We show that ({ ◦−−→R,s}s∈T , { ◦−−→S,s}s∈T) is decreasing with respect to >. Suppose
t R,s1 ◦←−− s ◦−−→S,s2 u. By Lemma 3.1 and local commutation there are terms v and w such that
(a) or (b) of Figure 1 holds. Note that si > v,w holds in case (b) because si →∗R∪S s > v,w.
Therefore, in both cases decreasingness is established. Hence R and S commute.

Theorem 3.2 subsumes Rosen’s commutativity criterion [4], as mutual orthogonality implies
CPSS(R) ∪ CPSR(S) = ∅ as well as local commutation.

30

Commutation via Relative Termination Hirokawa and Middeldorp

s

t uv

R
,s
1

S
,s

2

S,s2 R,s1

s

t v · w u

R,s
1

S,s
2

C
P
SR

(S
)C

P
S S

(R
)

R,v S,wS,v R,w

(a) (b)

Figure 1: Decreasingness of (◦−−→R, ◦−−→S).

4 Incorporating Development Closedness

We extend the last theorem in order to subsume the development closedness theorem of van

Oostrom [7]. Let t R
p←− s

q−→S u be a critical peak. By definition p or q must be the root
position. We say that the peak is (R,S)-closed if t R ◦←−− u whenever p = ε and t ◦−−→S u
whenever q = ε. The set of all non-closed critical peak steps of S for R is defined as follows:

CPS′R(S) = {s→ u | t R← s→S u is a critical peak which is not (R,S)-closed}
Lemma 4.1. Let R and S be left-linear TRSs. If t R ◦←−− s ◦−−→S u then (a) t ◦−−→S · R ◦←−− u
or (b) t R ◦←−− · CPS′

S(R)← s′ →CPS′
R(S) · ◦−−→S u and s→∗R∪S s′ for some s′.

Lemma 4.1 is a proper generalization of [2, Lemma 4]. In order to prove the lemma we
introduce some more notions. Whenever N(A,B) is non-empty, there exists an innermost
overlap. An overlap (∆1,∆2) in A × B is called innermost if there are no other overlaps
(∆′1,∆

′
2) in A× B such that ∆′1 > ∆1 and ∆′2 > ∆2. We say that (∆1,∆2) is (R,S)-closed if

the corresponding critical peak is (R,S)-closed. The following is the key lemma. In order to
pave the way for formalisation of advanced confluence and commutation results, we formalise
the proof technique introduced in [7] using proof terms.

Lemma 4.2. Suppose (∆1,∆2) is an innermost overlap in A×B with ∆1 > ∆2. If (∆1,∆2) is
(R,S)-closed then N(A,B)) N(A \∆1, C) for some proof term C that is co-initial with A \∆1.

Proof. Write t
A \∆1◦←−−−−
R

t1
∆1←−−
R

s
∆2−−→
S

u1

B \∆2◦−−−−→
S

u and let

t′1
∆′

1←−−
R

s′
∆′

2−−→
S

u′1

be the corresponding critical peak. Since s ·D s′, there exist a context C and a substitution σ
such that s = C[s′σ], t1 = C[t′1σ], u1 = C[u′1σ], ∆1 = C[∆′1σ], and ∆2 = C[∆′2σ]. We have
t′1 ◦−−→R u′1 because the critical peak is (R,S)-closed. Let D′ be the proof term witnessing this
multi-step and define D = C[D′σ]. Clearly, D is a witness of t1 ◦−−→R u1. We will compose
D and B \∆2 into a single proof term C : t1 ◦−−→R u. Let B′ = B −∆2. Since (∆1,∆2) is an
innermost overlap with ∆1 > ∆2, N(B′,∆1) = ∅. Hence B′ \∆1 is well-defined. If we show
that N(B′ \∆1, D) = ∅ then we can define C as (B′ \∆1)tD. We have N(D′) ⊆ PosF (t′1) and
thus N(D) ⊆ {qp | p ∈ PosF (t′1)} where q is the position of the hole in C. In words, D affects
only the t′1 part of C[t′1σ]. Let ∆ ∈ B′ be an arbitrary redex. We show that N(∆ \∆1, D) = ∅.
We split B′ into two parts: B′ = B1 tB2 with

B1 = B′ −B2 B2 =
⊔{

∆
∣∣ ∆ ∈ B′ and ∆ > ∆2

}

Depending on the position of ∆, we distinguish two cases:

31

Commutation via Relative Termination Hirokawa and Middeldorp

(a) If ∆ ∈ B1 then ∆ does not overlap ∆1. So N(∆ \∆1) consists entirely of positions in C
and thus N(∆ \∆1, D) = ∅.

(b) Otherwise, ∆ ∈ B2. Since (∆1,∆2) is an innermost overlap, N(∆,∆1) = ∅. Because
∆ 6= ∆2 we also have N(∆,∆2) = ∅. The crucial observation is that no redex in ∆ \∆1

overlaps with D. This follows because for the originating term s′ of the critical peak we
have PosF (s′) = N(∆′1) ∪ N(∆′2), due to the fact that the involved rules are left-linear.
Hence all redexes in ∆ \∆1 appear in the substitution part σ of C[t′1σ].

We conclude that N(B′ \∆1, D) = ∅. It remains to show that N(A,B)) N(A \∆1, C). We
have N(B1 \∆1) = N(B1) and hence N(C) = N(B1) ∪ N(B2 \∆1) ∪ N(D). Because (∆1,∆2) is
an innermost overlap, N(A,B2) = ∅ and therefore

N(A,B) = N(A,∆2) ∪ N(A,B1)

and N(A \∆1, B2 \∆1) = ∅. Because all redexes in B1 occur above ∆2, they do not overlap
with ∆1 and thus N(A \∆1, B \∆1) = N(A \∆1, B1 \∆1) = N(A,B1). We obtain

N(A \∆1, C) = N(A \∆1, B
′ \∆1) ∪ N(A \∆1, D)

= N(A,B1) ∪ N(A \∆1, D)

and so it remains to show that N(A,∆2)) N(A \∆1, D). We split A into three parts: A =
A1 t ∆1 t A2 with A1 = A − ∆1 − A2 and A2 =

⊔{
∆
∣∣ ∆ ∈ A and ∆ > ∆1

}
. We have

N(A,∆2) = N(A1,∆2) ∪ N(∆1,∆2) and

N(A \∆1, D) = N(A1 \∆1, D) ∪ N(∆1 \∆1, D) ∪ N(A2 \∆1, D)

The second component is clearly empty but also the third component reduces to the empty
set, by repeating the reasoning in case (b) above. The first component equals N(A1, D) since
redexes in A1 occur above ∆1. So N(A \∆1, D) = N(A1, D). Since N(∆1,∆2) 6= ∅, it suffices
to show the inclusion N(A1, D) ⊆ N(A1,∆2), which follows from the observation that overlaps
between A1 and D are restricted to positions in N(∆2)− N(∆1).

We are ready to show the aforementioned lemma.

Proof of Lemma 4.1. By induction on the finite set N(A,B) with respect to the well-founded
order). Let

t
A◦←−−
R

s
B◦−−→
S

u

If N(A,B) is empty then (a) holds by the second part of Lemma 2.1. Otherwise, there is an
overlap in A×B. We distinguish two cases.

• If a non-closed overlap (∆1,∆2) exists in A×B, (b) holds because

t
A \∆1◦←−−−−
R

· ∆1←−−
R

s
∆2−−→
S
· B \∆2◦−−−−→

S
u

and the two inner steps correspond to applications of rules from CPS′S(R) and CPS′R(S).

• In the other case all overlaps are closed. Let (∆1,∆2) be an innermost overlap. Without
loss of generality we assume ∆1 > ∆2. According to Lemma 4.2 there exists some proof

32

Commutation via Relative Termination Hirokawa and Middeldorp

term C such that N(A,B)) N(A \∆1, C). Let s′ be the term such that s ∆1−−→ s′. (In the
proof of Lemma 4.2 s′ was called t1.) Because

t
A \∆1◦←−−−−
R

s′
C◦−→
S
u

the induction hypothesis applies.

Theorem 4.3. Left-linear locally commuting TRSs R and S commute if CPS′S(R)∪CPS′R(S)
is relatively terminating over R∪ S.
Proof. Use Lemma 4.1 to replace Figure 1(b) by the following diagram:

s

s′

t v · w u

R
,s
1

S
,s

2

C
P
S ′R

(S
)C

P
S

′ S
(R

)

R,v S,w

R
∪S

S,v R,w

Due to lack of space, we omit the extension that weakens the joinability requirement for
overlays, but note that the result of Theorem 4.3 remains true if we strengthen the notion of
(R,S)-closedness by allowing t ◦−−→∗S · R ◦←−− u when p = ε. Future work includes the extension
to critical valleys [9] as well as automation. Experimental data on the confluence problem
database Cops1 for the presented theorems will be reported at the workshop.

References

[1] T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems automatically.
In Proc. 21st RTA, volume 5595 of LNCS, pages 93–102, 2009.

[2] N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termination. Journal of Auto-
mated Reasoning, 47(4):481–501, 2011.

[3] J.-C. Raoult and J. Vuillemin. Operational and semantic equivalence between recursive programs.
Journal of the ACM, 27(4):772–796, 1980.

[4] B.K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20(1):160–187, 1973.

[5] TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

[6] Y. Toyama. Commutativity of term rewriting systems. In Programming of Future Generation
Computers II, pages 393–407. North-Holland, 1988.

[7] V. van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181, 1997.

[8] V. van Oostrom. Confluence by decreasing diagrams – converted. In Proc. 19th RTA, volume 5117
of LNCS, pages 306–320, 2008.

[9] V. van Oostrom. Confluence via critical valleys. In Proc. 6th HOR, pages 9–10, 2012.

1http://coco.nue.riec.tohoku.ac.jp/

33

Proving Confluence of Conditional Term

Rewriting Systems via Unravelings ∗

Karl Gmeiner1, Naoki Nishida2 and Bernhard Gramlich1

1 Faculty of Informatics, TU Wien, Austria
{gmeiner, gramlich}@logic.at

2 Graduate School of Information Science, Nagoya University, Japan
nishida@is.nagoya-u.ac.jp

Abstract

Unravelings are a class of transformations of conditional term rewriting systems into
unconditional systems. Such transformations have been used to analyze and simulate
conditional rewrite steps by unconditional rewrite steps for properties like (operational)
termination. In this paper, we show how to prove confluence of conditional term rewriting
systems via unravelings.

1 Introduction and Overview

Conditional term rewriting systems (CTRSs) are term rewriting systems in which rules may
be constrained by equations over terms. Such systems arise naturally in many settings like
functional programming and they have been used in applications like program inversion [8].

Yet, CTRSs are more difficult to analyze and many criteria that hold for unconditional TRSs
do not hold for CTRSs. Therefore, several transformations have been defined that eliminate
conditions in CTRSs [6, 14, 1, 12].

There are some results on confluence of CTRSs like [2, 13], yet there are no results known
to us that use transformations to prove confluence of CTRSs.

The main difficulty in using transformations to prove confluence is that the transformed
TRS may give rise to derivations that are not possible in the original CTRS. Another difficulty
is that in order to encode conditions, the signature of the transformed system is different from
the signature of the original CTRS. This might lead to derivations in which terms occur that
are not defined in the original system.

In this paper, we show how to prove confluence of CTRSs via unravelings, the simplest
class of transformations of CTRSs into TRSs. We focus on so-called oriented, deterministic
3-CTRSs, a class of CTRSs in which extra variables are allowed to a certain extent. We will
use common notions and notations, like they are used in e.g. [10].

2 Unravelings

Unravelings are a class of transformations of CTRSs into unconditional TRSs that have been
introduced in [6]. They have been the subject of interest in several publications [8, 4, 9, 5].

In an unraveling, a conditional rule is split into several unconditional rules. The conditions
are encoded in new function symbols, called U -symbols, along with some variables. If the
conditions are satisfied, then the rhs of the original conditional rule is reproduced.

∗This work is supported by the Austrian Science Fund (FWF) international project I963 and the Japan
Society for the Promotion of Science.

N. Hirokawa & V. van Oostrom (eds.); 2nd International Workshop on Confluence, pp. 35–39 35

Proving Confluence of CTRSs via Unravelings Gmeiner, Nishida and Gramlich

In the unraveling Useq , that is defined in [10] (based on [7]), one new function symbol is
introduced for each condition in a conditional rule. By sequentially encoding the conditions, this
unraveling can transform deterministic CTRSs (DCTRSs) into TRSs without extra variables.
In DCTRSs, extra variables must occur on the rhs of a condition first so that their matchers
can be determined by plain rewriting.

A conditional rule α : l → r ⇐ s1 →∗ t1, . . . , sk →∗ tk is transformed into unconditional
rules as follows:

Useq(α) = { l→ Uα1 (s1, ~X1), Uα1 (t1, ~X1)→ Uα2 (s2, ~X2), . . . , Uαk (tk, ~Xk)→ r }

where Xi = Var(l, t1, . . . , ti−1). Here, ~X denotes the unique sequence of variables in X under
some fixed order on variables.

In order to distinguish terms in the unraveling that contain U -symbols, we will refer to such
terms as mixed terms while we refer to terms without U -symbols as original terms.

It is easy to show that a derivation in a CTRS u →∗R v has a corresponding derivation in
the unraveling u →∗Useq(R) v (for all original terms u, v). This property is called completeness.

While completeness is easy to prove and satisfied in general, its counterpart soundness only
holds in certain cases (see e.g. [6, 4, 9, 5]).

3 Soundness for Joinability

We prove confluence of a CTRS R via derivations in the unraveling of R in the following
way: for all original terms s, t1, t2 such that t1 ←∗R s →∗R t2, we know by completeness that
t1 ←∗U(R) s →∗U(R) t2; if there is an original term u such that t1 →∗U(R) u ←∗U(R) t2, then by
soundness we obtain that t1 →∗R u←∗R t2 in the original CTRS R.

One difficulty in this approach is that we need to prove that t1 and t2 have a common
descendant in U(R) that is an original term. We will therefore use another notion of soundness:

Definition 1 (Soundness for joinability). An unraveling U is sound for joinability of a CTRS
R if for all original terms s, t such that s ↓U(R) t, also s ↓R t.

We can use soundness for joinability to prove confluence for every CTRS:

Lemma 2. Let R be a DCTRS and U be an unraveling. If U(R) is confluent and U is sound
for joinability of R, then R is confluent.

Proof. Consider two terms s, t such that s↔∗R t. Completeness of U implies s↔∗U(R) t. Since

U(R) is confluent, therefore s ↓U(R) t, and by soundness of joinability s ↓R t.

Although there is a strong connection between soundness and soundness for joinability,
soundness does not imply soundness for joinability in general:

Example 3. Consider the following CTRS R that contains one conditional rule that is unrav-
eled into two unconditional rules (using Useq):

Useq(

a→ c→ e
↗↘ ↘

b→ d→ k

f(x)→ x⇐ x→∗ e
g(x, x)→ h(x, x)

h(d, x)→ A(x)

) =

...

f(x)→ Uα1 (x, x), Uα1 (e, x) → x

...

36

Proving Confluence of CTRSs via Unravelings Gmeiner, Nishida and Gramlich

Useq is sound for non-erasing 2-DCTRSs ([5, Theorem 18] and [9, Corollary 5.5]), therefore the
unraveling is sound. In Useq(R), terms g(f(a), f(b)) and A(f(k)) are joinable:

g(f(a), f(b))→∗ h(Uα1 (c, d), Uα1 (c, d))→∗ h(d, Uα1 (c, d))→ A(Uα1 (c, d))→∗A(Uα1 (k, k))← A(f(k))

In R, A(f(k)) is irreducible, therefore g(f(a), f(b)) ↓R A(f(k)) only if g(f(a), f(b)) →∗R A(f(k)).
Yet, for this we need some common reduct s of f(a) and f(b) such that s→∗R d and s→∗R f(k),
but there is no original term satisfying these properties.

In the previous example, the derivation in Useq(R) contains mixed terms. In order to
prove soundness for joinability, we use a mapping t that translates terms in U(R) (including
mixed terms) into original terms. Using such a translation we obtain a more general soundness
criterion: an unraveling U is sound w.r.t. t for a DCTRS R, if for all original terms u and
all mixed terms v′ such that u →∗U(R) v

′, t(v′) is defined and u →∗R t(v′). Soundness w.r.t. t
implies soundness for joinability:

Lemma 4. If an unraveling U is sound w.r.t. t for a DCTRS R, then U is also sound for
joinability of R.

Proof. Let s, t be two original terms such that there is some (possibly mixed) term u′ such that
s→∗U(R) u

′ ←∗U(R) t. Then, soundness w.r.t. t implies s→∗R t(u′)←∗R t.

4 A New Unraveling

For many CTRSs, in particular overlay CTRSs, Useq returns a non-confluent TRS so that we
cannot use Useq to prove confluence of the original CTRSs.

Example 5 ([11]). The following CTRS defines even and odd predicates for natural number
encoded by 0 and s:

Reven =

even(0)→ true odd(0)→ false
even(s(x))→ false⇐ odd(x)→∗ true odd(s(x))→ false⇐ even(x)→∗ true
even(s(x))→ true⇐ odd(x)→∗ false odd(s(x))→ true⇐ even(x)→∗ false

The CTRS is unraveled into the following TRS using Useq :

Useq(Reven) =

even(0)→ true odd(0)→ false
even(s(x))→ Uα1 (odd(x), x) odd(s(x))→ Uγ1 (even(x), x)
Uα1 (true, x)→ false Uγ1 (true, x)→ false

even(s(x))→ Uβ1 (odd(x), x) odd(s(x))→ Uη1 (even(x), x)

Uβ1 (false, x)→ true Uη1 (false, x)→ true

The unraveled TRS is not confluent, for instance even(s(0)) rewrites to Uα1 (odd(s(0), 0) and

Uβ1 (odd(s(0), 0) that are not joinable. Note that a more complicated and practical example
with the non-confluence problem can be found in [10, Example 7.2.49].

The following new unraveling returns a confluent TRS for certain overlay CTRSs. It strongly
resembles the unraveling Useq , but we introduce new U -symbols based on the lhs of the trans-
formed rule and terms in the conditions:

37

Proving Confluence of CTRSs via Unravelings Gmeiner, Nishida and Gramlich

Definition 6 (New unraveling). Let α be a conditional rule l → r ⇐ s1 →∗ t1, . . . , sk →∗ tk
(k ≥ 0), then its unraveling is defined as

Uconf (α) =

l→ Ul,s1(s1, ~X1)

Ul,s1(t1, ~X1)→ Ul,s1,t1,s2(s2, ~X2)

...

Ul,s1,t1,...,tk−1,sk(tk, ~Xk)→ r

where Xi = Var(l, t1, . . . , ti−1). Note that for Uα and Uα′ , we use the same symbol, e.g., Uα, if
α′ is a renamed variant of Uα. The unraveled TRS Uconf (R) then is

⋃
α∈R Uconf (α).

In order to prove soundness for joinability of certain cases, we use the following backtrans-
lation that is also used in [5]:

tb(x) = x for all variables x

tb(Ul,...(v, ~Xiσ)) = l tb(σ) for all U-symbols Ul,...

tb(f(t1, . . . , tar(f))) = f(tb(t1), . . . , tb(tar(f))) for all non-U-symbols f

Useq is sound w.r.t. tb for weakly left-linear CTRSs and since tb is well-defined for Uconf we
can adapt the proof of [5, Theorem 3.28] to Uconf .

Lemma 7. Uconf is sound w.r.t. tb for a weakly left-linear CTRSs.

Proof (Sketch). Since tb is well-defined and derivations in the conditions can be extracted from
the U -symbols, we can use the proof of [5, Theorem 3.28].

Corollary 8. Uconf is sound for joinability of weakly left-linear CTRSs.

Finally, we obtain our main result:

Theorem 9. A weakly left-linear DCTRS R is confluent if so is Uconf (R).

Example 10. Consider the CTRS of Example 5. Its unraveling for Uconf has two rule less:

Uconf (Reven) =

even(0)→ true
even(s(x))→ Ueven(s(x)),odd(x)(odd(x), x)

Ueven(s(x)),odd(x)(true, x)→ false
Ueven(s(x)),odd(x)(false, x)→ true

odd(0)→ false
odd(s(x))→ Uodd(s(x)),even(x)(even(x), x)

Uodd(s(x)),even(x)(true, x)→ false
Uodd(s(x)),even(x)(false, x)→ true

The unraveled TRS is now confluent. It follows from left-linearity of Useq(Reven) that Reven is
weakly left-linear [5]. Therefore, by Theorem 9, Reven is confluent.

To show the usefulness of our approach, we want to repeat a result of [13] using Theorem 9:

Corollary 11. Orthogonal properly oriented right-stable 3-CTRSs are confluent.

Proof. Orthogonal properly oriented right-stable 3-CTRSs are unraveled into orthogonal and
therefore confluent TRSs by Uconf . Therefore, we can apply Theorem 9.

38

Proving Confluence of CTRSs via Unravelings Gmeiner, Nishida and Gramlich

5 Conclusion and Perspectives

We have shown that unravelings can be used to prove confluence of CTRSs. In order to do
this, we use soundness for joinability and a new unraveling, similar to the unraveling of [10],
but with better properties concerning confluence while retaining soundness properties.

In the future, we want to show soundness for joinability of other classes of CTRSs and also
use other transformations to analyze soundness properties.

A way to show joinability is the use of tree automata techniques developed to analyze
reachability. The techniques are well investigated for TRSs, and they are very useful. However,
the direct application of the techniques to CTRSs is very complicated and the constructed tree
automata are often overapproximations (cf. [3]). Thus, unravelings would be very useful to
analyze reachability and then confluence of CTRSs for which unravelings are sound. For this
reason, we will also work for soundness of unravelings, e.g., to find soundness conditions.

References

[1] S. Antoy, B. Brassel, and M. Hanus. Conditional narrowing without conditions. In Proceedings of
PPDP 2003, pp. 20–31, ACM Press, 2003.

[2] J. Avenhaus and C. Loŕıa-Sáenz. On conditional rewrite systems with extra variables and deter-
ministic logic programs. In Proceedings of LPAR 1994, volume 822 of Lecture Notes in Computer
Science, pp. 215–229, Springer, 1994.

[3] G. Feuillade and T. Genet. Reachability in conditional term rewriting systems. Electronic Notes
in Theoretical Computer Science, 86(1):133–146, 2003.

[4] K. Gmeiner, B. Gramlich, and F. Schernhammer. On (un)soundness of unravelings. In Proceedings
of RTA 2010, volume 6 of Leibniz International Proceedings in Informatics, pp. 119–134, 2010.

[5] K. Gmeiner, B. Gramlich, and F. Schernhammer. On soundness conditions for unraveling determin-
istic conditional rewrite systems. In Proceedings of RTA 2012, volume 15 of Leibniz International
Proceedings in Informatics, pp. 193–208, 2012.

[6] M. Marchiori. Unravelings and ultra-properties. In Proceedings of ALP 1996, volume 1139 of
Lecture Notes in Computer Science, pp. 107–121, Springer, 1996.

[7] M. Marchiori. On deterministic conditional rewriting. Technical Report MIT LCS CSG Memo
no. 405, MIT, Cambridge, 1997.

[8] N. Nishida, M. Sakai, and T. Sakabe. Partial inversion of constructor term rewriting systems.
In Proceedings of RTA 2005, volume 3467 of Lecture Notes in Computer Science, pp. 264–278,
Springer, 2005.

[9] N. Nishida, M. Sakai, and T. Sakabe. Soundness of unravelings for deterministic conditional term
rewriting systems via ultra-properties related to linearity. Logical Methods in Computer Science,
8(3):1–49, 2012.

[10] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.

[11] G. Roşu. From conditional to unconditional rewriting. In Proceedings of WADT 2004, volume
3423 of Lecture Notes in Computer Science, pp. 218–233, Springer, 2004.

[12] T.-F. Şerbănuţă and G. Roşu. Computationally equivalent elimination of conditions. In Proceedings
of RTA 2006, volume 4098 of Lecture Notes in Computer Science, pp. 19–34, Springer, 2006.

[13] T. Suzuki, A. Middeldorp, and T. Ida. Level-confluence of conditional rewrite systems with extra
variables in right-hand sides. In Proceedings of RTA 1995, volume 914 of Lecture Notes in Computer
Science, pp. 179–193, Springer, 1995.

[14] P. Viry. Elimination of conditions. Journal of Symbolic Computation, 28(3):381–401, 1999.

39

A Confluent Pattern Calculus with

Hedge Variables

Sandra Alves1, Besik Dundua1,3, Mário Florido1 and Temur Kutsia2

1 DCC-FC & LIACC, University of Porto, Portugal
2 RISC, Johannes Kepler University, Linz, Austria

3 VIAM, Ivane Javakhishvili Tbilisi State University, Georgia

Abstract

The dynamic pattern calculus described in this paper integrates the functional mecha-
nism of the lambda-calculus and the capabilities of pattern matching with hedge variables,
i.e., variables that can be instantiated by any finite sequence of terms. We propose a generic
confluence proof, where the way pattern abstractions are applied in a non-deterministic
calculus is axiomatized.

1 Introduction

There have been several approaches to design pattern calculi, extending the λ-calculus with
pattern matching. One can mention the λφ-calculus [14], Pure Pattern Calculus [9], the ρ-
calculus [5], and the typed versions thereof, e.g., [3].

Pattern calculi are expressive, however, there is a price to pay for that: confluence is lost and
various restrictions have to be imposed to recover it. Cirstea and Faure in [4] proposed a generic
confluence proof for dynamic pattern calculi with unitary matching algorithm. There are some
conditions the matching function should satisfy, in order the guarantee the confluence. Pattern
matching with hedge variables has interesting applications in programming languages [16],
rewriting [8], knowledge representation [12], logic [11], etc.

The idea of transforming a non-deterministic calculus into a deterministic one with the help
of sums is not new. It has been exploited in a way or another in, e.g., differential λ-calculus [7],
linear-algebraic λ-calculus [1, 6], resource calculus [13]. The idea closest to us is described
in [6], as a non-deterministic extension of the call-by-value λ-calculus, which corresponds to the
additive fragment of the linear-algebraic λ-calculus. The � there is associative, commutative,
and distributes over application both from right (corresponds to parallel composition) and left
(corresponds to call-by-value). There is also the neutral element for the sum, expressing the
impossible computation. In our calculus, sums originate from sets of different matchers. Hence,
besides being associative and commutative, � is also idempotent. We do not have the neutral
element: This would correspond to the case when there is no matcher between a pattern and
a term. But in this case the reduction is not possible. We do not introduce a term to express
this impossible reduction in the language itself. Like the sum in [6], our � is also left and right
distributive over applications. Moreover, our language has the other features as well: Patterns,
unranked symbols, and hedge variables, which really make a difference.

In this paper, we introduce yet another dynamic pattern calculus, which permits the use
of hedge variables. These are variables which can be instantiated by finite, possibly empty,
sequences of terms, called hedges.

N. Hirokawa & V. van Oostrom (eds.); 2nd International Workshop on Confluence, pp. 41–45 41

A Confluent Pattern Calculus with Hedge Variables Alves, Dundua, Florido and Kutsia

2 The Calculus

In this section, we define the syntax and the operational semantics of the untyped dynamic
pattern calculus with hedge variables and propose conditions under which the calculus is con-
fluence.

2.1 Syntax

Terms are defined by the following grammar:

M,N ::� x | f | pM Nq | pM Xq | λVM.N |M �N

where pM Nq is an application of a term to a term and pM Xq is an application of a term to
a hedge variable. In λVM.N we call the term M a pattern. We consider � to be associative,
commutative, and idempotent. Moreover, application distributes over � both from the left and
from the right. We write ACID for this property. We assume that terms are in the ACID
normal form with respect to � and application.

The letters M,N,P,Q,W are used to denote terms, while s is used for a hedge vari-
able or a term. Application associates to the left, therefore we can write pM s1 � � � snq for
pp� � � pM s1q � � � qsnq. When there is no ambiguity, the outermost parentheses are omitted as
well.

The sets of free and bound variables of a term P , denoted by fvpP q and by bvpP q respec-
tively, are defined inductively as follows:

fvpxq � txu fvpfq � H bvpxq � H bvpfq � H

fvpM Nq � fvpMq Y fvpNq bvpM Nq � bvpMq Y bvpNq

fvpM Xq � fvpMq Y tXu bvpM Xq � bvpMq

fvpλVM.Nqq � pfvpMq Y fvpNqqzV bvpλVM.Nq � bvpMq Y bvpNq Y V
fvpM �Nq � fvpMq Y fvpNq bvpM �Nq � bvpMq Y bvpNq

The set V in the abstraction λVM.N is a subset of the set of free variables of M and
represents the set of variables bound by the abstraction. Note that, the set of variables bound
by an abstraction is not necessarily the same as the set of free variables of the corresponding
pattern. We adopt Barendregt’s variable name convention [2] and identify terms modulo α-
equivalence.

Hedges are finite (possible empty) sequences of terms and hedge variables. We use h to
denote them. For the empty hedge we use ε. For readability, we put hedges in angle brackets
if they have more than one element, e.g., xM,X,Ny.

A substitution is a mapping from term variables to terms, and from hedge variables to
hedges, such that all but finitely many term and hedge variables are mapped to themselves.
We use ϕ and ϑ to denote substitutions. Each substitution ϕ is represented as a map tv1 ÞÑ
ϕpv1q, . . . , vn ÞÑ ϕpvnqu where the v’s are all those variables for which ϕpviq � vi. The sets
Dompϕq � tv1, . . . , vnu and Ranpϕq � tϕpv1q, . . . , ϕpvnqu are called the domain and the range
of ϕ, respectively. The set Varpφq is defined as Varpφq � Dompϕq Y fvpRanpϕqq.

The application of a substitution ϕ to a term M replaces each free occurrence of a variable
v in M with ϕpvq. It is defined inductively:

xϕ � ϕpxq, if x P Dompϕq. pM Xqϕ �Mϕs1, . . . sn,

xϕ � x, if x R Dompϕq. if ϕpXq � xs1, . . . , sny.

42

A Confluent Pattern Calculus with Hedge Variables Alves, Dundua, Florido and Kutsia

fϕ � f. pM Xqϕ �Mϕ if ϕpXq � ε.

pM Nqϕ �MϕNϕ. pM Y qϕ �MϕY if Y R Dompϕq.

pM �Nqϕ �Mϕ�Nϕ. pλVM.Nqϕ � λVMϕ.Nϕ.

In the abstraction, it is assumed that Varpϕq X V � H.
The composition of substitutions, as well as the restriction of a substitution ϕ to a set of

variables V , denoted ϕ|V , are defined in the standard way.

2.2 Reduction

Evaluation in the dynamic pattern calculus with hedge variables is given by three binary re-
lations βp, Dl, and Dr on terms, written in the form of reduction rules below. The relation
βp defines the way how pattern-abstractions are applied. It is parametrized by a function Sol ,
which takes as parameters two terms M and Q and a set of variables V and returns a finite set of
substitutions. We denote it by SolpM ÎV Qq. The relations Dl and Dr define how abstraction
distributes over �:

βp : pλVM.NqQÑ Nϕ1 � � � � �Nϕn,where M and Q are not of the form

W1 �W2 and SolpM ÎV Qq � tϕ1, . . . , ϕnu, n ¥ 1.

Dl : λVM1 �M2.N Ñ λVM1.N � λVM2.N.

Dr : λVM.N1 �N2 Ñ λVM.N1 � λVM.N2.

In what follows, ÑP denotes the compatible closure of the union of βp,Dl and Dr relations
and �P denotes the reflexive and transitive closure of ÑP .

2.3 Confluence

The solution of a matching equation P ÎV M is a substitution ϕ such that Pϕ �M . We can
reformulate matching procedures with hedge variables proposed in [10] to define the function
Sol . Therefore, Sol accepts a set of equations of the form P ÎV M and returns complete
the set of solutions. The following example shows that the function Sol can lead to diverging
reductions:

Example 1. The term M � pλtZufZ.pλtX,Y ufXY.fXqfZqfab reduces to two different normal
forms:

1. M ÑP pλZfZ.pf � fZqqfab ÑP f � fab.

2. M ÑP pλtX,Y ufXY.fXqfab ÑP f � fa � fab.

Our goal is to impose restrictions on Sol so that confluence is guaranteed. The confluence
proof will be based on the standard method due to Tait and Martin-Löf [2]. It requires the
notion of parallel reduction which is defined as follows:

sñP s

s1 ñP s11 . . . sn ñP s1n
xs1, . . . , sny ñP xs11, . . . , s

1
ny

M ñP M 1 sñP s1

M sñP M 1 s1

M ñP M 1 N ñP N 1

λVM.N ñP λVM 1.N 1

M1 ñP M 1
1 M2 ñP M 1

2 N ñP N 1

λVpM1 �M2q.N ñP λVM 1
1.N

1 � λVM 1
2.N

1

43

A Confluent Pattern Calculus with Hedge Variables Alves, Dundua, Florido and Kutsia

M ñP M 1 N ñP N 1

M �N ñP M 1 �N 1

M ñP M 1 N1 ñP N 1
1 N2 ñP N 1

2

λVM.pN1 �N2q ñP λVM 1.N 1
1 � λVM 1.N 1

2

M ñP M 1 N ñP N 1 QñP Q1

pλVM.NqQñP N 1ϕ1 � � � � �N 1ϕn
, where SolpM 1

ÎV Q
1q � tϕi | 1 ¤ i ¤ nu

Note that the parallel reduction is compatible. Its definition is extended to substitutions
having the same domain by setting ϕ ñP ϕ1 if for all v P Dompϕq � Dompϕ1q, we have
vϕñP vϕ1.

Now we impose conditions on Sol so that confluence is guaranteed.

H0: If ϕ P SolpP ÎV Mq, then Dompϕq � V and fvpRanpϕqq � fvpMq.

H1: If SolpP ÎV Mq � tϕ1, . . . , ϕnu, n ¥ 1, then for all ϑ with Varpϑq X V � H, we have
SolpPϑ ÎV Mϑq � tpϕ1ϑq|V , . . . , pϕnϑq|Vu.

H2: If SolpP ÎV Mq � tϕ1, . . . , ϕnu, n ¥ 1, P ñP P 1, and M ñP M 1, then SolpP 1
ÎV M 1q �

tϕ1
1, . . . , ϕ

1
mu, m ¥ 1, and

(a) for all 1 ¤ i ¤ n there exists 1 ¤ j ¤ m such that ϕi ñP ϕ1
j and

(b) for all 1 ¤ j ¤ m there exists 1 ¤ i ¤ n such that ϕi ñP ϕ1
j .

These conditions extend the ones for the core dynamic pattern calculus from [4]. We will
show that they are sufficient for proving confluence of our calculus. We assume that the relations
ÑP and ñP in the lemmas and in the theorem below use a Sol which satisfies H0, H1, and
H2. We do not state this explicitly in the conditions.

Looking back to Example 1, is it not surprising that confluence does not hold there: Sol
used in that example violates the H1 property. Just take P � fpX,Y q,M � fpZq,V � tX,Y u,
and ϑ � tZ ÞÑ xa, byu. Then we get SolpP ÎV Mq � ttX ÞÑ ε, Y ÞÑ Zu, tX ÞÑ Z, Y ÞÑ εuu and
SolpPϑ ÎV Mϑq � ttX ÞÑ ε, Y ÞÑ xa, byu, tX ÞÑ a, Y ÞÑ bu, tX ÞÑ xa, by, Y ÞÑ εuu.

Lemma 1. The following inclusion hold: ÑP�ñP��P .

Lemma 2 (Fundamental Lemma). For all terms M and M 1 and for all substitutions ϕ and ϕ1

with Dompϕq � Dompϕ1q, if M ñP M 1 and ϕñP ϕ1, then MϕñP M 1ϕ1.

Lemma 3 (Diamond Property of Parallel Reduction). For all terms M , N , and Q, if M ñP N
and M ñP Q, then there exists a term W such that N ñP W and QñP W .

Theorem 1. For all terms M,N, and Q, if M �P N and M �P Q then there exists a term
W such that N �P W and Q�P W .

This theorem shows that under the condition of Sol satisfying H0, H1, and H2, the relation
�P (and, hence, the calculus) is confluent.

Acknowledgements

This research has been partially supported by the FCT fellowship (ref. SFRH/BD/62058/2009),
by the Austrian Science Fund (FWF) under the project SToUT (P 24087-N18), and the Rus-
taveli Science Foundation under the grant FR/611/4-102/12.

44

A Confluent Pattern Calculus with Hedge Variables Alves, Dundua, Florido and Kutsia

References

[1] P. Arrighi and G. Dowek. Linear-algebraic lambda-calculus: higher-order, encodings, and conflu-
ence. In Voronkov [15], pages 17–31.

[2] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, 1984. Revised
edition.

[3] G. Barthe, H. Cirstea, C. Kirchner, and L. Liquori. Pure patterns type systems. In A. Aiken and
G. Morrisett, editors, POPL, pages 250–261. ACM, 2003.

[4] H. Cirstea and G. Faure. Confluence of pattern-based calculi. In F. Baader, editor, RTA, volume
4533 of LNCS, pages 78–92. Springer, 2007.

[5] H. Cirstea and C. Kirchner. The rewriting calculus - parts I and II. Logic Journal of the IGPL,
9(3), 2001.

[6] A. Dı́az-Caro and B. Petit. Linearity in the non-deterministic call-by-value setting. In C.-H. L.
Ong and R. J. G. B. de Queiroz, editors, WoLLIC, volume 7456 of LNCS, pages 216–231. Springer,
2012.

[7] T. Ehrhard and L. Regnier. The differential lambda-calculus. Theor. Comput. Sci., 309(1-3):1–41,
2003.

[8] F. Jacquemard and M. Rusinowitch. Closure of hedge-automata languages by hedge rewriting. In
Voronkov [15], pages 157–171.

[9] C. B. Jay and D. Kesner. Pure pattern calculus. In P. Sestoft, editor, ESOP, volume 3924 of
LNCS, pages 100–114. Springer, 2006.

[10] T. Kutsia. Solving equations with sequence variables and sequence functions. J. Symb. Comput.,
42(3):352–388, 2007.

[11] T. Kutsia and B. Buchberger. Predicate logic with sequence variables and sequence function
symbols. In A. Asperti, G. Bancerek, and A. Trybulec, editors, MKM, volume 3119 of LNCS,
pages 205–219. Springer, 2004.

[12] C. Menzel. Knowledge representation, the world wide web, and the evolution of logic. Synthese,
182(2):269–295, 2011.

[13] M. Pagani and S. R. D. Rocca. Solvability in resource lambda-calculus. In C.-H. L. Ong, editor,
FOSSACS, volume 6014 of LNCS, pages 358–373. Springer, 2010.

[14] V. van Oostrom. Lambda calculus with patterns. Technical Report IR-228, Vrije Universiteit,
Amsterdam, 1990.

[15] A. Voronkov, editor. Rewriting Techniques and Applications, 19th International Conference, RTA
2008, Hagenberg, Austria, July 15-17, 2008, Proceedings, volume 5117 of LNCS. Springer, 2008.

[16] S. Wolfram. The Mathematica Book. Wolfram Media, 5th edition, 2003.

45

Synchronizing Applications of the Parallel

Moves Lemma to Formalize Confluence of

Orthogonal TRSs in PVS∗

Ana Cristina Rocha Oliveira1, André Luiz Galdino2 and Mauricio Ayala-Rincón1

1 Grupo de Teoria da Computação, Departamentos de Ciência da Computação e Matemática
Universidade de Braśılia, Braśılia D.F., Brazil

2 Departamento de Matemática
Universidade Federal de Goiás - Campus Catalão, Goiânia, Brazil

anacrismarie@gmail.com, galdino@unb.br, ayala@unb.br

Abstract

A complete formalization in PVS of the theorem of confluence of orthogonal term
rewriting systems is presented. The formalized proof uses the PVS theory trs maintaining
its distinguishing feature of remaining close to textbook’s proofs. The proof is based on
a formalization of the Parallel Moves Lemma. Auxiliary lemmas are given which use an
inductive construction of the crucial positions of a term originating a parallel divergence.
Classifying all these positions, by application of the parallel moves lemma to the crucial
divergence subterms, the desired common term of joinability is built.

1 Introduction

The formalization of confluence of orthogonal TRSs consists of a theory called orthogonality

that imports the PVS theory trs [GAR09], that is available in the NASA LaRC PVS li-
brary [trs13], and which includes formalizations of several rewriting results ranging from
specification of basic rewriting notions and properties to more elaborated results such as the
Critical Pair theorem [GAR10], confluence and modular properties of abstract reduction sys-
tems [GAR08] and completeness of first-order unification algorithms [AGdMAR11]. The theory
orthogonality specifies notions such as Ambiguous?(E), Left Linear?(E), Orthogonal?(E)
and parallel reduction?(E), all them of interest for dealing with formalization of theorems
about orthogonal TRS’s (see [ROAR13]).

Proofs of confluence of orthogonal TRSs have been known at least since Rosen’s seminal
work [Ros73] which is based on the well-known Parallel Moves Lemma (for short, PML). This
proof was adapted by Huet in [Hue80], for proving the confluence of left-linear and parallel
closed TRSs that admit critical pairs joinable from left to right in a sole step of parallel reduc-
tion. To the best of our knowledge, the sole related formalization was developed very recently
in Isabelle/HOL in [Thi12], where unlike orthogonality, weak orthogonality, that allows the ex-
istence of trivial critical pairs, is assumed. The chapter on orthogonality of [BKdV03] surveys
different styles of proofs of confluence of orthogonal TRSs, that are not different in essence.
Our style of proof follows the inductive approach in [BN98] which depends on the analysis of
properties of the parallel rewriting relation and the PML. In this analysis, the PML is applied
for guaranteeing parallel joinability of each principal redex involved in a parallel divergence
from a term s: u ⇔ s ⇒ v. These redices appear at positions π in which on the one side

∗Work supported by FAPDF PRONEX 2009/00091-0 grant. First, second and third authors partially sup-
ported by a CAPES Ph.D. scholarship, an FAPEG research support grant and a CNPq research fellowship.

N. Hirokawa & V. van Oostrom (eds.); 2nd International Workshop on Confluence, pp. 47–51 47

Confluence of Orthogonal TRSs in PVS Rocha Oliveira, Galdino and Ayala-Rincón

one step of rewriting and, on the other side one step of parallel reduction are applied: either
u|π ← tπ ⇒ v|π or u|π ⇔ tπ → v|π, being t|π an instance of the left-hand side (lhs, for short) of
a rule (see Fig. 1). From our point of view this choice is very adequate, because the discipline
of formalization that guided the development of the theory trs, that is also the one desired for
orthogonality, is providing proofs that are as close as possible to textbook’s proofs.

Regarding a previous work in which the general lines of the formalization of this theorem
were presented [ROAR13], here we specifically report on the necessary analysis to synchronize
applications of the PML to terms in order to join the divergence terms in a parallel divergence.
This involves the construction of a sequence of dominating positions in which either the same
rule was applied or on the one side a rewriting rule was applied and on the other side a parallel
reduction was applied. Each term of the parallel divergence is obtained by simple rewriting
steps at sequences of disjunct positions, using associated sequences of substitutions and rules.
The theory is available at www.mat.unb.br/∼ayala/publications.html.

2 Basic Notions and Definitions

Familiarity with rewriting notations and notions is assumed (c.f. [BN98, BKdV03]). Terms,
built from a given signature and a set of enumerable variables, are represented as trees and
positions of a term t as sequences of naturals. For a position π of a term t, t|π denotes the
subterm at position π and parallel positions π and π′ are sequences such that neither π is a
prefix of π′ nor π′ is a prefix of π′. Given a TRS R, the rewriting relation is denoted as →R,
and R is omitted when it is clear from the context. Composition of relations is denoted as ◦.

E

E

E E

Figure 1: Parallel Moves Lemma (PML)

The inverse of → is denoted by ← and syn-
tactic equality by =. The reflexive closure
of the relation → is denoted as →= and
the reflexive transitive closure as →∗. Sim-
ilarly, ∗← will denote the reflexive transitive
closure of ←. The relations of local diver-
gence, divergence and joinability are given
by ← ◦ →, ∗← ◦ →∗ and →∗ ◦ ∗←, re-
spectively. One says that → is confluent if
(∗← ◦ →∗) ⊆ (→∗ ◦ ∗←); and that it has the
diamond property if (← ◦ →) ⊆ (→ ◦ ←).

A rule e = (l, r) is a pair of terms such
that the lhs cannot be a variable and the vari-
ables occurring in its right-hand side (rhs, for
short) should appear in the lhs. A TRS is
given as a set of rules. The reduction relation
→E induced by a TRS E is built as follows:
a term s reduces to t, denoted as s → t, if
s = s[π ← lhs(e)σ] →E s[π ← rhs(e)σ] = t,
where, in general, u[π ← v] denotes the term
obtained from u by replacing the subterm at
position π of u by the term v.

Another crucial relation is parallel reduction: one says that s reduces in parallel to t, denoted
as s ⇒ t, if there exist finite sequences of the same length n ≥ 0, Π := π1, . . . , πn; Σ :=
σ1, . . . , σn and Γ := e1, . . . , en of parallel positions of s, substitutions and rules, respectively,
such that: ∀1 ≤ i ≤ n : s|πi = lhs(ei)σi, and t is obtained from s, by replacing all subterms

48

Confluence of Orthogonal TRSs in PVS Rocha Oliveira, Galdino and Ayala-Rincón

at positions in Π by t|πi = rhs(ei)σi. All this is summarized by the following notation:
s = s[π1 ← l1σ1, . . . , πn ← lnσn] ⇒E s[π1 ← r1σ1, . . . , πn ← rnσn] = t, where, li = lhs(ei) and
ri = rhs(ei), for 1 ≤ i ≤ n. For short, notation s ⇒ s[Π ← rhs(Γ)Σ] is used and one will say
that s reduces in parallel through reductions at positions Π using Σ-instances of rules Γ.

By simple analysis one has that → ⊆ ⇒ ⊆ →∗. Thus, →∗ = ⇒∗, from which proving the
diamond property for ⇒ will provide a proof of confluence of →. Thus, the crucial result to be
formalized is the theorem below.

Theorem 2.1 (Orthogonality implies diamond property). Let R be a TRS orthogonal. Then,
the relation ⇒ has the diamond property.

Orthogonal TRSs have no critical pairs and are left-linear. The PML (see Fig. 1) states
that for all instances of rules of an orthogonal system, say (l, r)σ, if lσ ⇒ s, then there exists
a t such that rσ ⇒ t← s.

E
E

E
E

s

t t

u

1
2

Figure 2: Diamond property of parallel rewriting

Essentially, the proof is
based on the observation that
since instances of lhs’s of other
rules can only overlap at vari-
able positions of l, then by left-
linearity one has that s = lσ′

for some substitution σ′. Also,
for all variables xσ ⇒ xσ′.
Thus, one has lσ ⇒ lσ′ and
rσ ⇒ rσ′ ← lσ.

In order to prove the di-
amond property of orthogo-
nal TRSs (see Fig. 2), the
structure of a parallel diver-
gence should be stratified in
such a way that crucial posi-
tions are chosen to apply ei-
ther the PML or non ambi-
guity (inexistence of CPs). A
parallel divergence from a term
s through positions Π1 and
Π2 correspondingly using Σ1

and Σ2-instances of rules Γ1

and Γ2, has the form t1 =
s[Π1 ← rhs(Γ1)Σ1] ⇔ s ⇒
s[Π2 ← rhs(Γ2)Σ2] = t2,
where Πi,Γi,Σi, for i = 1, 2, are sequences of parallel positions of s, rules and substitutions,
respectivelly, as in the definition of parallel reduction.

To prove theorem 2.1, a term u should be built such that t1 ⇒ u⇔ t2.

3 Formalization

The formalization of the Diamond Property of parallel reduction of orthogonal TRSs is done by
induction on the length of crucial positions occurring in a parallel divergence. These positions
are built through the specification of an inductive operator Pos Over(Π1,Π2) that builds the

49

Confluence of Orthogonal TRSs in PVS Rocha Oliveira, Galdino and Ayala-Rincón

subsequence of positions from Π1 that are parallel to all positions in Π2 or that have posi-
tions in the sequence Π2 below them. Thus, the crucial positions of a divergence are given
by a sequence Π carefully constructed and corresponding to the sequence Pos Over(Π1,Π2)∪
Pos Over(Π2,Π1)∪ (Π1∩Π2), where by ∪ and ∩ of sequences one means the sequence obtained
by concatenation and by including only common members, respectively. Intuitively, it is easy
to check (see Fig. 2) that exactly the subterms at these positions are the ones modified in the
parallel divergence and that joining the subterms at these positions of t1 and t2 will provide
the joinability term u. But synchronizing the one-step-parallel movements from the subterms
at these positions of t1 and t2, that is essentially building the necessary premisses to apply
the PML, requires a great deal of technical work which corresponds to a significant part of the
whole formalization.

To guarantee that these crucial positions Π, as mentioned above, are the ones modified when
a term s parallelly diverges to t1 and t2, the lemma replace par pos dominance was proved.
This lemma shows that if s⇒ ti through reductions at positions Πi, for i = 1, 2 correspondingly,
then one is able to write ti as s[Π← (ti|π)π∈Π]. This is possible because for every position π′ in
Πi, there exists a position π in Π that is (above or) prefix of π′, what is satisfied by Π indeed.

Regarding joinability of subterms at positions π in Π of t1 and t2, two cases are to be
analyzed. Firstly, the subterms of t1 and t2 at a position π in Π1 ∩Π2 are easily joined in one
step of parallel reduction because these subterms are identical since there are no critical pairs
in an orthogonal TRS. Secondly, the lemma divergence in Pos Over shows explicitly how the
divergence in the subterms of s, t1 and t2 at a position π in Pos Over(Π1,Π2)∪Pos Over(Π2,Π1)
satisfies the conditions required by the PML. So subterms t1|π and t2|π are joinable in one step
of parallel reduction too (see Fig 1).

So, by the discussion in the last paragraph, for all π in the sequence of crucial positions
Π, there exists uπ such that t1|π ⇒ uπ ⇔ t2|π whenever t1 ⇔ s ⇒ t2 through reductions at
positions Π1 and Π2. A sequence of terms U := (uπ)π∈Π is built such that replacing subterms of
s at these positions gives the required term of parallel joinability: u = s[Π← U]. At this point
it is necessary to stress that a great deal of effort was necessary to formalize the synchronization
the positions, rules and substitutions of Πi,Γi and Σi, for i = 1, 2, involved in the construction
of the terms uπ and in general in the construction of the joinability term u.

Another important lemma to conclude the proof of diamond property of parallel reduction
is parallel reduction context, which was necessary because one cannot guarantee directly
that, if t1|π ⇒ uπ, ∀π ∈ Π, then t1 ⇒ u. The formalization of this lemma uses induction on
the length of the sequence of crucial positions Π and, through it, it is possible to conclude that
t1 = s[Π← (t1|π)π∈Π] ⇒ s[Π← U] = u⇔ s[Π← (t2|π)π∈Π] = t2.

Excluding all these technical details necessary to adequately apply the PML, the formal-
ization of confluence of orthogonal TRSs follows the sketch of proof presented in Section 6.4
of [BN98]. In its current status, the PVS theory orthogonality has about 53000 lines of proofs
and 770 lines of specification. It is worth mentioning that the proof file includes also typing
information that substantially increases over the part strictly related with the formalization.

4 Related work and Conclusions

The PVS theory orthogonality includes a complete formalization of the theorem of confluence
of orthogonal TRSs which is based on the PML. Although the formalization follows the lines
of textbook’s proofs such as the one given in [BN98], its development required a great deal of
invisible effort that was necessary to adequately apply the PML. Several additional lemmas
were formalized in order to prove that a parallel divergence can be structured as an ordered

50

Confluence of Orthogonal TRSs in PVS Rocha Oliveira, Galdino and Ayala-Rincón

sequence of crucial divergences from subterms of the term of divergence, from which instances of
the hypotheses of the PML are detected. Then, applying the PML to these subterms one builds
a general term of joinability in parallel. The formalization of the PML was finished obtaining
in this way a complete formalization of the theorem of confluence of orthogonal TRSs.

Future developments and extensions are related with the usability of this formalization
to check automatically confluence of functional specifications that follow the discipline of or-
thogonality. Also, an interesting investigation is related with formalization of confluence of
several variants such as weak orthogonal TRSs and Church-Rosser theorems for variants of
the λ-calculus. Adaptation of the proof style used here to the alternative definition of parallel
reduction used in the short proof of confluence for variants of the λ-calculus in [Tak95], and
extensible for orthogonal TRSs as it is done in the chapter on orthogonality in [BKdV03], is
also of great interest. Other technologies of proof surveyed in [BKdV03] as the one based on
developments [vO97] as well as strengthening the current result to the permutation equiva-
lence [HL91], that were pertinently pointed out by the reviewers, deserve formalizations, but
although parts of the current formalization can be reused, they will require formalization de-
velopments substantially different from the current one.

References

[AGdMAR11] A.B. Avelar, A.L. Galdino, F.L.C. de Moura, and M. Ayala-Rincón. A Formalization
of the Theorem of Existence of First-Order Most General Unifiers. In Proceedings 6th
Workshop on Logical and Semantic Frameworks with Applications, LSFA’11, volume 81
of EPTCS, pages 63–78, 2011.

[BKdV03] M. Bezem, J.W. Klop, and R. de Vrijer, editors. Term Rewriting Systems by TeReSe.
Number 55 in Cambridge Tracts in Theoretical Computer Science. Cambridge UP, 2003.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge UP, 1998.

[GAR08] A. L. Galdino and M. Ayala-Rincón. A Formalization of Newman’s and Yokouchi Lem-
mas in a Higher-Order Language. Journal of Formalized Reasoning, 1(1):39–50, 2008.

[GAR09] A. L. Galdino and M. Ayala-Rincón. A PVS Theory for Term Rewriting Systems. In
Proceedings of the Third Workshop on Logical and Semantic Frameworks, with Applica-
tions - LSFA’08, volume 247 of ENTCS, pages 67–83, 2009.

[GAR10] A. L. Galdino and M. Ayala-Rincón. A Formalization of the Knuth-Bendix(-Huet)
Critical Pair Theorem. J. of Automated Reasoning, 45(3):301–325, 2010.

[HL91] G. P. Huet Huet and J.-J. Lévy. Computations in Orthogonal Rewriting Systems, I. In
Computational Logic - Essays in Honor of Alan Robinson, pages 395–414, 1991.

[Hue80] G. Huet. Confluent Reductions: Abstract Properties and Applications to Term Rewrit-
ing Systems. J. of the ACM, 27(4):797–821, October 1980.

[ROAR13] A. C. Rocha Oliveira and M. Ayala-Rincón. Formalizing the confluence of orthogonal
rewriting systems. CoRR, abs/1303.7335, 2013.

[Ros73] B. K. Rosen. Tree-manipulating systems and church-rosser theorems. J. of the ACM,
20(1):160–187, 1973.

[Tak95] M. Takahashi. Parallel Reductions in lambda-Calculus. Inf. Comput., 118(1):120–127,
1995.

[Thi12] R. Thiemann. Certification of Confluence Proofs using CeTA. In First International
Workshop on Confluence (IWC 2012), page 45, 2012.

[trs13] Theory trs. Available at http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library, NASA

LaRC PVS library, consulted March 2013.

[vO97] V. van Oostrom. Developing Developments. Theor. Comput. Sci., 175(1):159–181, 1997.

51

KBCV 2.0 – Automatic Completion

Experiments∗

Thomas Sternagel

University of Innsbruck, Innsbruck, Austria
thomas.sternagel@uibk.ac.at

Abstract

This paper describes the automatic mode of the new version of the Knuth-Bendix
Completion Visualizer. The internally used data structures have been overhauled and the
performance was dramatically improved by introducing caching, parallelization, and term-
indexing in the computation of critical pairs and simplification. The new version is much
faster and can complete three more systems.

1 Introduction

The Knuth-Bendix Completion Visualizer (KBCV) is an interactive/automatic tool for Knuth-
Bendix completion and equational logic proofs. The basic functions of the previous release
are described in detail in [5, 7]. This paper addresses implementation issues to improve the
performance of the automatic completion mode and reports on experiments of the new release
KBCV 2.0. The tool is available under the GNU Lesser General Public License 3 at

http://cl-informatik.uibk.ac.at/software/kbcv

In the sequel we assume familiarity with term rewriting, and completion [1]. Nevertheless
we recall the basics.

Completion is a procedure which takes as input a (finite) set of equations E and a reduction
order > (or it tries to construct this reduction order on the fly with the help of an external
termination tool, see [8]) and attempts to construct a terminating and confluent term rewrite
system (TRS) R with the same equational theory as E . In case the completion procedure
succeeds, two terms are equivalent with respect to E if and only if they reduce to the same
normal form with respect to R, that is, R represents a decision procedure for the word problem
of E .

The computation is done by generating a finite sequence of intermediate TRSs which consti-
tute approximations of the equational theory of E . Following Bachmair and Dershowitz [2] the
completion procedure can be modeled as an inference system (see Figure 1). The inference rules
work on pairs (E ,R) where E is a finite set of equations and R is a finite set of rewrite rules.
The goal is to transform an initial pair (E ,∅) into a pair (∅,R) such that R is terminating,
confluent and equivalent to E . In our setting a completion procedure based on these rules may
succeed (find R after finitely many steps), loop, or fail. In Figure 1 a reduction order > is

provided as part of the input. We use s
A→R u to express that s is reduced by a rule `→ r ∈ R

such that ` cannot be reduced by another rule with left-hand side s. The notation s
.≈ t denotes

either of s ≈ t and t ≈ s.
KBCV internally uses indexed equations i : l ≈ r and rules j : l→ r, where i and j are unique

positive integers and l and r are terms, called the left- and right-hand side respectively.

∗Supported by the Austrian Science Fund (FWF) international project I963 and the Japan Society for the
Promotion of Science.

N. Hirokawa & V. van Oostrom (eds.); 2nd International Workshop on Confluence, pp. 53–57 53

KBCV 2.0 Sternagel

DEDUCE
(E ,R)

(E ∪ {s ≈ t},R)
if s R← u→R t

COMPOSE
(E ,R∪ {s→ t})
(E ,R∪ {s→ u}) if t→R u

COLLAPSE
(E ,R∪ {s→ t})
(E ∪ {u ≈ t},R)

if s
A→R u

ORIENT
(E ∪ {s .≈ t},R)

(E ,R∪ {s→ t}) if s > t

DELETE
(E ∪ {s ≈ s},R)

(E ,R)

SIMPLIFY
(E ∪ {s .≈ t},R)

(E ∪ {u .≈ t},R)
if s→R u

Figure 1: The inference rules of completion.

2 Optimizing Automatic Completion

KBCV 2.0 is implemented in Scala 2.10.0,1 an object-functional programming language which
compiles to Java bytecode. For this reason KBCV is portable and runs on Windows and Linux
machines. The developed term library (scala-termlib, available from KBCV’s homepage) was
completely overhauled and consists of approximately 2100 lines of code. The new KBCV builds
upon this library and has an additional 5000 lines of code.

The main goal for this release was to improve the performance of KBCV especially in au-
tomatic mode. Some more details on the automatic mode can be found in [5, Section 5.2.1]
and [7, Section 2.2]. Looking at the flow chart of the automatic mode depicted in Figure 2 we
first had to identify critical parts, where speed-up would be possible.

1. The procedure starts in the SIMPLIFY-phase, where both sides of equations are rewritten
as far as possible.

2. Trivial equations, that is, equations where both sides are the same are dropped in the
DELETE-phase.

3. The third phase checks if E is empty and if all critical pairs between left-hand sides of
rules in R are joinable.2

4. Then the procedure chooses a single equation which it tries to orient. The used heuristic
is to select an equation where the length of the left- and right-hand sides is minimal. The
cost for orientation mainly depends on the used termination tool.

5. Now in the COMPOSE-phase the procedure simplifies all right-hand sides of rules as far
as possible.

6. After that, in the COLLAPSE-phase, it tries to simplify left-hand sides of rules.

7. Finally DEDUCE computes critical pairs and adds them to the set of equations.

From this assessment we see that (2) is trivial and already very fast and (4) mainly depends
on an external program. So we focus on the remaining phases. In the sequel we will some-
times refer to (3) and (7) collectively as critical pair computation and to (1), (5), and (6) as
simplification.

1http://www.scala-lang.org/
2The computation and check for joinability of critical pairs is only needed because of KBCV’s interactive mode

in which inference rules may be fired in an arbitrary order.

54

KBCV 2.0 Sternagel

SIMPLIFY

DELETE E = ∅

complete

ORIENT

COMPOSE

COLLAPSEDEDUCE

TTT2to NF

new CPs

YES

choose
s ≈ t

to NF

Figure 2: KBCV’s automatic completion procedure.

The first idea (which was already partly implemented in versions 1.7 and 1.8 of KBCV) was
to prevent re-computation by introducing caching. Next the independent parts of the procedure
were parallelized to make the most of modern multi-core/processor architectures. Finally we
also introduced term-indexing in order to speed up unification and matching of terms. These
steps are described in some more detail in the next three sections. We compare the resulting
speed-ups for various combinations of these methods in Section 3.

2.1 Caching

In order to avoid redundancy in critical pair computations and simplifications we introduced
four new data structures for caching.

Each time a critical pair is computed KBCV stores the pair of indices of the overlapping rules
which caused the new equation. The next time automatic completion has to compute critical
pairs (in phases (3) or (7) of the procedure) it only computes critical pairs from overlaps which
are not already stored.

We use three different caches for COMPOSE, COLLAPSE, and SIMPLIFY respectively. The
first cache has an entry for each rule. In this entry we store the set of indices of rules which
have already been tried to simplify this rule. Next time automatic completion has to simplify
a rule it only tries the rules which are not cached yet. The other two caches work just in the
same way.

2.2 Parallelization

While automatic completion (Figure 2) executes the single phases sequentially, within a phase
there are completely independent computations which can be parallelized.

• DEDUCE: The computation of critical pairs.

• COMPOSE: The composition of rules.

• COLLAPSE: The collapsing of rules.

• SIMPLIFY: The simplification of equations.

In order to get the most out of modern multi-core architectures we re-implemented those four
phases. Now each single step (e.g. the computation of critical pairs between two particular

55

KBCV 2.0 Sternagel

KBCV-b-i-u KBCV-i-u KBCV-b-u KBCV-b-i KBCV-u KBCV-i KBCV-b KBCV

completed 85 87 85 85 89 90 85 90
total time 1142.6 512.8 498.0 384.5 1163.4 1321.3 321.8 1116.2
avg. time 13.4 5.9 5.9 4.5 13.1 14.7 3.8 12.4
AD93 Z22 83.9 44.7 41.8 32.9
BGK94 D16 30.5 25.7 25.6 23.2
BGK94 Z22W 598.7 220.6 201.6
LS94 G1 583.6 514.5
SK90 3.09 168.1 161.1 90.1

Table 1: Experimental results on 115 systems, timeout: 600s.

rules, or one specific rewrite step on one side of an equation) are separate computations which
can be handled by a pool of worker threads. The main program waits until all results are
computed and then continues with the non-parallel part of the procedure.

2.3 Term Indexing

Both unification of terms (needed for the computation of critical pairs) and matching (needed
for rewriting of terms) can get very expensive for large systems with large left-hand sides of
rules. To counteract that we now store the left-hand sides of rules in a discrimination tree
(see for example [4]) which allows for very fast filtering of so called candidate sets (which are
typically very small). Getting a unifiable or matching term from this candidate set is much
faster than checking all left-hand sides of rules.

3 Experiments

The experiments we describe here were carried out on a 64bit GNU/Linux machine with 48
AMD OpteronTM 6174 processors and 315 GB of RAM. The kernel version is 2.6.32. The
version of Java on this machine is 1.7.0 03. For the JVM we limited the stack size for each
thread to 10MB, set the initial heap size to 1GB, and the maximum heap size to 2GB. The
test-bed we worked with consists of 115 systems from the distribution of MKBTT.3 KBCV was
launched using the following flags:

./kbcv -a -p -s 600 -m "./ttt2 -cpf xml - 1" <inputfile>

Here the -a flag tells KBCV to switch to automatic mode, -p causes KBCV to output the CPF
proof of completion on stdout, -s 600 sets the timeout to 600 seconds and finally -m sets the
termination-check method to use, in our case calls to the external termination tool TTT2. There
are three more flags we used in the experiments: -b disables caching, -i disables term-indexing,
and -u disables parallelization. The tool instances where parallelization was enabled used all
of the 48 processors.

The upper part of Table 1 gives the number of completed systems, the total time needed
to complete them and the average time for each of the completed systems for different configu-
rations of KBCV. The lower part lists systems which only certain configurations of KBCV could
complete together with the time. The detailed experiments are available online.4 Here each

3http://cl-informatik.uibk.ac.at/software/mkbtt/index.php
4http://cl-informatik.uibk.ac.at/software/kbcv/experiments/kbcv2/

56

KBCV 2.0 Sternagel

column is labeled with KBCV plus the set flags. So the first column labeled KBCV-b-i-u gives
the results for KBCV without caching, term-indexing, and parallelization, while the last column
shows the results for KBCV using all three methods. What we see is that without optimization
KBCV can complete 85 out of the 115 systems and the average time for that is 13.4 seconds
per system. Without caching (columns three, four, and seven) we are not able to complete
additional systems, although we achieve a speed-up of about 2.6 using only term-indexing or
parallelization, and 3.5 using both of these methods. Only using caching (column two) already
establishes two more systems with a speed-up for the initial 85 systems of about 2.9. Caching
plus term-indexing (column five) already yields two more successful systems and a speed-up
with respect to the 85 systems of about 3.5. If we combine caching with parallelization (column
six) we get yet another system and a speed-up for the initial systems of about 4.0. Finally
KBCV using all three methods achieves a speed-up of 4.5 for the initial 85 systems. All found
proofs have been certified by CeTA [6].

4 Conclusion

Three different methods to enhance KBCV’s automatic completion procedure have been investi-
gated and compared. We have seen that these methods, most notably caching, achieve a huge
performance boost for the automatic completion procedure of KBCV 2.0.

If we look at the 115 systems we tested, we see that most of them only consist of about
10 to 20 rules and that the left-hand sides of those are also pretty small. When we work with
much larger systems with more complicated left-hand sides parallelization and term-indexing
become more and more important. We for example tried to only compute critical pairs for a
subset of the HOL Light [3] simpset (about 3000) rules. Without parallelization we had to cancel
the experiment after several days. Using parallelization KBCV was able to compute the 300,000
critical pairs in less than two hours.

A next step to further push the procedure would be to investigate different heuristics for
the selection of equations in the ORIENT-phase.

References

[1] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, 1998.

[2] Leo Bachmair and Nachum Dershowitz. Equational inference, canonical proofs, and proof orderings.
J. ACM, 41:236–276, 1994.

[3] John Harrison. HOL Light: A tutorial introduction. In FMCAD, pages 265–269, 1996.

[4] I. V. Ramakrishnan, R. C. Sekar, and Andrei Voronkov. Term Indexing. In John Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning, pages 1853–1964. Elsevier and
MIT Press, 2001.

[5] Thomas Sternagel. Automatic proofs in equational logic. Master’s thesis, University of Innsbruck,
2012.

[6] Thomas Sternagel, René Thiemann, Harald Zankl, and Christian Sternagel. Recording completion
for finding and certifying proofs in equational logic. In IWC’12, pages 31–36, 2012.

[7] Thomas Sternagel and Harald Zankl. KBCV - Knuth-Bendix completion visualizer. In Proceedings
of the 6th International Joint Conference on Automated Reasoning, volume 7364 of LNAI, pages
530–536. Springer-Verlag, 2012.

[8] Ian Wehrman, Aaron Stump, and Edwin Westbrook. Slothrop: Knuth-Bendix completion with a
modern termination checker. In RTA’06, pages 287–296. Springer-Verlag, 2006.

57

Confluent Let-Floating

Clemens Grabmayer1 and Jan Rochel2

1 Department of Philosophy, Utrecht University
clemens@phil.uu.nl

2 Department of Computing Sciences, Utrecht University
jan@rochel.info

Abstract

We develop a rewrite analysis for floating (moving) let-bindings in expressions of λletrec,
the λ-calculus with the construct letrec that is denoted by let (as in the programming
language Haskell). In particular we consider a HRS (higher-order rewrite system) for let-
lifting, which moves let-bindings upward, and another HRS for let-sinking, which moves
let-bindings downward. We show confluence and termination of the let-lifting and let-sin-
king rewrite systems, yielding the existence of unique normal forms. Our confluence proofs
use a critical pair analysis and the critical pair theorem to establish local confluence, and
the termination of these systems to obtain confluence by applying Newman’s Lemma.

Let-floating is an operation employed by transformations that simplify and optimize program
code as part of compilers of functional languages. For example the lambda-lifting transformation
of functional programs into supercombinators contains a step called ‘let-floating’ [4, 15.5.4]
or ‘block-floating’ [1], in which let-bindings are floated out (upward, we call it ‘let-lifting’).
Lambda-lifting transforms a let-block-structured program into a set of recursive equations whose
right-hand sides are supercombinators. This transformation has an inverse called lambda-drop-
ping [1], which contains the step ‘block-sinking’ in which let-bindings are floated in (downward,
we call it ‘let-sinking’). The use of let-floating operations in either direction for optimizing and
fine-tuning the execution behavior of compiled functional programs has been studied in [8].

As a more general concept, let-floating acts on expressions of λletrec, the λ-calculus with the
construct letrec for formulating recursion and explicit substitution. We denote letrec as let like in
the programming language Haskell (no confusion should arise with the non-recursive explicit-
substitution construct let), but keep the symbol λletrec. In our terminology, ‘floating’ stands for
movements in either direction, whereas ‘lifting’ and ‘sinking’ indicate upward and downward
shifts in the syntax tree, respectively. Let-floating manipulates the structure of let-bindings in
λletrec-expressions, but preserves the unfolding semantics of the expressions (the denoted infinite
λ-terms). A let-binding-group B can be lifted up toward the innermost λ-abstraction that
has a free variable occurrence in B. A group of n interdependent let-bindings f⃗ = F⃗ (f⃗) with
f⃗ = ⟨f1, . . . , fn⟩ can be sunk until an applicative term is encountered where both in its function
subterm and in its argument subterm some recursion variable fi with i ∈ {1, . . . , n} occurs.

Our interest in let-floating stems from an investigation of the relationship between λletrec-ex-
pressions and term graph representations for cyclic λ-terms [3]. Translations of λletrec-expressions
into representing term graphs typically ignore the precise positioning of the let-bindings, and
instead extract the cyclic structure of the term. Therefore such translations map λletrec-expres-
sions that are related by let-floating to the same term graph. For the definition of (left-)inverses
of such translations, it is desirable to obtain natural representatives of let-floating equivalence
classes by restricting the direction of let-floating operations to upward or downward.

We develop a rewrite analysis of let-floating. When decomposed into locally applicable
rewrite steps on λletrec-expression, let-floating operations typically move let-bindings upward or
downward over applications and abstractions, or merge different let-binding groups, given that
such steps do not interfere with the structure of the λ-bindings. We formalize λletrec-expressions

N. Hirokawa & V. van Oostrom (eds.); 2nd International Workshop on Confluence, pp. 59–64 59

Confluent Let-Floating Grabmayer and Rochel

as higher-order rewriting system (HRS) terms [10], and define two HRSs that describe different
kinds of let-floating transformations as rewrite systems: let-lifting for moving let-bindings up-
ward, and let-sinking for moving them downward. In both cases let-bindings are split whenever
necessary for moves, and merged whenever possible. We show confluence and termination of
the let-lifting and let-sinking rewrite systems, and by that, unique normalization.

1 Let-lifting

We formulate expressions in (untyped) λletrec as HRS-terms [10] over the signature {abs, app} ∪{letn in ∣ n ∈ N}, where abs ∶ (trm→ trm)→ trm, app ∶ trm→ trm→ trm, and for all n ∈ N, letn in ∶(trmn → trmn+1)→ trm over the base type trm. As an example, consider the λletrec-term:

λx. let f = g, g = x in f x abs(x. let2 in(fg. (g, x, app(f, x))))
in familiar (first-order) notation and in a formulation as HRS-term. Here the index 2 in the
symbol let2 in indicates the number of bindings in the binding group of the let-expression. While
building on this HRS-formulation, we will generally use the familiar syntax for let-expressions.

We consider five schemes of rules for lifting let-bindings, see below. A step according to a
rule from (let↗@0) or (let↗@1) lifts a let-binding-group over an application. In steps according
to rules from (let↗λ), a let-binding-group immediately below an abstraction is either lifted over
the abstraction in its entirety, or it is split into a part that is lifted and a part that stays behind.
Steps according to rules in (let-in let↗) merge the binding-groups of two let-expressions where
one forms the in-part of the other. A step according to rules from (let let↗) lifts, out of its
position, the binding-group B′ of a let-expression that defines a recursive variable g in a let-bin-
ding-group B, merges B with B′, and adapts the definition of g accordingly. Sequences of steps
due to (exchange)-rules can rearrange the order in which let-bindings occur in a binding-group.

(let↗@0) (let f⃗ = F⃗ (f⃗) in E0(f⃗))E1 → let f⃗ = F⃗ (f⃗) in E0(f⃗)E1

(let↗@1) E0 (let f⃗ = F⃗ (f⃗) in E1(f⃗)) → let f⃗ = F⃗ (f⃗) in E0E1(f⃗)
(let↗λ) λx. let f⃗ = F⃗ (f⃗), g⃗ = G⃗(f⃗ , g⃗, x) in E(f⃗ , g⃗, x)

→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
let f⃗ = F⃗ (f⃗) in λx.E(f⃗ , x) if g⃗ is empty

let f⃗ = F⃗ (f⃗) in λx. let g⃗ = G⃗(f⃗ , g⃗, x) in E(f⃗ , g⃗, x) if neither f⃗
nor g⃗ are empty

(let-in let↗) let f⃗ = F⃗ (f⃗) in let g⃗ = G⃗(f⃗ , g⃗) in E(f⃗ , g⃗)
→ let f⃗ = F⃗ (f⃗), g⃗ = G⃗(f⃗ , g⃗) in E(f⃗ , g⃗)

(let let↗) let f⃗ = F⃗ (f⃗ , g), g = let h⃗ = H⃗(f⃗ , g, h⃗) in G(f⃗ , g, h⃗) in E(f⃗ , g)
→ let f⃗ = F⃗ (f⃗ , g), g = G(f⃗ , g, h⃗), h⃗ = H⃗(f⃗ , g, h⃗) in E(f⃗ , g)

(exchange) let B0, fi = Fi(f⃗), fi+1 = Fi+1(f⃗), B1 in E(f⃗)
→ let B0, fi+1 = Fi+1(f⃗), fi = Fi(f⃗), B1 in E(f⃗)

Here we have used the familiar syntax of let-expressions instead of the underlying HRS-syntax.1

1E.g. app((letn in(y⃗. (x1(y⃗), . . . , xn(y⃗), z0(y⃗)))), z1) → letn in(y⃗. (x1(y⃗), . . . , xn(y⃗), app(z0(y⃗), z1))) are the
rules of scheme (let↗@0) in HRS-notation with the leading abstractions x1 . . . xnz0z1. on either side kept implicit.

60

Confluent Let-Floating Grabmayer and Rochel

Note that an alternative formulation of (let↗λ) that only can lift a let-binding-group over
an abstraction in its entirety, but that does not allow to split it, has a drawback. In order to
obtain the same let-lifting rewrite relation, also a rule for splitting binding-groups is required,
for example the converse of (let-in let↗). But then together with the rule (let-in let↗) itself,
which is needed for confluence, avoidable non-termination is introduced in the let-lifting system
(which is of a different kind than the non-termination caused by (exchange)-steps alone).

By Rletd we denote the HRS consisting of the first five rules above. By Rletdex we denote the
HRS consisting of all six rules above, thus the extension of Rletd with the rule (exchange). The
rewrite relations of Rletd and Rletdex are denoted by letd and letdex, respectively. The rewrite
relation →ex is induced by steps according to the rule (exchange), and =ex is the convertibility
relation with respect to →ex. The let-lifting rewrite relation let↗ on λletrec-terms is defined as
the rewrite relation letd modulo =ex, that is (see below), by let↗ ∶= =ex ⋅ letd ⋅ =ex. For example:

λx. (let f = let g = x in g in f)x let↗ λx. (let f = g, g = x in f)x let↗ λx. let f = g, g = x in f x

is a let↗-rewrite sequence (and even a letd-rewrite sequence) to a normal form. Another final

let↗-step here yields the =ex-equivalent term λx. let g = x, f = g in f x. Therefore let↗ is not
confluent. However, it will turn out that let↗ is ‘confluent modulo’ =ex.

An abstract equational rewrite system A = ⟨A,→, ∼⟩ is an abstract rewrite system ⟨A,→⟩
that is endowed with an equivalence relation ∼ on A. The rewrite relation →/∼/ of → modulo ∼ is
defined as →/∼/ ∶= ∼ ⋅→ ⋅ ∼. The class rewrite relation →[∼] of → with respect to ∼ is induced by→/∼/ on the ∼ -equivalence classes on A by: for all a, b ∈ A, [a]∼ →[∼] [b]∼ if and only if a→/∼/ b.

The rewrite relation → is called locally confluent modulo ∼ (resp. confluent modulo ∼) if
it holds: ← ⋅ → ⊆ ↠ ⋅ ∼ ⋅↞ (resp. ↞ ⋅ ↠ ⊆ ↠ ⋅ ∼ ⋅↞). The lemma below reduces confluence
properties for →/∼/ and →[∼] to corresponding properties of a rewrite relation subsumed by →/∼/.
Lemma 1. Let ⟨A,→, ∼⟩ be an abstract equational rewrite system with ∼ = ↔∗∼ for a rewrite
relation →∼ on A. Then it holds: if ∼ ⋅ → ∪ →∼ is locally confluent (confluent), then →/∼/ is
locally confluent modulo ∼ (confluent modulo ∼), and →[∼] is locally confluent (confluent).

The let-lifting rewrite relation [let]↗ on =ex-equivalence classes of λletrec-terms is defined as
the class rewrite relation [let]↗ ∶= letd[=ex] (note that let↗ = letd/=ex/):[L]=ex [let]↗ [L′]=ex ∶⇐⇒ L let↗ L′ (for all λletrec-terms L, L′) .
Lemma 2. let↗ is locally confluent modulo =ex, and [let]↗ is locally confluent.

Proof (Outline). We define a HRS Rlet↗ex with =ex ⋅ letd ∪ →ex as its rewrite relation, by
extending Rletdex through adding, for each rule ρ in Rletd, all variant rules ρφ with respect
to =ex-permutation steps =φex on the left-hand sides of the pattern of ρ. In this way each rule
scheme (σ) of Rletd gives rise to a rule scheme (σ)=ex of Rlet↗ex. Then every step =φex ⋅→ρ for
the rewrite relation =ex ⋅ let↗, where →ρ is a step according to a rule ρ of scheme (σ) in Rletd,
is a step →ρφ according to a variant rule ρφ of scheme (σ)=ex in Rlet↗ex.

Now it can be checked that all critical pairs of Rlet↗ex are joinable. For example, solving a
critical overlap between rules (let↗@0) in (let↗@0)=ex and (let↗@1) in (let↗@1)=ex :

(let f⃗ = F (f⃗) in E0(f⃗)) (let g⃗ = G(g⃗) in E1(g⃗)) let f⃗ = F (f⃗) in E0(f⃗) let g⃗ = G(g⃗) in E1(g⃗)
let g⃗ = G(g⃗) in (let f⃗ = F (f⃗) in E0(f⃗))E1(g⃗) let f⃗ = F (f⃗) in let g⃗ = G(g⃗) in E0(f⃗)E1(g⃗)
let g⃗ = G(g⃗) in let f⃗ = F (f⃗) in E0(f⃗)E1(g⃗) let g⃗ = G(g⃗), f⃗ = F (f⃗) in E0(f⃗)E1(g⃗)

(let↗@0)(let↗@1) (let↗@1)
(let-in let↗) ⋅ =ex(let↗@0)

(let-in let↗)
61

Confluent Let-Floating Grabmayer and Rochel

Then the critical pair theorem for HRSs [6] [10, Thm. 11.6.44] (note that the possibility to find
all critical pairs for a HRS is based on a matching algorithm for HRS first described in [6]) yields
that =ex ⋅ letd ∪ →ex is locally confluent. From this, it follows by Lemma 1 that let↗ = letd/=ex/
is locally confluent modulo =ex, and that [let]↗ is locally confluent. ◻
Remark 3. This proof (or actually that of Theorem 6) could also be based on an HRS-analogue
of a critical pair theorem by Petersen and Stickel [7, Thm. 9.3] for TRSs that are endowed with
an equational theory. Other versions of critical pair theorems for TRSs that are based on ‘critical→-pairs modulo ∼’ (e.g. Jouannaud [5]) suppose that → is ∼-coherent : if t ∼ s and t→+ t1, then
there there exist t′1 and s′ with t1 ↠ t′1 and s →+ s′ such that t′1 ∼ s′. Yet the relation letg
here is not =ex-coherent: while λx. let f = λy. y, g = x in f g admits an letd-step according to a
rule of (let↗λ), the =ex-equivalent term λx. let g = x, f = λy. y in f g is a letd-normal form. In
order to apply (an HRS-analogue of) such a theorem, the system has to be extended to one with
rewrite relation =ex ⋅ letd by introducing variant rules as in the proof above (also done in [7]).

Proposition 4. let↗ and [let]↗ are terminating.

Proposition 5. In every let↗-normal form, subterms starting with let occur only at the root
or below λ-abstractions. The same holds for every term representing a [let]↗-normal form.

Theorem 6. [let]↗ is confluent and terminating, and has the unique normalization property.

Proof. From Lemma 2 and Proposition 4 by Newman’s Lemma [10, Thm. 1.2.1]. ◻
2 Let-sinking

A candidate for a rewrite system for sinking let-bindings is the HRS that arises from the let-lif-
ting HRS Rlet↗ by reversing all of its rules. Unfortunately the resulting system is not confluent.
The problem is that the splitting rules for binding-groups, the converses of rules in (let-in let↗),
allow to sink, for a let-binding-group with two independent parts, each part into the other, so
that, in many situations, the results cannot be joined again. We note that adding (let-in let↗)
would remedy the situation, but at the cost of yielding a non-terminating let-sinking system.

Here we disallow the splitting rules for let-binding-groups altogether, but keep their converses
from (let-in let↗), yet now call the scheme (let↘ let). Yet we integrate the splitting rules
into those let-binding-movement rules for which sinking of entire binding-groups is not always
possible, namely rules for sinking let-bindings into the left or right subterm of an application,
see the rule schemes (let↗@0) and (let↗@1) below. As reflected in rules from (let↘λ), let-bin-
ding-groups can always be sunk into a λ-abstraction. The rule (let let↘) is the converse of(let let↗). So we consider the following five rule schemes for sinking let-bindings:

(let↗@0) let f⃗ = F⃗ (f⃗), g⃗ = G⃗(f⃗ , g⃗) in E0(f⃗ , g⃗)E1(f⃗)
→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(let g⃗ = G⃗(g⃗) in E0(g⃗))E1 if f⃗ is empty

let f⃗ = F⃗ (f⃗) in (let g⃗ = G⃗(f⃗ , g⃗) in E0(f⃗ , g⃗))E1(f⃗) if neither f⃗
nor g⃗ are empty

(let↗@1) let f⃗ = F⃗ (f⃗), g⃗ = G⃗(f⃗ , g⃗) in E0(f⃗)E1(f⃗ , g⃗)
→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E0 (let g⃗ = G⃗(g⃗) in E1(g⃗)) if f⃗ is empty

let f⃗ = F⃗ (f⃗) in E0(f⃗) (let g⃗ = G⃗(f⃗ , g⃗) in E1(f⃗ , g⃗)) if neither f⃗
nor g⃗ are empty

(let↘λ) let f⃗ = F⃗ (f⃗) in λx.E(f⃗ , x) → λx. let f⃗ = F⃗ (f⃗) in E(f⃗ , x)
62

Confluent Let-Floating Grabmayer and Rochel

(let↘ let) let f⃗ = F⃗ (f⃗) in let g⃗ = G⃗(f⃗ , g⃗) in E(f⃗ , g⃗) → let f⃗ = F⃗ (f⃗), g⃗ = G⃗(f⃗ , g⃗) in E(f⃗ , g⃗)
(let let↘) let f⃗ = F⃗ (f⃗ , g), g = G(f⃗ , g, h⃗), h⃗ = H⃗(f⃗ , g, h⃗) in E(f⃗ , g)

→ let f⃗ = F⃗ (f⃗ , g), g = let h⃗ = H⃗(f⃗ , g, h⃗) in G(f⃗ , g, h⃗) in E(f⃗ , g)
and additionally, the rules of the scheme (exchange) from Rlet↗. By Rletg we denote the HRS
consisting of the five rules above, and by Rletgex its extension with the rule (exchange). The
rewrite relations of Rletg and Rletgex are denoted by letg and letgex, respectively.

Since the binding-group merge rules with induced rewrite relation →merge are part of both
Rletd and Rletg (in the schemes (let-in let↗) in Rletd and (let↘ let) in Rletg), the induced
let-lifting and let-sinking rewrite relations are not precisely each other’s converse. See e.g.:

λx. let f = x, g1 = g2 f, g2 = g1 f in g1 g2
/letgelet

λx. let f = x in let g1 = g2 f, g2 = g1 f in g1 g2

Observe that the term on the left is a letg-normal form, and that the elet-step is a ←merge-step.
This example also shows that let-sinking does not always stack let-bindings as deeply as possible.
This, however, is consistent with the definition of ‘lambda-dropping’ and ‘block-sinking’ in [1].

Proposition 7. Every letg-step is either a →merge-step or the converse of a letd-step followed
by at most one →merge-step. Every letd-step is either a →merge-step or the converse of a letg-step
followed by at most one →merge-step.

The let-sinking rewrite relation let↘ on λletrec-terms is defined as the rewrite relation letg
modulo =ex, that is, by: let↘ ∶= letg/=ex/ = =ex ⋅ letg ⋅ =ex. The let-sinking rewrite relation [let]↘
on =ex-equivalence classes of λletrec-terms is defined as the class rewrite relation [let]↘ ∶= let↘[=ex].

As an example we consider the following let↘-rewrite sequence (it is actually a letg-rewrite
sequence) to normal form (this is the converse of the example above for let↗):

λx. let f = g, g = x in f x let↘ λx. (let f = g, g = x in f)x let↘ λx. (let f = let g = x in g in f)x
For similar (trivial) reasons as explained for let↗, also let↘ is not confluent. But while let↗

is confluent modulo =ex, this is not the case for let↘, and neither is [let]↘ confluent, yet. In
order to see this, consider the following forking let↘-steps:

λx.λy. (let f = λz. z in x) y ↙let λx.λy. let f = λz. z in xy let↘ λx.λy. x (let f = λz. z in y)
Here the =ex-equivalence classes of the reducts (obtained by rules in (let↗@0) and (let↗@1)
respectively) cannot be joined, because the redundant let-binding f = λz. z cannot be removed.
Therefore we extend the system by two rules for removing redundant and empty let-bindings:

(reduce) let f⃗ = F⃗ (f⃗), g⃗ = G⃗(f⃗ , g⃗) in E(f⃗) → let f⃗ = F⃗ (f⃗) in E(f⃗)
(nil) let in L → L

which can be called rules for garbage collection (in analogy with literature on explicit substitu-
tion). The rewrite relation →gc is induced by steps according to the rules (reduce) and (nil).
The let-sinking/reduce rewrite relation let↘gc is defined as the rewrite relation letg∪→gc modulo=ex, that is, by: let↘gc ∶= (letg ∪→gc)/=ex/ = =ex ⋅ (letg ∪→gc) ⋅ =ex And the let-sinking/reduce

rewrite relation [let]↘[gc] on =ex-equivalence classes of λletrec-terms is defined as the class rewrite
relation [let]↘[gc] ∶= let↘gc[=ex].

Using these relations we can join the forking steps from above as follows:

λx.λy. (let f = λz. z in x) y ↠gc λx.λy. x y ↞gc λx.λy. x (let f = λz. z in y)
63

Confluent Let-Floating Grabmayer and Rochel

Remark 8. In [2, 9] we introduce and study a rewrite system (formalized as a Combinatory
Reduction System) for unfolding λletrec-terms into infinite λ-terms. This system contains a rule
scheme that enables more general steps than those of the scheme (reduce), namely:

(%reduce▽) ∶ letrec f1 = L1 . . . fn = Ln inL → letrec fj1 = Lj1 . . . fjn′ = Ljn′ inL

(if fj1 , . . . , fjn′ are the recursion variables that are reachable from L)

However, due to the presence of the rule scheme (exchange) in the systems we consider here,
every step according to a rule of (%reduce▽) can be simulated by a number of →ex-steps followed
by a step according to a rule of (reduce). Thus the syntactically easier rules of (reduce) suffice
here. The availability of the rules of (exchange) also enables the use of the rules (let↗λ) and(let↘@i) (i ∈ {0,1}) in which a call graph analysis is enforced by a pattern of rather easy form.

Lemma 9. let↘gc is locally confluent modulo =ex, and [let]↘[gc] is locally confluent.

Proof (Idea). Similarly as in the proof of Lemma 2, a critical-pair analysis is carried out
for a HRS Rlet↘gc with →ex ∪ =ex ⋅ (letg ∪→gc) as its rewrite relation. Here the analysis is
more laborious (two more rules), and considerably more tedious (for three schemes, (let↗@0),(let↗@1), and (let let↘), the rule patterns create splits of let-binding-groups, which in order
to join critical steps requires a careful analysis of the possible call graphs between let-bindings
in their source term). The lemma folows by the Critical Pair Theorem of [6] and Lemma 1. ◻
Proposition 10. let↘gc and [let]↘[gc] are terminating.

Theorem 11. [let]↘[gc] is confluent, terminating, and has the unique normalization property.

The properties stated for [let]↘[gc] in Thm. 11 and for [let]↗ in Thm. 6 can also be shown

for the extension [let]↗[gc] of the let-lifting rewrite relation [let]↗ by incorporating →gc-steps.
Finally, a comprehensive HRS for let-floating in both upward and downward direction, and for
reducing binding-groups can be obtained by gathering all rules underlying let↗ and let↘gc.

Acknowledgement. We want to thank the reviewers for their valuable comments and suggestions.

References

[1] Olivier Danvy and Ulrik P. Schultz. Lambda-dropping: transforming recursive equations into
programs with block structure. Theoretical Computer Science, 248(1-2):243 – 287, 2000. PEPM’97.

[2] Clemens Grabmayer and Jan Rochel. Expressibility in the Lambda-Calculus with Letrec. Technical
Report arXiv:1208.2383, arxiv.org, August 2012. http://arxiv.org/abs/1208.2383.

[3] Clemens Grabmayer and Jan Rochel. Term Graph Representations for Cyclic Lambda Terms. In
Proc. of TERMGRAPH 2013, number 110 in EPTCS, 2013. http://arxiv.org/abs/1302.6338v1.

[4] Simon Peyton Jones. The Implementation of Functional Progr. Languages. Prentice-Hall, 1987.

[5] Jean-Pierre Jouannaud. Confluent and coherent equational term rewriting systems application to
proofs in abstract data types. In Giorgio Ausiello and Marco Protasi, editors, CAAP’83, volume
159 of Lecture Notes in Computer Science, pages 269–283. Springer Berlin Heidelberg, 1983.

[6] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence. Theoretical
Computer Science, 192(1):3–29, 1998.

[7] Gerald E. Peterson and Mark E. Stickel. Complete Sets of Reductions for Some Equational
Theories. JACM, 28(2):233–264, 1981.

[8] Simon Peyton Jones, Will Partain, and André Santos. Let-floating: moving bindings to give faster
programs. In Proceedings of the first ACM SIGPLAN international conference on Functional
programming, ICFP ’96, pages 1–12, New York, NY, USA, 1996. ACM.

[9] Jan Rochel and Clemens Grabmayer. Confluent unfolding in the λ-calculus with letrec. In Pro-
ceedings of IWC 2013 (2nd International Workshop on Confluence), 2013.

[10] Terese. Term Rewriting Systems. Cambridge University Press, 2003.
64

Author Index

Alves, Sandra .41
Aoto, Takahito . 5
Ayala-Rincón, Mauricio .47

Dehornoy, Patrick . 1
Dundua, Besik .41

Felgenhauer, Bertram .23
Florido, Mário . 41

Gmeiner, Karl . 35
Grabmayer, Clemens . 17, 59
Gramlich, Bernhard . 35

Hirokawa, Nao .29

Klop, Jan Willem . 3
Kutsia, Temur . 41

Luiz Galdino, André . 47

Middeldorp, Aart . 15

Nishida, Naoki .35

Rocha Oliveira, Ana Cristina . 47
Rochel, Jan . 17, 59

Sternagel, Thomas .53

Zantema, Hans . 11

