# Proving Confluence of Conditional Term Rewriting Systems via Unravelings 

Karl Gmeiner, Naoki Nishida and Bernhard Gramlich

June 28, 2013

## Example: Conditional TRS even/odd

## Example (CTRS representing Even/Odd)

$$
\mathcal{R}_{\text {even }}=\left\{\begin{aligned}
\text { even }(0) & \rightarrow \text { true } \\
\operatorname{odd}(0) & \rightarrow \text { false } \\
\text { even }(\mathrm{s}(x)) & \rightarrow \text { true } \Leftarrow \operatorname{odd}(x) \rightarrow^{*} \text { true } \\
\operatorname{even}(\mathrm{s}(x)) & \rightarrow \text { false } \Leftarrow \operatorname{odd}(x) \rightarrow^{*} \text { false } \\
\operatorname{odd}(\mathrm{s}(x)) & \rightarrow \text { true } \Leftarrow \operatorname{even}(x) \rightarrow^{*} \text { true } \\
\operatorname{odd}(\mathrm{s}(x)) & \rightarrow \text { false } \Leftarrow \operatorname{even}(x) \rightarrow^{*} \text { false }
\end{aligned}\right\}
$$

## Outline

(1) Transformations of CTRSs
(2) Soundness and Confluence
(3) Yet another transformation

4 Conclusion

## Conditional term rewriting

## CTRSs

- Conditional rule: $I \rightarrow r \Leftarrow s_{1}=t_{1}, \ldots, s_{k}=t_{k}$
- Oriented CTRS: " $=$ " is interpreted as $" \rightarrow$ "
- Conditions cause problems


## Conditional term rewriting

## CTRSs

- Conditional rule: $I \rightarrow r \Leftarrow s_{1}=t_{1}, \ldots, s_{k}=t_{k}$
- Oriented CTRS: " $=$ " is interpreted as " $\rightarrow$ "
- Conditions cause problems


## Example

$$
\mathcal{R}=\left\{\begin{aligned}
f(x) & \rightarrow c \Leftarrow x \rightarrow^{*} a \\
a & \rightarrow b
\end{aligned}\right\}
$$

## Conditional term rewriting

## CTRSs

- Conditional rule: $I \rightarrow r \Leftarrow s_{1}=t_{1}, \ldots, s_{k}=t_{k}$
- Oriented CTRS: " $=$ " is interpreted as " $\rightarrow$ "
- Conditions cause problems


## Example

$$
\mathcal{R}=\left\{\begin{array}{c}
f(x) \rightarrow c \Leftarrow x \rightarrow^{*} a \\
a \rightarrow b
\end{array}\right\}
$$

- Terminating
- Non-overlapping
- Left-linear


## Conditional term rewriting

## CTRSs

- Conditional rule: $l \rightarrow r \Leftarrow s_{1}=t_{1}, \ldots, s_{k}=t_{k}$
- Oriented CTRS: " $=$ " is interpreted as " $\rightarrow$ "
- Conditions cause problems


## Example

$$
\begin{array}{cl}
\mathcal{R}=\left\{\begin{array}{cl}
f(x) & \rightarrow c \Leftarrow x \rightarrow^{*} a \\
a \rightarrow b
\end{array}\right\} & \\
& \\
& \text { - Terminating } \\
& \nearrow^{c} \\
& \\
\searrow_{f(b)} & \\
& \text { - Non-overt-linear }
\end{array}
$$

## Transformation of CTRSs into unconditional TRSs

Sequential unraveling of [Ohlebusch 2002]

$$
\begin{aligned}
& I \rightarrow r \Leftarrow s_{1} \rightarrow^{*} t_{1}, \ldots, s_{k} \rightarrow^{*} t_{k} \Longrightarrow\left\{\begin{array} { r l } 
{ I \rightarrow U _ { 1 } ( s _ { 1 } , \vec { X } _ { 1 } ) } \\
{ } & { \bullet X _ { i } = \operatorname { V a r } ( I , s _ { 1 } , t _ { 1 } , \ldots , s _ { i - 1 } , t _ { i - 1 } ) }
\end{array} \quad \left\{\begin{array}{rl} 
\\
U_{1}\left(t_{1}, \vec{X}_{1}\right) \rightarrow U_{2}\left(s_{2}, \vec{X}_{2}\right) \\
\vdots & \vdots \\
U_{k}\left(t_{k}, \vec{X}_{k}\right) \rightarrow r
\end{array}\right.\right.
\end{aligned}
$$

- Used to prove properties of CTRSs like (operational) termination, so why not confluence?


## Transformation of CTRSs into unconditional TRSs

Sequential unraveling of [Ohlebusch 2002]

$$
\begin{aligned}
& I \rightarrow r \Leftarrow s_{1} \rightarrow{ }^{*} t_{1}, \ldots, s_{k} \rightarrow{ }^{*} t_{k} \Longrightarrow\left\{\begin{array}{r}
I \rightarrow U_{1}\left(s_{1}, \vec{X}_{1}\right) \\
U_{1}\left(t_{1}, \vec{X}_{1}\right) \rightarrow U_{2}\left(s_{2}, \vec{X}_{2}\right) \\
\vdots \\
\vdots \\
U_{k}\left(t_{k}, \vec{X}_{k}\right) \rightarrow r
\end{array}\right. \\
& \text { - } X_{i}=\operatorname{Var}\left(I, s_{1}, t_{1}, \ldots, s_{i-1}, t_{i-1}\right) \\
& \text { - Used to prove properties of CTRSs like (operational) } \\
& \text { termination, so why not confluence? }
\end{aligned}
$$

## Example

$$
\left\{\begin{array}{c}
f(x) \rightarrow c \Leftarrow x \rightarrow^{*} a \\
a \rightarrow b
\end{array}\right\}
$$

## Transformation of CTRSs into unconditional TRSs

Sequential unraveling of [Ohlebusch 2002]

$$
\begin{aligned}
& I \rightarrow r \Leftarrow s_{1} \rightarrow{ }^{*} t_{1}, \ldots, s_{k} \rightarrow{ }^{*} t_{k} \Longrightarrow\left\{\begin{array}{r}
I \rightarrow U_{1}\left(s_{1}, \vec{X}_{1}\right) \\
U_{1}\left(t_{1}, \vec{X}_{1}\right) \rightarrow U_{2}\left(s_{2}, \vec{X}_{2}\right) \\
\vdots \vdots \\
U_{k}\left(t_{k}, \vec{X}_{k}\right) \rightarrow r
\end{array}\right. \\
& \text { - } X_{i}=\operatorname{Var}\left(I, s_{1}, t_{1}, \ldots, s_{i-1}, t_{i-1}\right) \\
& \text { - Used to prove properties of CTRSs like (operational) } \\
& \text { termination, so why not confluence? }
\end{aligned}
$$

## Example

$$
\left\{\begin{aligned}
& f(x) \rightarrow c \Leftarrow x \rightarrow^{*} a \\
& a \rightarrow b
\end{aligned}\right\} \Longrightarrow\left\{\begin{aligned}
f(x) & \rightarrow U_{1}(x, x) \\
U_{1}(a, x) & \rightarrow c \\
a & \rightarrow b
\end{aligned}\right\}
$$

## Soundness and Confluence

How to prove confluence of CTRS $\mathcal{R}$ via $\mathbb{U}(\mathcal{R})$ ?


## Soundness and Confluence

How to prove confluence of CTRS $\mathcal{R}$ via $\mathbb{U}(\mathcal{R})$ ?


## Soundness and Confluence

How to prove confluence of CTRS $\mathcal{R}$ via $\mathbb{U}(\mathcal{R})$ ?


## Soundness and Confluence

How to prove confluence of CTRS $\mathcal{R}$ via $\mathbb{U}(\mathcal{R})$ ?


- $s \rightarrow_{\mathcal{R}}^{*} t \Rightarrow s \rightarrow_{\mathbb{U}(\mathcal{R})}^{*} t$
- $t \rightarrow_{\mathbb{U}(\mathcal{R})}^{*} u \nRightarrow t \rightarrow_{\mathcal{R}}^{*} u$
- $\mathbb{U}$ not sound in general.
- $u$ might contain $U$-symbols.


## Soundness and Confluence

How to prove confluence of CTRS $\mathcal{R}$ via $\mathbb{U}(\mathcal{R})$ ?


- $s \rightarrow_{\mathcal{R}}^{*} t \Rightarrow s \rightarrow_{\mathbb{U}(\mathcal{R})}^{*} t$
- $t \rightarrow_{\mathbb{U}(\mathcal{R})}^{*} u \nRightarrow t \rightarrow_{\mathcal{R}}^{*} u$
- $\mathbb{U}$ not sound in general.
- $u$ might contain $U$-symbols.
- $s \rightarrow_{\mathbb{U}(\mathcal{R})} t \Rightarrow s \rightarrow_{\mathcal{R}} \operatorname{tb}(t)$ for weakly left-linear CTRSs.


## Soundness and Confluence

How to prove confluence of CTRS $\mathcal{R}$ via $\mathbb{U}(\mathcal{R})$ ?


- $s \rightarrow_{\mathbb{U}(\mathcal{R})} t \Rightarrow s \rightarrow_{\mathcal{R}} \mathrm{tb}(t)$ for weakly left-linear CTRSs.
- Implies soundness for joinability $s \downarrow_{\mathbb{U}(\mathcal{R})} t \Rightarrow s \downarrow_{\mathcal{R}} t$
- CR of $\mathbb{U}(\mathcal{R})+$ Soundness for joinability $\Rightarrow \mathrm{CR}$ of $\mathcal{R}$.

New proof for result of [Suzuki, Middeldorp, Ida, RTA 1995]

- Orthogonal properly oriented right-stable 3-CTRSs are confluent.


## The unraveling $\mathbb{U}_{\text {conf }}$

## Example (even/odd-CTRS)

$$
\begin{array}{r}
\text { even }(\mathrm{s}(x)) \rightarrow \text { true } \Leftarrow \operatorname{odd}(x) \rightarrow^{*} \text { true }\left\{\begin{array}{l}
\text { even }(\mathrm{s}(x)) \rightarrow U_{1}(\operatorname{odd}(x), x) \\
U_{1}(\operatorname{true}, x) \rightarrow \text { true }
\end{array}\right. \\
\text { even }(\mathrm{s}(x)) \rightarrow \text { false } \Leftarrow \operatorname{odd}(x) \rightarrow^{*} \text { false }\left\{\begin{array}{l}
\text { even }(\mathrm{s}(x)) \rightarrow U_{2}(\operatorname{odd}(x), x) \\
U_{2}(\text { false }, x) \rightarrow \text { false }
\end{array}\right. \\
\operatorname{even}(\mathrm{s}(0)) \searrow_{U_{2}(\operatorname{odd}(0), 0) \rightarrow U_{2}(\text { false }, 0) \rightarrow \text { false }}^{U_{1}(\operatorname{odd}(0), 0) \rightarrow U_{1}(\text { false } 0)}
\end{array}
$$

## The unraveling $\mathbb{U}_{\text {conf }}$

## Example (even/odd-CTRS)

$$
\begin{aligned}
& \text { even }(\mathrm{s}(x)) \rightarrow \text { true } \Leftarrow \operatorname{odd}(x) \rightarrow^{*} \text { true }\left\{\begin{array}{l}
\text { even }(\mathrm{s}(x)) \rightarrow U_{1}(\operatorname{odd}(x), x) \\
U_{1}(\operatorname{true}, x) \rightarrow \text { true }
\end{array}\right. \\
& \operatorname{even}(\mathrm{s}(x)) \rightarrow \text { false } \Leftarrow \operatorname{odd}(x) \rightarrow^{*} \text { false } \quad\left\{\begin{array}{c}
\text { even }(\mathrm{s}(x)) \rightarrow U_{2}(\operatorname{odd}(x), x) \\
U_{2}(\text { false }, x) \rightarrow \text { false }
\end{array}\right.
\end{aligned}
$$

## The unraveling $\mathbb{U}_{\text {conf }}$

- Idea: Pick labels for $U$-symbols based on terms in rule

$$
I \rightarrow r \Leftarrow s_{1} \rightarrow^{*} t_{1}, \ldots, s_{k} \rightarrow^{*} t_{k}\left\{\begin{aligned}
& I \rightarrow U_{l, s_{1}}\left(s_{1}, \vec{X}_{1}\right) \\
& U_{l, s_{1}}\left(t_{1}, \vec{X}_{1}\right) \rightarrow U_{l, s_{1}, t_{1}, t_{2}}\left(s_{2}, \vec{X}_{2}\right) \\
& \vdots \vdots \\
& U_{l, s_{1}, t_{1}, \ldots, s_{k}}\left(t_{k}, \vec{X}_{k}\right) \rightarrow r
\end{aligned}\right.
$$

## The unraveling $\mathbb{U}_{\text {conf }}$

## The unraveling $\mathbb{U}_{\text {conf }}$

- Idea: Pick labels for $U$-symbols based on terms in rule

$$
I \rightarrow r \Leftarrow s_{1} \rightarrow^{*} t_{1}, \ldots, s_{k} \rightarrow^{*} t_{k}\left\{\begin{aligned}
& I \rightarrow U_{l, s_{1}}\left(s_{1}, \vec{X}_{1}\right) \\
& U_{l, s_{1}}\left(t_{1}, \vec{X}_{1}\right) \rightarrow U_{l, s_{1}, t_{1}, t_{2}}\left(s_{2}, \vec{X}_{2}\right) \\
& \vdots \vdots \\
& U_{l, s_{1}, t_{1}, \ldots, s_{k}}\left(t_{k}, \vec{X}_{k}\right) \rightarrow r
\end{aligned}\right.
$$

## Example (even/odd-CTRS using $\mathbb{U}_{\text {conf }}$ )

$$
\begin{aligned}
& \text { even }(\mathrm{s}(x)) \rightarrow \text { true } \Leftarrow \operatorname{odd}(x) \rightarrow^{*} \text { true }\left\{\begin{array}{l}
\operatorname{even}(\mathrm{s}(x)) \rightarrow U_{\text {even }(s(x)), \text { odd }(x)}(\operatorname{odd}(x), x) \\
U_{\text {even }(s(x)), \text { odd }(x)}(\operatorname{true}, x) \rightarrow \text { true }
\end{array}\right. \\
& \operatorname{even}(\mathrm{s}(x)) \rightarrow \text { false } \Leftarrow \operatorname{odd}(x) \rightarrow^{*} \text { false }\left\{\begin{array}{l}
\operatorname{even}(\mathrm{s}(x)) \rightarrow U_{\text {even }(s(x)), \text { odd }(x)}(\operatorname{odd}(x), x) \\
U_{\text {even }(s(x)), \text { odd }(x)}(\text { false }, x) \rightarrow \text { false }
\end{array}\right.
\end{aligned}
$$

## even/odd-CTRS

## Example

$$
\mathbb{U}_{\text {conf }}(\mathcal{R})=\left\{\begin{aligned}
\operatorname{even}(0) & \rightarrow \text { true } \\
\operatorname{even}(s(x)) & \rightarrow U_{\text {even }(s(x)), \text { odd }(x)}(\operatorname{odd}(x), x) \\
U_{\text {even }(s(x))), \text { odd }(x)}(\operatorname{true}, x) & \rightarrow \text { true } \\
U_{\text {even }(s(x)), \text { odd }(x)}(\text { false }, x) & \rightarrow \text { false } \\
\operatorname{odd}(0) & \rightarrow \text { false } \\
\operatorname{odd}(s(x)) & \rightarrow U_{\text {odd }(s(x)), \text { even }(x)}(\operatorname{even}(x), x) \\
U_{\text {odd }(s(x))), \text { even }(x)}(\operatorname{true}, x) & \rightarrow \text { true } \\
U_{\text {odd }(s(x)), \text { even }(x)}(\text { false }, x) & \rightarrow \text { false }
\end{aligned}\right\}
$$

- $\mathbb{U}_{\text {conf }}(\mathcal{R})$ is left-linear $\Longrightarrow \mathbb{U}_{\text {conf }}$ is sound for joinability
- $\mathbb{U}_{\text {conf }}(\mathcal{R})$ is SN and non-overlapping $\Longrightarrow \mathbb{U}_{\text {conf }}(\mathcal{R})$ is confluent
- $\Longrightarrow \mathcal{R}$ is confluent.


## Conclusion and Perspectives

## What we have shown

- Unravelings can be used to prove confluence of CTRSs
- The unraveling $\mathbb{U}_{\text {conf }}$ has good properties for overlay CTRSs.


## What we might show in the future

- Reachability analysis using tree automata
- Different transformations
- Tools proving confluence of CTRSs

