

Three termination problems
Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen

Three termination problems

Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen

- Three unrelated termination problems :

Three termination problems

Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen

- Three unrelated termination problems : partial specific answers known,

Three termination problems

Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen

- Three unrelated termination problems : partial specific answers known, but no global understanding:

Three termination problems

Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen

- Three unrelated termination problems : partial specific answers known, but no global understanding: can some general tools be useful?
- Plan :
- Plan :

1. The Polish Algorithm for Left-Selfdistributivity

- Plan :

1. The Polish Algorithm for Left-Selfdistributivity
2. Handle reduction of braids

- Plan :

1. The Polish Algorithm for Left-Selfdistributivity
2. Handle reduction of braids
3. Subword reversing for positively presented groups

- Plan :

1. The Polish Algorithm for Left-Selfdistributivity
2. Handle reduction of braids
3. Subword reversing for positively presented groups
4. The Polish Algorithm for Left-Selfdistributivity
5. Handle reduction of braids
6. Subword reversing for positively presented groups

- A "bi-term rewrite system"
- A "bi-term rewrite system" (????)
- A "bi-term rewrite system" (????)
- The associativity law
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
\ldots and the corresponding Word Problem:
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
\ldots and the corresponding Word Problem:
Given two terms $\boldsymbol{t}, \boldsymbol{t}^{\prime}$, decide whether \boldsymbol{t} and \boldsymbol{t}^{\prime} are \boldsymbol{A}-equivalent.
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
\ldots and the corresponding Word Problem:
Given two terms $\boldsymbol{t}, \boldsymbol{t}^{\prime}$, decide whether \boldsymbol{t} and \boldsymbol{t}^{\prime} are \boldsymbol{A}-equivalent.
- A trivial problem: $\boldsymbol{t}, \boldsymbol{t}^{\prime}$ are A-equivalent iff become equal when brackets are removed.
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
\ldots and the corresponding Word Problem:
Given two terms $\boldsymbol{t}, \boldsymbol{t}^{\prime}$, decide whether \boldsymbol{t} and \boldsymbol{t}^{\prime} are \boldsymbol{A}-equivalent.
- A trivial problem: $\boldsymbol{t}, \boldsymbol{t}^{\prime}$ are A-equivalent iff become equal when brackets are removed.
- (Right-) Polish expression of a term: " $\boldsymbol{t}_{1} \boldsymbol{t}_{2} *$ " for $\boldsymbol{t}_{1} * \boldsymbol{t}_{2}$ (no bracket needed)
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
\ldots and the corresponding Word Problem:
Given two terms $\boldsymbol{t}, \boldsymbol{t}^{\prime}$, decide whether \boldsymbol{t} and \boldsymbol{t}^{\prime} are \boldsymbol{A}-equivalent.
- A trivial problem: $\boldsymbol{t}, \boldsymbol{t}^{\prime}$ are A-equivalent iff become equal when brackets are removed.
- (Right-) Polish expression of a term: " $\boldsymbol{t}_{1} \boldsymbol{t}_{2} *$ " for $\boldsymbol{t}_{1} * \boldsymbol{t}_{2}$ (no bracket needed) Example: In Polish, associativity is $x y z * *=x y * z *$.
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
\ldots and the corresponding Word Problem:
Given two terms $\boldsymbol{t}, \boldsymbol{t}^{\prime}$, decide whether \boldsymbol{t} and \boldsymbol{t}^{\prime} are \boldsymbol{A}-equivalent.
- A trivial problem: $\boldsymbol{t}, \boldsymbol{t}^{\prime}$ are A-equivalent iff become equal when brackets are removed.
- (Right-) Polish expression of a term: " $\boldsymbol{t}_{1} \boldsymbol{t}_{2} *$ " for $\boldsymbol{t}_{1} * \boldsymbol{t}_{2}$ (no bracket needed) Example: In Polish, associativity is $x y z * *=x y * z *$.
- Definition.- The Polish Algorithm for A:
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
\ldots and the corresponding Word Problem:
Given two terms $\boldsymbol{t}, \boldsymbol{t}^{\prime}$, decide whether \boldsymbol{t} and \boldsymbol{t}^{\prime} are \boldsymbol{A}-equivalent.
- A trivial problem: $\boldsymbol{t}, \boldsymbol{t}^{\prime}$ are A-equivalent iff become equal when brackets are removed.
- (Right-) Polish expression of a term: " $\boldsymbol{t}_{1} \boldsymbol{t}_{2} *$ " for $\boldsymbol{t}_{1} * \boldsymbol{t}_{2}$ (no bracket needed) Example: In Polish, associativity is $x y z * *=x y * z *$.
- Definition.- The Polish Algorithm for A : starting with two terms t, t^{\prime} (in Polish):
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
\ldots and the corresponding Word Problem:
Given two terms $\boldsymbol{t}, \boldsymbol{t}^{\prime}$, decide whether \boldsymbol{t} and \boldsymbol{t}^{\prime} are \boldsymbol{A}-equivalent.
- A trivial problem: $\boldsymbol{t}, \boldsymbol{t}^{\prime}$ are A-equivalent iff become equal when brackets are removed.
- (Right-) Polish expression of a term: " $\boldsymbol{t}_{1} \boldsymbol{t}_{2} *$ " for $\boldsymbol{t}_{1} * \boldsymbol{t}_{2}$ (no bracket needed) Example: In Polish, associativity is $x y z * *=x y * z *$.
- Definition.- The Polish Algorithm for A : starting with two terms t, t^{\prime} (in Polish):
- while $\boldsymbol{t} \neq \boldsymbol{t}^{\prime}$ do
- $p:=$ first clash between t and $t^{\prime}\left(p\right.$ th letter of $t \neq p$ th letter of $\left.t^{\prime}\right)$
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
\ldots and the corresponding Word Problem:
Given two terms $\boldsymbol{t}, \boldsymbol{t}^{\prime}$, decide whether \boldsymbol{t} and \boldsymbol{t}^{\prime} are \boldsymbol{A}-equivalent.
- A trivial problem: $\boldsymbol{t}, \boldsymbol{t}^{\prime}$ are A-equivalent iff become equal when brackets are removed.
- (Right-) Polish expression of a term: " $\boldsymbol{t}_{1} \boldsymbol{t}_{2} *$ " for $\boldsymbol{t}_{1} * \boldsymbol{t}_{2}$ (no bracket needed) Example: In Polish, associativity is $x y z * *=x y * z *$.
- Definition.- The Polish Algorithm for A : starting with two terms t, t^{\prime} (in Polish):
- while $\boldsymbol{t} \neq \boldsymbol{t}^{\prime}$ do
- $p:=$ first clash between t and $t^{\prime}\left(p\right.$ th letter of $t \neq p$ th letter of $\left.t^{\prime}\right)$
- case type of p of
- "variable vs. blank" : return NO;
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
\ldots and the corresponding Word Problem:
Given two terms $\boldsymbol{t}, \boldsymbol{t}^{\prime}$, decide whether \boldsymbol{t} and \boldsymbol{t}^{\prime} are \boldsymbol{A}-equivalent.
- A trivial problem: $\boldsymbol{t}, \boldsymbol{t}^{\prime}$ are A-equivalent iff become equal when brackets are removed.
- (Right-) Polish expression of a term: " $\boldsymbol{t}_{1} \boldsymbol{t}_{2} *$ " for $\boldsymbol{t}_{1} * \boldsymbol{t}_{2}$ (no bracket needed) Example: In Polish, associativity is $x y z * *=x y * z *$.
- Definition.- The Polish Algorithm for A : starting with two terms t, t^{\prime} (in Polish):
- while $\boldsymbol{t} \neq \boldsymbol{t}^{\prime}$ do
- $p:=$ first clash between t and $t^{\prime}\left(p\right.$ th letter of $t \neq p$ th letter of $\left.t^{\prime}\right)$
- case type of p of
- "variable vs. blank" : return NO;
- "blank vs. variable" : return NO;
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
\ldots and the corresponding Word Problem:
Given two terms $\boldsymbol{t}, \boldsymbol{t}^{\prime}$, decide whether \boldsymbol{t} and \boldsymbol{t}^{\prime} are \boldsymbol{A}-equivalent.
- A trivial problem: $\boldsymbol{t}, \boldsymbol{t}^{\prime}$ are A-equivalent iff become equal when brackets are removed.
- (Right-) Polish expression of a term: " $\boldsymbol{t}_{1} \boldsymbol{t}_{2} *$ " for $\boldsymbol{t}_{1} * \boldsymbol{t}_{2}$ (no bracket needed) Example: In Polish, associativity is $x y z * *=x y * z *$.
- Definition.- The Polish Algorithm for A : starting with two terms t, t^{\prime} (in Polish):
- while $\boldsymbol{t} \neq \boldsymbol{t}^{\prime}$ do
- $p:=$ first clash between t and $t^{\prime}\left(p\right.$ th letter of $t \neq p$ th letter of $\left.t^{\prime}\right)$
- case type of p of
- "variable vs. blank" : return NO;
- "blank vs. variable" : return NO;
- "variable vs. variable" : return NO;
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
... and the corresponding Word Problem:
Given two terms t, t^{\prime}, decide whether t and t^{\prime} are A-equivalent.
- A trivial problem: $\boldsymbol{t}, \boldsymbol{t}^{\prime}$ are A-equivalent iff become equal when brackets are removed.
- (Right-) Polish expression of a term: " $\boldsymbol{t}_{1} \boldsymbol{t}_{2} *$ " for $\boldsymbol{t}_{1} * \boldsymbol{t}_{2}$ (no bracket needed) Example: In Polish, associativity is $x y z * *=x y * z *$.
- Definition.- The Polish Algorithm for A : starting with two terms t, t^{\prime} (in Polish):
- while $\boldsymbol{t} \neq \boldsymbol{t}^{\prime}$ do
- $p:=$ first clash between t and t^{\prime} (p th letter of $t \neq p$ th letter of t^{\prime})
- case type of p of
- "variable vs. blank" : return NO;
- "blank vs. variable" : return NO;
- "variable vs. variable" : return NO;
- "variable vs. *" apply A^{+}to $t ; \quad\left(t_{1} t_{2} t_{3} * * \rightarrow t_{1} t_{2} * t_{3} *\right)$
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
... and the corresponding Word Problem:
Given two terms t, t^{\prime}, decide whether t and t^{\prime} are A-equivalent.
- A trivial problem: $\boldsymbol{t}, \boldsymbol{t}^{\prime}$ are A-equivalent iff become equal when brackets are removed.
- (Right-) Polish expression of a term: " $\boldsymbol{t}_{1} \boldsymbol{t}_{2} *$ " for $\boldsymbol{t}_{1} * \boldsymbol{t}_{2}$ (no bracket needed) Example: In Polish, associativity is $x y z * *=x y * z *$.
- Definition.- The Polish Algorithm for A : starting with two terms t, t^{\prime} (in Polish):
- while $\boldsymbol{t} \neq \boldsymbol{t}^{\prime}$ do
- $p:=$ first clash between t and t^{\prime} (p th letter of $t \neq p$ th letter of t^{\prime})
- case type of p of
- "variable vs. blank" : return NO;
- "blank vs. variable" : return NO;
- "variable vs. variable" : return NO;
- "variable vs. *" :
- " * vs. variable"
apply A^{+}to $t ; \quad\left(t_{1} t_{2} t_{3} * * \rightarrow t_{1} t_{2} * t_{3} *\right)$
apply A^{+}to $t^{\prime} ; \quad\left(t_{1} t_{2} t_{3} * * \rightarrow t_{1} t_{2} * t_{3} *\right)$
- A "bi-term rewrite system" (????)
- The associativity law $(\boldsymbol{A}): x *(y * z)=(x * y) * z$,
... and the corresponding Word Problem:
Given two terms t, t^{\prime}, decide whether t and t^{\prime} are A-equivalent.
- A trivial problem: $\boldsymbol{t}, \boldsymbol{t}^{\prime}$ are A-equivalent iff become equal when brackets are removed.
- (Right-) Polish expression of a term: " $\boldsymbol{t}_{1} \boldsymbol{t}_{2} *$ " for $\boldsymbol{t}_{1} * \boldsymbol{t}_{2}$ (no bracket needed) Example: In Polish, associativity is $x y z * *=x y * z *$.
- Definition.- The Polish Algorithm for A : starting with two terms t, t^{\prime} (in Polish):
- while $\boldsymbol{t} \neq \boldsymbol{t}^{\prime}$ do
- $p:=$ first clash between t and t^{\prime} (p th letter of $t \neq p$ th letter of t^{\prime})
- case type of p of
- "variable vs. blank" : return NO;
- "blank vs. variable" : return NO;
- "variable vs. variable" : return NO;
- "variable vs. *" :
- "* vs. variable" apply A^{+}to $t ; \quad\left(t_{1} t_{2} t_{3} * * \rightarrow t_{1} t_{2} * t_{3} *\right)$ apply A^{+}to $t^{\prime} ; \quad\left(t_{1} t_{2} t_{3} * * \rightarrow t_{1} t_{2} * t_{3} *\right)$
- return YES.
- Remember: in Polish, associativity is $\left\{\begin{array}{l}x y z * * \\ x y * z *\end{array}\right.$.
- Remember: in Polish, associativity is $\left\{\begin{array}{l}x y z * * \\ x y * z *\end{array}\right.$.
- Example: $\boldsymbol{t}=x *(x *(x * x)), \boldsymbol{t}^{\prime}=((x * x) * x) * x$,
- Remember: in Polish, associativity is $\left\{\begin{array}{l}x y z * * \\ x y * z *\end{array}\right.$.
- Example: $\boldsymbol{t}=x *(x *(x * x))$, $\boldsymbol{t}^{\prime}=((x * x) * x) * x$, i.e., in Polish,

$$
\begin{aligned}
& \boldsymbol{t}_{0}=x x x x * * * \\
& \boldsymbol{t}_{0}^{\prime}=x x * x * x *
\end{aligned}
$$

- Remember: in Polish, associativity is $\left\{\begin{array}{l}x y z * * \\ x y * z *\end{array}\right.$.
- Example: $\boldsymbol{t}=x *(x *(x * x))$, $\boldsymbol{t}^{\prime}=((x * x) * x) * x$, i.e., in Polish,

$$
\begin{aligned}
& \boldsymbol{t}_{0}=x x x x * * * \\
& \boldsymbol{t}_{0}^{\prime}=x x * x * x *
\end{aligned}
$$

- Remember: in Polish, associativity is $\left\{\begin{array}{l}x y z * * \\ x y * z *\end{array}\right.$.
- Example: $\boldsymbol{t}=x *(x *(x * x))$, $\boldsymbol{t}^{\prime}=((x * x) * x) * x$, i.e., in Polish,

$$
\begin{aligned}
\boldsymbol{t}_{0} & =x x x \boldsymbol{x} * * * \\
\boldsymbol{t}_{0}^{\prime} & =x x * x * x * \\
\boldsymbol{t}_{1} & =x x * x x * * \\
\boldsymbol{t}_{1}^{\prime} & =x x * x * x *
\end{aligned}
$$

- Remember: in Polish, associativity is $\left\{\begin{array}{l}x y z * * \\ x y * z *\end{array}\right.$.
- Example: $\boldsymbol{t}=x *(x *(x * x))$, $\boldsymbol{t}^{\prime}=((x * x) * x) * x$, i.e., in Polish,

$$
\begin{aligned}
\boldsymbol{t}_{0} & =x x x x * * * \\
\boldsymbol{t}_{0}^{\prime} & =x x * x * x * \\
\boldsymbol{t}_{1} & =x x * x x * * \\
\boldsymbol{t}_{1}^{\prime} & =x x * x * x *
\end{aligned}
$$

- Remember: in Polish, associativity is $\left\{\begin{array}{l}x y z * * \\ x y * z *\end{array}\right.$.
- Example: $\boldsymbol{t}=x *(x *(x * x))$, $\boldsymbol{t}^{\prime}=((x * x) * x) * x$, i.e., in Polish,

$$
\begin{aligned}
& \boldsymbol{t}_{0}=x x x x * * * \\
& \boldsymbol{t}_{0}^{\prime}=x x * x * x * \\
& \boldsymbol{t}_{1}=x x * x x * * \\
& \boldsymbol{t}_{1}^{\prime}=x x * x * x * \\
& \boldsymbol{t}_{2}=x x * x * x * \\
& \boldsymbol{t}_{2}^{\prime}=x x * x * x *
\end{aligned}
$$

- Remember: in Polish, associativity is $\left\{\begin{array}{l}x y z * * \\ x y * z *\end{array}\right.$.
- Example: $\boldsymbol{t}=x *(x *(x * x))$, $\boldsymbol{t}^{\prime}=((x * x) * x) * x$, i.e., in Polish,

$$
\begin{aligned}
\boldsymbol{t}_{0} & =x x x x * * * \\
\boldsymbol{t}_{0}^{\prime} & =x x * x * x * \\
\boldsymbol{t}_{1} & =x x * x x * * \\
\boldsymbol{t}_{1}^{\prime} & =x x * x * x * \\
\boldsymbol{t}_{2} & =x x * x * x * \\
\boldsymbol{t}_{2}^{\prime} & =x x * x * x *
\end{aligned}
$$

So $t_{2}=t_{2}^{\prime}$, hence t_{0} and t_{0}^{\prime} are A-equivalent.

- Remember: in Polish, associativity is $\left\{\begin{array}{l}x y z * * \\ x y * z *\end{array}\right.$.
- Example: $\boldsymbol{t}=x *(x *(x * x)), \boldsymbol{t}^{\prime}=((x * x) * x) * x$, i.e., in Polish,

$$
\begin{aligned}
\boldsymbol{t}_{0} & =x x x x * * * \\
\boldsymbol{t}_{0}^{\prime} & =x x * x * x * \\
\boldsymbol{t}_{1} & =x x * x x * * \\
\boldsymbol{t}_{1}^{\prime} & =x x * x * x * \\
\boldsymbol{t}_{2} & =x x * x * x *
\end{aligned}
$$

$$
\boldsymbol{t}_{2}^{\prime}=x x * x * x * \quad \text { So } \boldsymbol{t}_{2}=\boldsymbol{t}_{2}^{\prime} \text {, hence } \boldsymbol{t}_{0} \text { and } \boldsymbol{t}_{0}^{\prime} \text { are } A \text {-equivalent. }
$$

- "Theorem"

- Remember: in Polish, associativity is $\left\{\begin{array}{l}x y z * * \\ x y * z *\end{array}\right.$.
- Example: $\boldsymbol{t}=x *(x *(x * x)), \boldsymbol{t}^{\prime}=((x * x) * x) * x$, i.e., in Polish,

$$
\begin{aligned}
& \boldsymbol{t}_{0}=x x x x * * * \\
& \boldsymbol{t}_{0}^{\prime}=x x * x * x * \\
& \boldsymbol{t}_{1}=x x * x x * * \\
& \boldsymbol{t}_{1}^{\prime}=x x * x * x * \\
& \boldsymbol{t}_{2}=x x * x * x *
\end{aligned}
$$

$$
\boldsymbol{t}_{2}^{\prime}=x x * x * x * \quad \text { So } \boldsymbol{t}_{2}=\boldsymbol{t}_{2}^{\prime} \text {, hence } \boldsymbol{t}_{0} \text { and } \boldsymbol{t}_{0}^{\prime} \text { are } A \text {-equivalent. }
$$

- "Theorem" . - The Polish Algorithm works for associativity.
- Remember: in Polish, associativity is $\left\{\begin{array}{l}x y z * * \\ x y * z *\end{array}\right.$.
- Example: $\boldsymbol{t}=x *(x *(x * x)), \boldsymbol{t}^{\prime}=((x * x) * x) * x$, i.e., in Polish,

$$
\begin{aligned}
& \boldsymbol{t}_{0}=x x x x * * * \\
& \boldsymbol{t}_{0}^{\prime}=x x * x * x * \\
& \boldsymbol{t}_{1}=x x * x x * * \\
& \boldsymbol{t}_{1}^{\prime}=x x * x * x * \\
& \boldsymbol{t}_{2}=x x * x * x *
\end{aligned}
$$

$$
\boldsymbol{t}_{2}^{\prime}=x x * x * x * \quad \text { So } \boldsymbol{t}_{2}=\boldsymbol{t}_{2}^{\prime} \text {, hence } \boldsymbol{t}_{0} \text { and } \boldsymbol{t}_{0}^{\prime} \text { are } A \text {-equivalent. }
$$

- "Theorem" . - The Polish Algorithm works for associativity.
(In particular, it terminates.)
- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,
i.e., in Polish, $\left\{\begin{array}{l}x y z * * \\ x y * x z * *\end{array}\right.$
- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,

$$
\text { i.e., in Polish, }\left\{\begin{array} { l }
{ x y z * * } \\
{ x y * x z * * }
\end{array} \quad \text { compare with associativity } \left\{\begin{array}{l}
x y z * * \\
x y * x *
\end{array}\right.\right.
$$

- Polish Algorithm: the same as for associativity.
- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,

$$
\text { i.e., in Polish, }\left\{\begin{array} { l }
{ x y z * * } \\
{ x y * x z * * }
\end{array} \quad \text { compare with associativity } \left\{\begin{array}{l}
x y z * * \\
x y * x *
\end{array}\right.\right.
$$

- Polish Algorithm: the same as for associativity.
- Example: $\boldsymbol{t}=x *((x * x) *(x * x)), \boldsymbol{t}^{\prime}=(x * x) *(x *(x * x))$,
- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,

$$
\text { i.e., in Polish, }\left\{\begin{array} { l }
{ x y z * * } \\
{ x y * x z * * }
\end{array} \quad \text { compare with associativity } \left\{\begin{array}{l}
x y z * * \\
x y * x *
\end{array}\right.\right.
$$

- Polish Algorithm: the same as for associativity.
- Example: $\boldsymbol{t}=x *((x * x) *(x * x))$, $\boldsymbol{t}^{\prime}=(x * x) *(x *(x * x))$, i.e., in Polish,

$$
\begin{aligned}
& \boldsymbol{t}_{0}=x x x * x x * * * \\
& \boldsymbol{t}_{0}^{\prime}=x x * x x x * * *
\end{aligned}
$$

- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,

$$
\text { i.e., in Polish, }\left\{\begin{array} { l }
{ x y z * * } \\
{ x y * x z * * }
\end{array} \quad \text { compare with associativity } \left\{\begin{array}{l}
x y z * * \\
x y * x *
\end{array}\right.\right.
$$

- Polish Algorithm: the same as for associativity.
- Example: $\boldsymbol{t}=x *((x * x) *(x * x))$, $\boldsymbol{t}^{\prime}=(x * x) *(x *(x * x))$, i.e., in Polish,

$$
\begin{aligned}
& \boldsymbol{t}_{0}=x x x * x x * * * \\
& \boldsymbol{t}_{0}^{\prime}=x x * x x x * * *
\end{aligned}
$$

- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,

$$
\text { i.e., in Polish, }\left\{\begin{array} { l }
{ x y z * * } \\
{ x y * x z * * }
\end{array} \quad \text { compare with associativity } \left\{\begin{array}{l}
x y z * * \\
x y * x *
\end{array}\right.\right.
$$

- Polish Algorithm: the same as for associativity.
- Example: $\boldsymbol{t}=x *((x * x) *(x * x)), \boldsymbol{t}^{\prime}=(x * x) *(x *(x * x))$, i.e., in Polish,

$$
\begin{aligned}
& \boldsymbol{t}_{0}=x x x * x x * * * \\
& \boldsymbol{t}_{0}^{\prime}=x x * x x x * * * \\
& \boldsymbol{t}_{1}=x x * x x * * x x x * * * \\
& \boldsymbol{t}_{1}^{\prime}=x x * x x x * * *
\end{aligned} \quad\left(=\boldsymbol{t}_{0}^{\prime}\right)
$$

- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,

$$
\text { i.e., in Polish, }\left\{\begin{array} { l }
{ x y z * * } \\
{ x y * x z * * }
\end{array} \quad \text { compare with associativity } \left\{\begin{array}{l}
x y z * * \\
x y * x *
\end{array}\right.\right.
$$

- Polish Algorithm: the same as for associativity.
- Example: $\boldsymbol{t}=x *((x * x) *(x * x)), \boldsymbol{t}^{\prime}=(x * x) *(x *(x * x))$, i.e., in Polish,

$$
\begin{aligned}
& \boldsymbol{t}_{0}=x x x * x x * * * \\
& \boldsymbol{t}_{0}^{\prime}=x x * x x x * * * \\
& \boldsymbol{t}_{1}=x x * x x * * x x x * * * \\
& \boldsymbol{t}_{1}^{\prime}=x x * x x x * * *
\end{aligned} \quad\left(=\boldsymbol{t}_{0}^{\prime}\right)
$$

- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,

$$
\text { i.e., in Polish, }\left\{\begin{array} { l }
{ x y z * * } \\
{ x y * x z * * }
\end{array} \quad \text { compare with associativity } \left\{\begin{array}{l}
x y z * * \\
x y * x *
\end{array}\right.\right.
$$

- Polish Algorithm: the same as for associativity.
- Example: $\boldsymbol{t}=x *((x * x) *(x * x)), \boldsymbol{t}^{\prime}=(x * x) *(x *(x * x))$, i.e., in Polish,

$$
\begin{array}{ll}
\boldsymbol{t}_{0}=x x x * x x * * * & \\
\boldsymbol{t}_{0}^{\prime}=x x * x x x * * * & \\
\boldsymbol{t}_{1}=x x * x x * * x x x * * * & \left(=\boldsymbol{t}_{0}^{\prime}\right) \\
\boldsymbol{t}_{1}^{\prime}=x x * x x x * * * & \left(=\boldsymbol{t}_{1}\right)
\end{array}
$$

$$
\boldsymbol{t}_{2}^{\prime}=x x * x x * x x * *
$$

- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,

$$
\text { i.e., in Polish, }\left\{\begin{array} { l }
{ x y z * * } \\
{ x y * x z * * }
\end{array} \quad \text { compare with associativity } \left\{\begin{array}{l}
x y z * * \\
x y * x *
\end{array}\right.\right.
$$

- Polish Algorithm: the same as for associativity.
- Example: $\boldsymbol{t}=x *((x * x) *(x * x)), \boldsymbol{t}^{\prime}=(x * x) *(x *(x * x))$, i.e., in Polish,

$$
\begin{array}{ll}
\boldsymbol{t}_{0}=x x x * x x * * * & \\
\boldsymbol{t}_{0}^{\prime}=x x * x x x * * * & \\
\boldsymbol{t}_{1}=x x * x x * * x x x * * * & \left(=\boldsymbol{t}_{0}^{\prime}\right) \\
\boldsymbol{t}_{1}^{\prime}=x x * x x x * * * & \left(=\boldsymbol{t}_{1}\right)
\end{array}
$$

$$
\boldsymbol{t}_{2}^{\prime}=x x * x x * x x * *
$$

- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,

$$
\text { i.e., in Polish, }\left\{\begin{array} { l }
{ x y z * * } \\
{ x y * x z * * }
\end{array} \quad \text { compare with associativity } \left\{\begin{array}{l}
x y z * * \\
x y * x *
\end{array}\right.\right.
$$

- Polish Algorithm: the same as for associativity.
- Example: $\boldsymbol{t}=x *((x * x) *(x * x)), \boldsymbol{t}^{\prime}=(x * x) *(x *(x * x))$, i.e., in Polish,

$$
\begin{array}{ll}
\boldsymbol{t}_{0}=x x x * x x * * * & \\
\boldsymbol{t}_{0}^{\prime}=x x * x x x * * * & \\
\boldsymbol{t}_{1}=x x * x x * * x x x * * * & \\
\boldsymbol{t}_{1}^{\prime}=x x * x x x * * * & \left(=\boldsymbol{t}_{0}^{\prime}\right) \\
\boldsymbol{t}_{2}=x x * x x * * x x x * * * & \left(=\boldsymbol{t}_{1}\right) \\
\boldsymbol{t}_{2}^{\prime}=x x * x x * x x * * & \\
\boldsymbol{t}_{3}=x x * x x * * x x x * * * & \left(=\boldsymbol{t}_{2}\right) \\
\boldsymbol{t}_{3}^{\prime}=x x * x x * * x x * x x * * * &
\end{array}
$$

- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,

$$
\text { i.e., in Polish, }\left\{\begin{array} { l }
{ x y z * * } \\
{ x y * x z * * }
\end{array} \quad \text { compare with associativity } \left\{\begin{array}{l}
x y z * * \\
x y * x *
\end{array}\right.\right.
$$

- Polish Algorithm: the same as for associativity.
- Example: $\boldsymbol{t}=x *((x * x) *(x * x)), \boldsymbol{t}^{\prime}=(x * x) *(x *(x * x))$, i.e., in Polish,

$$
\begin{array}{ll}
\boldsymbol{t}_{0}=x x x * x x * * * & \\
\boldsymbol{t}_{0}^{\prime}=x x * x x x * * * & \left(=\boldsymbol{t}_{0}^{\prime}\right) \\
\boldsymbol{t}_{1}=x x * x x * * x x x * * * & \left(=\boldsymbol{t}_{1}\right) \\
\boldsymbol{t}_{1}^{\prime}=x x * x x x * * * & \\
\boldsymbol{t}_{2}=x x * x x * * x x x * * * & \left(=\boldsymbol{t}_{2}\right) \\
\boldsymbol{t}_{2}^{\prime}=x x * x x * x x * * & \\
\boldsymbol{t}_{3}=x x * x x * * x x x * * * & \\
\boldsymbol{t}_{3}^{\prime}=x x * x x * * x x * x x * * * &
\end{array}
$$

- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,

$$
\text { i.e., in Polish, }\left\{\begin{array} { l }
{ x y z * * } \\
{ x y * x z * * }
\end{array} \quad \text { compare with associativity } \left\{\begin{array}{l}
x y z * * \\
x y * x *
\end{array}\right.\right.
$$

- Polish Algorithm: the same as for associativity.
- Example: $\boldsymbol{t}=x *((x * x) *(x * x))$, $\boldsymbol{t}^{\prime}=(x * x) *(x *(x * x))$, i.e., in Polish,

$$
\begin{array}{ll}
\boldsymbol{t}_{0}=x x x * x x * * * & \\
\boldsymbol{t}_{0}^{\prime}=x x * x x x * * * & \left(=\boldsymbol{t}_{0}^{\prime}\right) \\
\boldsymbol{t}_{1}=x x * x x * * x x x * * * & \left(=\boldsymbol{t}_{1}\right) \\
\boldsymbol{t}_{1}^{\prime}=x x * x x x * * * & \\
\boldsymbol{t}_{2}=x x * x x * * x x x * * * & \left(=\boldsymbol{t}_{2}\right) \\
\boldsymbol{t}_{2}^{\prime}=x x * x x * x x * * & \\
\boldsymbol{t}_{3}=x x * x x * * x x x * * * & \\
\boldsymbol{t}_{3}^{\prime}=x x * x x * * x x * x x * * * & \\
\boldsymbol{t}_{4}=x x * x x * * x x * x x * * * & \\
\boldsymbol{t}_{4}^{\prime}=x x * x x * * x x * x x * * * & \left(=\boldsymbol{t}_{3}^{\prime}\right)
\end{array}
$$

- Left-selfdistributivity (LD) : $x *(y * z)=(x * y) *(x * z)$,

$$
\text { i.e., in Polish, }\left\{\begin{array} { l }
{ x y z * * } \\
{ x y * x z * * }
\end{array} \quad \text { compare with associativity } \left\{\begin{array}{l}
x y z * * \\
x y * x *
\end{array}\right.\right.
$$

- Polish Algorithm: the same as for associativity.
- Example: $\boldsymbol{t}=x *((x * x) *(x * x))$, $\boldsymbol{t}^{\prime}=(x * x) *(x *(x * x))$, i.e., in Polish,

$$
\begin{array}{ll}
\boldsymbol{t}_{0}=x x x * x x * * * & \\
\boldsymbol{t}_{0}^{\prime}=x x * x x x * * * & \left(=\boldsymbol{t}_{0}^{\prime}\right) \\
\boldsymbol{t}_{1}=x x * x x * * x x x * * * & \left(=\boldsymbol{t}_{1}\right) \\
\boldsymbol{t}_{1}^{\prime}=x x * x x x * * * & \\
\boldsymbol{t}_{2}=x x * x x * * x x x * * * & \left(=\boldsymbol{t}_{2}\right) \\
\boldsymbol{t}_{2}^{\prime}=x x * x x * x x * * & \\
\boldsymbol{t}_{3}=x x * x x * * x x x * * * & \\
\boldsymbol{t}_{3}^{\prime}=x x * x x * * x x * x x * * * & \\
\boldsymbol{t}_{4}=x x * x x * * x x * x x * * * & \\
\boldsymbol{t}_{4}^{\prime}=x x * x x * * x x * x x * * * & \left(=\boldsymbol{t}_{3}^{\prime}\right)
\end{array}
$$

So $\boldsymbol{t}_{4}=\boldsymbol{t}_{4}^{\prime}$, hence \boldsymbol{t}_{0} and $\boldsymbol{t}_{0}^{\prime}$ are $L D$-equivalent.

- Conjecture.- The Polish Algorithm works for left-selfdistributivity.

- Conjecture. - The Polish Algorithm works for left-selfdistributivity.

- Known.- (i) If it terminates, the Polish Algorithm works for left-selfdistributivity.

- Conjecture. - The Polish Algorithm works for left-selfdistributivity.

- Known.- (i) If it terminates, the Polish Algorithm works for left-selfdistributivity.
(ii) The smallest counter-example to termination (if any) is huge.

1. The Polish Algorithm for Left-Selfdistributivity
2. Handle reduction of braids
3. Subword reversing for positively presented groups

- A true (but infinite) rewrite system.
- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B
- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
$-\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$
- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (so far trivial: " free group reduction")
- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
$-\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$
(so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}$,
- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
$-\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$
(so far trivial: "free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}$,
- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (so far trivial: "free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$,
- A true (but infinite) rewrite system.
- Alphabet: $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$ (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$, and, more generally,
$-\mathrm{ab}^{i} \mathrm{~A} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}$,
- A true (but infinite) rewrite system.
- Alphabet: $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$ (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$, and, more generally,
$-\mathrm{ab}^{i} \mathrm{~A} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}, \mathrm{aB}^{i} \mathrm{~A} \rightarrow \mathrm{BA}^{i} \mathrm{~b}, \mathrm{Ab}^{i} \mathrm{a} \rightarrow \mathrm{ba}^{i} \mathrm{~B}, \mathrm{AB}^{i} \mathrm{a} \rightarrow \mathrm{bA}^{i} \mathrm{~B}$ for $i \geqslant 1$.
- A true (but infinite) rewrite system.
- Alphabet: $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$ (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$, and, more generally,
$-\mathrm{ab}^{i} \mathrm{~A} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}, \mathrm{aB}^{i} \mathrm{~A} \rightarrow \mathrm{BA}^{i} \mathrm{~b}, \mathrm{Ab}^{i} \mathrm{a} \rightarrow \mathrm{ba}^{i} \mathrm{~B}, \mathrm{AB}^{i} \mathrm{a} \rightarrow \mathrm{bA}^{i} \mathrm{~B}$ for $i \geqslant 1$.
- A true (but infinite) rewrite system.
- Alphabet: $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$ (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$, and, more generally,
$-\mathrm{ab}^{i} \mathrm{~A} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}, \mathrm{aB}^{i} \mathrm{~A} \rightarrow \mathrm{BA}^{i} \mathrm{~b}, \mathrm{Ab}^{i} \mathrm{a} \rightarrow \mathrm{ba}^{i} \mathrm{~B}, \mathrm{AB}^{i} \mathrm{a} \rightarrow \mathrm{bA}^{i} \mathrm{~B}$ for $i \geqslant 1$.
- Aim: obtain a word that does not contain both a and A.
- A true (but infinite) rewrite system.
- Alphabet: $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$ (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$, and, more generally,
$-\mathrm{ab}^{i} \mathrm{~A} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}, \mathrm{aB}^{i} \mathrm{~A} \rightarrow \mathrm{BA}^{i} \mathrm{~b}, \mathrm{Ab}^{i} \mathrm{a} \rightarrow \mathrm{ba}^{i} \mathrm{~B}, \mathrm{AB}^{i} \mathrm{a} \rightarrow \mathrm{bA}^{i} \mathrm{~B}$ for $i \geqslant 1$.
- Aim: obtain a word that does not contain both a and A.
- Example:

$$
\boldsymbol{w}_{0}=\text { aabAbbAA }
$$

- A true (but infinite) rewrite system.
- Alphabet: $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$ (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$, and, more generally,
$-\mathrm{ab}^{i} \mathrm{~A} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}, \mathrm{aB}^{i} \mathrm{~A} \rightarrow \mathrm{BA}^{i} \mathrm{~b}, \mathrm{Ab}^{i} \mathrm{a} \rightarrow \mathrm{ba}^{i} \mathrm{~B}, \mathrm{AB}^{i} \mathrm{a} \rightarrow \mathrm{bA}^{i} \mathrm{~B}$ for $i \geqslant 1$.
- Aim: obtain a word that does not contain both a and A.
- Example:

$$
\boldsymbol{w}_{0}=\text { aabAbbAA }
$$

- A true (but infinite) rewrite system.
- Alphabet: $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$ (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$, and, more generally,
$-\mathrm{ab}^{i} \mathrm{~A} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}, \mathrm{aB}^{i} \mathrm{~A} \rightarrow \mathrm{BA}^{i} \mathrm{~b}, \mathrm{Ab}^{i} \mathrm{a} \rightarrow \mathrm{ba}^{i} \mathrm{~B}, \mathrm{AB}^{i} \mathrm{a} \rightarrow \mathrm{bA}^{i} \mathrm{~B}$ for $i \geqslant 1$.
- Aim: obtain a word that does not contain both a and A.
- Example:

$$
\begin{aligned}
& \boldsymbol{w}_{0}=a \underline{a b A b b A A} \\
& \boldsymbol{w}_{1}=a \mathrm{BabbbAA}
\end{aligned}
$$

- A true (but infinite) rewrite system.
- Alphabet: $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$ (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$, and, more generally,
$-\mathrm{ab}^{i} \mathrm{~A} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}, \mathrm{aB}^{i} \mathrm{~A} \rightarrow \mathrm{BA}^{i} \mathrm{~b}, \mathrm{Ab}^{i} \mathrm{a} \rightarrow \mathrm{ba}^{i} \mathrm{~B}, \mathrm{AB}^{i} \mathrm{a} \rightarrow \mathrm{bA}^{i} \mathrm{~B}$ for $i \geqslant 1$.
- Aim: obtain a word that does not contain both a and A.
- Example:

$$
\begin{aligned}
& \boldsymbol{w}_{0}=a \underline{a b A b b A A} \\
& \boldsymbol{w}_{1}=a \underline{a b a b b b A A}
\end{aligned}
$$

- A true (but infinite) rewrite system.
- Alphabet: $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$ (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$, and, more generally,
$-\mathrm{ab}^{i} \mathrm{~A} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}, \mathrm{aB}^{i} \mathrm{~A} \rightarrow \mathrm{BA}^{i} \mathrm{~b}, \mathrm{Ab}^{i} \mathrm{a} \rightarrow \mathrm{ba}^{i} \mathrm{~B}, \mathrm{AB}^{i} \mathrm{a} \rightarrow \mathrm{bA}^{i} \mathrm{~B}$ for $i \geqslant 1$.
- Aim: obtain a word that does not contain both a and A.
- Example:

$$
\begin{aligned}
& \boldsymbol{w}_{0}=\text { aabAbbAA } \\
& \boldsymbol{w}_{1}=\text { aBabbbAA } \\
& \boldsymbol{w}_{2}=\text { aBBaaabA }
\end{aligned}
$$

- A true (but infinite) rewrite system.
- Alphabet: $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$ (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$, and, more generally,
$-\mathrm{ab}^{i} \mathrm{~A} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}, \mathrm{aB}^{i} \mathrm{~A} \rightarrow \mathrm{BA}^{i} \mathrm{~b}, \mathrm{Ab}^{i} \mathrm{a} \rightarrow \mathrm{ba}^{i} \mathrm{~B}, \mathrm{AB}^{i} \mathrm{a} \rightarrow \mathrm{bA}^{i} \mathrm{~B}$ for $i \geqslant 1$.
- Aim: obtain a word that does not contain both a and A.
- Example:

$$
\begin{aligned}
& \boldsymbol{w}_{0}=a \operatorname{abAbbAA} \\
& \boldsymbol{w}_{1}=a B \underline{B a b b b A A} \\
& \boldsymbol{w}_{2}=a \mathrm{BBaaabA}
\end{aligned}
$$

- A true (but infinite) rewrite system.
- Alphabet: $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$ (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \boldsymbol{\varepsilon} \quad$ (so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$, and, more generally,
$-\mathrm{ab}^{i} \mathrm{~A} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}, \mathrm{aB}^{i} \mathrm{~A} \rightarrow \mathrm{BA}^{i} \mathrm{~b}, \mathrm{Ab}^{i} \mathrm{a} \rightarrow \mathrm{ba}^{i} \mathrm{~B}, \mathrm{AB}^{i} \mathrm{a} \rightarrow \mathrm{bA}^{i} \mathrm{~B}$ for $i \geqslant 1$.
- Aim: obtain a word that does not contain both a and A.
- Example:

$$
\begin{aligned}
& \boldsymbol{w}_{0}=a \operatorname{abAbbAA} \\
& \boldsymbol{w}_{1}=a \overline{B a b b b A A} \\
& \boldsymbol{w}_{2}=a B B a a a b A \\
& \boldsymbol{w}_{3}=a B B a a B a b
\end{aligned}
$$

- A true (but infinite) rewrite system.
- Alphabet: $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$ (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \boldsymbol{\varepsilon} \quad$ (so far trivial: " free group reduction")
$-\mathrm{abA} \rightarrow \mathrm{Bab}, \mathrm{aBA} \rightarrow \mathrm{BAb}, \mathrm{Aba} \rightarrow \mathrm{baB}, \mathrm{ABa} \rightarrow \mathrm{bAB}$, and, more generally,
$-\mathrm{ab}^{i} \mathrm{~A} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}, \mathrm{aB}^{i} \mathrm{~A} \rightarrow \mathrm{BA}^{i} \mathrm{~b}, \mathrm{Ab}^{i} \mathrm{a} \rightarrow \mathrm{ba}^{i} \mathrm{~B}, \mathrm{AB}^{i} \mathrm{a} \rightarrow \mathrm{bA}^{i} \mathrm{~B}$ for $i \geqslant 1$.
- Aim: obtain a word that does not contain both a and A.
- Example:

$$
\begin{aligned}
& \boldsymbol{w}_{0}=a \operatorname{ababbAA} \\
& \boldsymbol{w}_{1}=a \mathrm{BabbbAA} \\
& \boldsymbol{w}_{2}=a \mathrm{aBBaab} A
\end{aligned}
$$

$$
\boldsymbol{w}_{3}=\mathrm{aBBaaBab}, \quad \leadsto \text { a word without } \mathrm{A}
$$

- Theorem.- The process terminates in quadratic time.
- Theorem.- The process terminates in quadratic time.
- Proof: (Length does not increase, but could cycle.)
- Theorem.- The process terminates in quadratic time.
- Proof: (Length does not increase, but could cycle.) Associate with the sequence of reductions a rectangular grid (quadratic area).
- Theorem.- The process terminates in quadratic time.
- Proof: (Length does not increase, but could cycle.) Associate with the sequence of reductions a rectangular grid (quadratic area).
For the example:

$$
\begin{aligned}
& \boldsymbol{w}_{0}=\text { aabAbbAA } \\
& \boldsymbol{w}_{1}=\text { aBabbbAA } \\
& \boldsymbol{w}_{2}=\text { aBBaaabA } \\
& \boldsymbol{w}_{3}=\text { aBBaaBab }
\end{aligned}
$$

draw the grid:

- Theorem.- The process terminates in quadratic time.
- Proof: (Length does not increase, but could cycle.)

Associate with the sequence of reductions a rectangular grid (quadratic area).
For the example:

$$
\begin{aligned}
& \boldsymbol{w}_{0}=\text { aabAbbAA } \\
& \boldsymbol{w}_{1}=\text { aBabbbAA } \\
& \boldsymbol{w}_{2}=\text { aBBaaabA } \\
& \boldsymbol{w}_{3}=\text { aBBaaBab }
\end{aligned}
$$

draw the grid:

- Theorem.- The process terminates in quadratic time.
- Proof: (Length does not increase, but could cycle.)

Associate with the sequence of reductions a rectangular grid (quadratic area).
For the example:

$$
\begin{aligned}
& \boldsymbol{w}_{0}=\text { aabAbbAA } \\
& \boldsymbol{w}_{1}=\text { aBabbbAA } \\
& \boldsymbol{w}_{2}=\text { aBBaaabA } \\
& \boldsymbol{w}_{3}=\text { aBBaaBab }
\end{aligned}
$$

draw the grid:

- Theorem.- The process terminates in quadratic time.
- Proof: (Length does not increase, but could cycle.)

Associate with the sequence of reductions a rectangular grid (quadratic area).
For the example:

$$
\begin{aligned}
& \boldsymbol{w}_{0}=\text { aabAbbAA } \\
& \boldsymbol{w}_{1}=\text { aBabbbAA } \\
& \boldsymbol{w}_{2}=\text { aBBaaabA } \\
& \boldsymbol{w}_{3}=\text { aBBaaBab }
\end{aligned}
$$

draw the grid:

- Theorem. - The process terminates in quadratic time.
- Proof: (Length does not increase, but could cycle.)

Associate with the sequence of reductions a rectangular grid (quadratic area).
For the example:

$$
\begin{aligned}
& \boldsymbol{w}_{0}=\text { aabAbbAA } \\
& \boldsymbol{w}_{1}=\text { aBabbbAA } \\
& \boldsymbol{w}_{2}=\text { aBBaaabA } \\
& \boldsymbol{w}_{3}=\text { aBBaaBab }
\end{aligned}
$$

draw the grid:

- Theorem. - The process terminates in quadratic time.
- Proof: (Length does not increase, but could cycle.)

Associate with the sequence of reductions a rectangular grid (quadratic area).
For the example:

$$
\begin{aligned}
& \boldsymbol{w}_{0}=\text { aabAbbAA } \\
& \boldsymbol{w}_{1}=\text { aBabbbAA } \\
& \boldsymbol{w}_{2}=\text { aBBaaabA } \\
& \boldsymbol{w}_{3}=\text { aBBaaBab }
\end{aligned}
$$

draw the grid:

- This is the braid handle reduction procedure;
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids (case of " n strand" braids entirely similar for every n).
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids (case of " n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids (case of " n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
$-\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon, \mathrm{cC} \rightarrow \varepsilon, \mathrm{Cc} \rightarrow \varepsilon$,
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids (case of " n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
$-\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon, \mathrm{cC} \rightarrow \varepsilon, \mathrm{Cc} \rightarrow \varepsilon, \quad$ (as above)
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids (case of " n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
$-\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon, \mathrm{cC} \rightarrow \varepsilon, \mathrm{Cc} \rightarrow \varepsilon$, (as above)
- for \boldsymbol{w} in $\{b, c, C\}^{*}$ or $\{B, c, C\}^{*}$:
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids (case of " n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
$-\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon, \mathrm{cC} \rightarrow \varepsilon, \mathrm{Cc} \rightarrow \varepsilon$, (as above)
- for \boldsymbol{w} in $\{b, c, C\}^{*}$ or $\{B, c, C\}^{*}:$ awA $\rightarrow \phi_{\mathrm{a}}(\boldsymbol{w})$,
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids (case of " n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon, \mathrm{cC} \rightarrow \varepsilon, \mathrm{Cc} \rightarrow \varepsilon, \quad$ (as above)
- for \boldsymbol{w} in $\{\mathrm{b}, \mathrm{c}, \mathrm{C}\}^{*}$ or $\{\mathrm{B}, \mathrm{c}, \mathrm{C}\}^{*}: \mathrm{a} \boldsymbol{w} \mathrm{A} \rightarrow \phi_{\mathrm{a}}(\boldsymbol{w}), \mathrm{A} \boldsymbol{w} \mathrm{a} \rightarrow \phi_{\mathrm{A}}(\boldsymbol{w})$,
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids (case of " n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon, \mathrm{cC} \rightarrow \varepsilon, \mathrm{Cc} \rightarrow \varepsilon, \quad$ (as above)
- for \boldsymbol{w} in $\{\mathrm{b}, \mathrm{c}, \mathrm{C}\}^{*}$ or $\{\mathrm{B}, \mathrm{c}, \mathrm{C}\}^{*}: \mathrm{a} \boldsymbol{w} \mathrm{A} \rightarrow \phi_{\mathrm{a}}(\boldsymbol{w})$, $\mathrm{A} \boldsymbol{w} \mathrm{a} \rightarrow \phi_{\mathrm{A}}(\boldsymbol{w})$, with $\phi_{\mathrm{a}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{b} \rightarrow \mathrm{Bab}$ and $\mathrm{B} \rightarrow \mathrm{BAb}$,
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids (case of " n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon, \mathrm{cC} \rightarrow \varepsilon, \mathrm{Cc} \rightarrow \varepsilon, \quad$ (as above)
- for \boldsymbol{w} in $\{\mathrm{b}, \mathrm{c}, \mathrm{C}\}^{*}$ or $\{\mathrm{B}, \mathrm{c}, \mathrm{C}\}^{*}: \mathrm{a} \boldsymbol{w} \mathrm{A} \rightarrow \phi_{\mathrm{a}}(\boldsymbol{w})$, $\mathrm{A} \boldsymbol{w} \mathrm{a} \rightarrow \phi_{\mathrm{A}}(\boldsymbol{w})$, with $\phi_{\mathrm{a}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{b} \rightarrow \mathrm{Bab}$ and $\mathrm{B} \rightarrow \mathrm{BAb}$, and $\phi_{\mathrm{A}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{b} \rightarrow \mathrm{baB}$ and $\mathrm{B} \rightarrow \mathrm{bAB}$,
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids (case of " n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon, \mathrm{cC} \rightarrow \varepsilon, \mathrm{Cc} \rightarrow \varepsilon, \quad$ (as above)
- for \boldsymbol{w} in $\{\mathrm{b}, \mathrm{c}, \mathrm{C}\}^{*}$ or $\{\mathrm{B}, \mathrm{c}, \mathrm{C}\}^{*}: \mathrm{a} \boldsymbol{w} \mathrm{A} \rightarrow \phi_{\mathrm{a}}(\boldsymbol{w})$, $\mathrm{A} \boldsymbol{w} \mathrm{a} \rightarrow \phi_{\mathrm{A}}(\boldsymbol{w})$, with $\phi_{\mathrm{a}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{b} \rightarrow \mathrm{Bab}$ and $\mathrm{B} \rightarrow \mathrm{BAb}$, and $\phi_{\mathrm{A}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{b} \rightarrow \mathrm{baB}$ and $\mathrm{B} \rightarrow \mathrm{bAB}$,
- for \boldsymbol{w} in $\{\mathrm{c}\}^{*}$ or $\{\mathrm{C}\}^{*}: \mathrm{b} \boldsymbol{w} \mathrm{B} \rightarrow \phi_{\mathrm{b}}(\boldsymbol{w}), \mathrm{B} \boldsymbol{w b} \rightarrow \phi_{\mathrm{B}}(\boldsymbol{w})$,
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids (case of " n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon, \mathrm{cC} \rightarrow \varepsilon, \mathrm{Cc} \rightarrow \varepsilon, \quad$ (as above)
- for \boldsymbol{w} in $\{\mathrm{b}, \mathrm{c}, \mathrm{C}\}^{*}$ or $\{\mathrm{B}, \mathrm{c}, \mathrm{C}\}^{*}: \mathrm{a} \boldsymbol{w} \mathrm{A} \rightarrow \phi_{\mathrm{a}}(\boldsymbol{w})$, $\mathrm{A} \boldsymbol{w} \mathrm{a} \rightarrow \phi_{\mathrm{A}}(\boldsymbol{w})$, with $\phi_{\mathrm{a}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{b} \rightarrow \mathrm{Bab}$ and $\mathrm{B} \rightarrow \mathrm{BAb}$, and $\phi_{\mathrm{A}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{b} \rightarrow \mathrm{baB}$ and $\mathrm{B} \rightarrow \mathrm{bAB}$,
- for \boldsymbol{w} in $\{\mathrm{c}\}^{*}$ or $\{\mathrm{C}\}^{*}: \mathrm{b} \boldsymbol{w} \mathrm{B} \rightarrow \phi_{\mathrm{b}}(\boldsymbol{w}), \mathrm{B} \boldsymbol{w} \rightarrow \phi_{\mathrm{B}}(\boldsymbol{w})$, with $\phi_{\mathrm{b}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{c} \rightarrow \mathrm{Cbc}$ and $\mathrm{C} \rightarrow \mathrm{CBc}$, and $\phi_{\mathrm{B}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{c} \rightarrow \mathrm{cbC}$ and $\mathrm{C} \rightarrow \mathrm{cBC}$.
- This is the braid handle reduction procedure;
so far: case of " 3 -strand" braids; now: case of " 4 -strand" braids (case of " n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
- $\mathrm{aA} \rightarrow \varepsilon, \mathrm{Aa} \rightarrow \varepsilon, \mathrm{bB} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon, \mathrm{cC} \rightarrow \varepsilon, \mathrm{Cc} \rightarrow \varepsilon, \quad$ (as above)
- for \boldsymbol{w} in $\{\mathrm{b}, \mathrm{c}, \mathrm{C}\}^{*}$ or $\{\mathrm{B}, \mathrm{c}, \mathrm{C}\}^{*}: \mathrm{a} \boldsymbol{w} \mathrm{A} \rightarrow \phi_{\mathrm{a}}(\boldsymbol{w})$, $\mathrm{A} \boldsymbol{w} \mathrm{a} \rightarrow \phi_{\mathrm{A}}(\boldsymbol{w})$, with $\phi_{\mathrm{a}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{b} \rightarrow \mathrm{Bab}$ and $\mathrm{B} \rightarrow \mathrm{BAb}$, and $\phi_{\mathrm{A}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{b} \rightarrow \mathrm{baB}$ and $\mathrm{B} \rightarrow \mathrm{bAB}$,
- for \boldsymbol{w} in $\{\mathrm{c}\}^{*}$ or $\{\mathrm{C}\}^{*}: \mathrm{b} \boldsymbol{w} \mathrm{B} \rightarrow \phi_{\mathrm{b}}(\boldsymbol{w}), \mathrm{B} \boldsymbol{w} \rightarrow \phi_{\mathrm{B}}(\boldsymbol{w})$, with $\phi_{\mathrm{b}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{c} \rightarrow \mathrm{Cbc}$ and $\mathrm{C} \rightarrow \mathrm{CBc}$, and $\phi_{\mathrm{B}}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $\mathrm{c} \rightarrow \mathrm{cbC}$ and $\mathrm{C} \rightarrow \mathrm{cBC}$.
- Remark.- $\mathrm{ab}^{i} \mathrm{~A} \rightarrow(\mathrm{Bab})^{i} \rightarrow \mathrm{Ba}^{i} \mathrm{~b}$: extends the 3-strand case.
- Example:
－Example：
abcbABABCBA
－Example：
abcbABABCBA
- Example:
abcbABABCBA
BabcBabBABCBA
- Example:
abcbABABCBA
BabcBabBABCBA
BabcBaABCBA
- Example:
abcbABABCBA
BabcBabBABCBA
BabcBaABCBA
BabcBBCBA
- Example:
abcbABABCBA
BabcBabBABCBA
BabcBaABCBA
BabcBBCBA
BaCbcBCBA
- Example:
abcbABABCBA
BabcBabBABCBA
BabcBaABCBA
BabcBBCBA
BaCbcBCBA
BaCCbcCBA
- Example:
abcbABABCBA
BabcBabBABCBA
BabcBaABCBA
BabcBBCBA
BaCbcBCBA
$\mathrm{BaCCb} \underset{-}{ } \mathrm{CBA}$
BaCCbBA
- Example:

```
abcbABABCBA
BabcBabBABCBA
BabcBaABCBA
BabcBBCBA
BaCbcBCBA
BaCCbcCBA
BaCCbBA
BaCCA
```

- Example:

```
abcbABABCBA
BabcBabBABCBA
BabcBaABCBA
BabcBBCBA
BaCbcBCBA
BaCCbcCBA
BaCCbBA
BaCCA
BCC
```

- Example:

```
abcbABABCBA
BabcBabBABCBA
BabcBaABCBA
BabcBBCBA
BaCbcBCBA
BaCCbcCBA
BaCCbBA
BaCCA
BCC
```

\leadsto Terminates: the final word does not contain both a and A

- Example:

```
abcbABABCBA
BabcBabBABCBA
BabcBaABCBA
BabcBBCBA
BaCbcBCBA
BaCCbcCBA
BaCCbBA
BaCCA
BCC
```

\leadsto Terminates: the final word does not contain both a and A
(by the way: contains neither a nor A, and not both b and B.)

- Example:

```
abcbABABCBA
BabcBabBABCBA
BabcBaABCBA
BabcBBCBA
BaCbcBCBA
BaCCbcCBA
BaCCbBA
BaCCA
BCC
```

\leadsto Terminates: the final word does not contain both a and A
(by the way: contains neither a nor A , and not both b and B.)

- Theorem.- Handle reduction always terminates in exponential time
- Example:

```
abcbABABCBA
BabcBabBABCBA
BabcBaABCBA
BabcBBCBA
BaCbcBCBA
BaCCbcCBA
BaCCbBA
BaCCA
BCC
```

\leadsto Terminates: the final word does not contain both a and A
(by the way: contains neither a nor A , and not both b and B.)

- Theorem.- Handle reduction always terminates in exponential time (and id. for n-strand version).
- Example:

```
abcbABABCBA
BabcBabBABCBA
BabcBaABCBA
BabcBBCBA
BaCbcBCBA
BaCCbcCBA
BaCCbBA
BaCCA
BCC
```

\leadsto Terminates: the final word does not contain both a and A
(by the way: contains neither a nor A , and not both b and B.)

- Theorem.- Handle reduction always terminates in exponential time (and id. for n-strand version).
- Experimental evidence.- It terminates in quadratic time (for every \boldsymbol{n}).
- A 4-strand braid diagram
- A 4 -strand braid diagram

- A 4-strand braid diagram $=2 \mathrm{D}$-projection of a 3D-figure:

－A 4－strand braid diagram $\quad=2 \mathrm{D}$－projection of a 3D－figure：

- A 4-strand braid diagram $=2 \mathrm{D}$-projection of a 3D-figure:

- isotopy $=$ move the strands but keep the ends fixed:
- A 4-strand braid diagram $\quad=2 \mathrm{D}$-projection of a 3D-figure:

- isotopy $=$ move the strands but keep the ends fixed:

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram

$$
=2 \mathrm{D} \text {-projection of a 3D-figure: }
$$

- isotopy $=$ move the strands but keep the ends fixed:

isotopic to

- A 4 -strand braid diagram $=2 \mathrm{D}$-projection of a 3D-figure:

- isotopy $=$ move the strands but keep the ends fixed:

- a braid $:=$ an isotopy class \leadsto represented by 2D-diagram,
- A 4 -strand braid diagram $=2 \mathrm{D}$-projection of a 3D-figure:

- isotopy $=$ move the strands but keep the ends fixed:

- a braid $:=$ an isotopy class \leadsto represented by 2D-diagram, but different 2D-diagrams may give rise to the same braid.
- Product of two braids:

- Then well-defined with respect to isotopy), associative, admits a unit:

- Product of two braids:

- Then well-defined with respect to isotopy), associative, admits a unit:

- Product of two braids:

- Then well-defined with respect to isotopy), associative, admits a unit:

- Product of two braids:

- Then well-defined with respect to isotopy), associative, admits a unit:

- Product of two braids:

- Then well-defined with respect to isotopy), associative, admits a unit:

- Product of two braids:

- Then well-defined with respect to isotopy), associative, admits a unit:

and inverses:
isotopic to

- Product of two braids:

- Then well-defined with respect to isotopy), associative, admits a unit:

and inverses:
isotopic to

- Product of two braids:

- Then well-defined with respect to isotopy), associative, admits a unit:

and inverses:
isotopic to

- Product of two braids:

- Then well-defined with respect to isotopy), associative, admits a unit:

and inverses:
isotopic to

- Product of two braids:

- Then well-defined with respect to isotopy), associative, admits a unit:

\leadsto For each n, the group B_{n} of \boldsymbol{n}-strand braids (E.Artin, 1925).
－Artin generators of B_{n} ：

- Artin generators of $\boldsymbol{B}_{\boldsymbol{n}}$:

- Artin generators of B_{n} :

－Artin generators of $\boldsymbol{B}_{\boldsymbol{n}}$ ：

- Artin generators of $\boldsymbol{B}_{\boldsymbol{n}}$:

- Artin generators of B_{n} :

- Theorem (Artin): The group B_{n} is generated by $\sigma_{1}, \ldots, \sigma_{n-1}$,
- Artin generators of $\boldsymbol{B}_{\boldsymbol{n}}$:

- Theorem (Artin): The group B_{n} is generated by $\sigma_{1}, \ldots, \sigma_{n-1}$,

$$
\text { subject to } \begin{cases}\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1,\end{cases}
$$

- Artin generators of $\boldsymbol{B}_{\boldsymbol{n}}$:

- Theorem (Artin): The group B_{n} is generated by $\sigma_{1}, \ldots, \sigma_{n-1}$,

$$
\text { subject to }\left\{\begin{array}{cc}
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1, \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2 .
\end{array}\right.
$$

- Artin generators of B_{n} :

- Theorem (Artin): The group B_{n} is generated by $\sigma_{1}, \ldots, \sigma_{n-1}$,

$$
\text { subject to }\left\{\begin{array}{cc}
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1, \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2 .
\end{array}\right.
$$

- Artin generators of $\boldsymbol{B}_{\boldsymbol{n}}$:

- Theorem (Artin): The group B_{n} is generated by $\sigma_{1}, \ldots, \sigma_{n-1}$,

$$
\text { subject to }\left\{\begin{array}{cc}
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { for }|i-j|=1, \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { for }|i-j| \geqslant 2 .
\end{array}\right.
$$

－A σ_{i}－handle：

- A σ_{i}-handle:

- A σ_{i}-handle:

- Reducing a handle:
－A σ_{i}－handle：

－Reducing a handle：

－A σ_{i}－handle：

－Reducing a handle：

- A σ_{i}-handle:

- Reducing a handle:

- A σ_{i}-handle:

- Reducing a handle:

- Handle reduction is an isotopy;
- A σ_{i}-handle:

- Reducing a handle:

- Handle reduction is an isotopy; It extends free group reduction;
- A σ_{i}-handle:

- Reducing a handle:

- Handle reduction is an isotopy; It extends free group reduction;

Terminal words cannot contain both σ_{1} and σ_{1}^{-1}.

- A σ_{i}-handle:

- Reducing a handle:

- Handle reduction is an isotopy; It extends free group reduction;

Terminal words cannot contain both σ_{1} and σ_{1}^{-1}.

- Theorem.- Every sequence of handle reductions terminates.

1. The Polish Algorithm for Left-Selfdistributivity
2. Handle reduction of braids
3. Subword reversing for positively presented groups

- This time: a truly true rewrite system...
- Alphabet: a, b, A, B
- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$
- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ ("free group reduction" as usual, but only one direction)
- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ ("free group reduction" as usual, but only one direction)
$-\mathrm{Ab} \rightarrow \mathrm{bA}$,
- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:
- $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ ("free group reduction" as usual, but only one direction)
$-\mathrm{Ab} \rightarrow \mathrm{bA}, \mathrm{Ba} \rightarrow \mathrm{aB}$.
- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:

$$
\begin{array}{lr}
-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon & \text { ("free group reduction" as usual, but only one direction) } \\
-\mathrm{Ab} \rightarrow \mathrm{bA}, \mathrm{Ba} \rightarrow \mathrm{aB} . & \text { ("reverse }-+ \text { patterns into }+- \text { patterns") }
\end{array}
$$

- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$
$-\mathrm{Ab} \rightarrow \mathrm{bA}, \mathrm{Ba} \rightarrow \mathrm{aB}$.
(" free group reduction" as usual, but only one direction) ("reverse -+ patterns into +- patterns")
- Aim: transforming an arbitrary signed word into a positive-negative word.
- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:
$\begin{array}{lr}-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon & \text { ("free group reduction" as usual, but only one direction) } \\ -\mathrm{Ab} \rightarrow \mathrm{bA}, \mathrm{Ba} \rightarrow \mathrm{aB} . & \text { ("reverse }-+ \text { patterns into }+- \text { patterns") }\end{array}$
- Aim: transforming an arbitrary signed word into a positive-negative word.
- Example: BBAbabb
- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:
$\begin{array}{lr}-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon & \text { ("free group reduction" as usual, but only one direction) } \\ -\mathrm{Ab} \rightarrow \mathrm{bA}, \mathrm{Ba} \rightarrow \mathrm{aB} . & \text { ("reverse }-+ \text { patterns into }+- \text { patterns") }\end{array}$
- Aim: transforming an arbitrary signed word into a positive-negative word.
- Example: BBAbabb
- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:
$\begin{array}{lr}-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon & \text { ("free group reduction" as usual, but only one direction) } \\ -\mathrm{Ab} \rightarrow \mathrm{bA}, \mathrm{Ba} \rightarrow \mathrm{aB} . & \text { ("reverse }-+ \text { patterns into }+- \text { patterns") }\end{array}$
- Aim: transforming an arbitrary signed word into a positive-negative word.
- Example: BBAbabb \rightarrow BBbAabb
- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:
$\begin{array}{lr}-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon & \text { ("free group reduction" as usual, but only one direction) } \\ -\mathrm{Ab} \rightarrow \mathrm{bA}, \mathrm{Ba} \rightarrow \mathrm{aB} . & \text { ("reverse }-+ \text { patterns into }+- \text { patterns") }\end{array}$
- Aim: transforming an arbitrary signed word into a positive-negative word.
- Example: BBABabb \rightarrow BBbAabb \rightarrow BAabb
- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:
$\begin{array}{lr}-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon & \text { ("free group reduction" as usual, but only one direction) } \\ -\mathrm{Ab} \rightarrow \mathrm{bA}, \mathrm{Ba} \rightarrow \mathrm{aB} . & \text { ("reverse }-+ \text { patterns into }+- \text { patterns") }\end{array}$
- Aim: transforming an arbitrary signed word into a positive-negative word.
- Example: BBAbabb $\rightarrow \underline{B B b A a b b} \rightarrow$ BAabb $\rightarrow \underline{B b b}$
- This time: a truly true rewrite system...
- Alphabet: a, b, A, B (think of A as an inverse of a , etc.)
- Rewrite rules:
$\begin{array}{lr}-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon & \text { ("free group reduction" as usual, but only one direction) } \\ -\mathrm{Ab} \rightarrow \mathrm{bA}, \mathrm{Ba} \rightarrow \mathrm{aB} . & \text { ("reverse }-+ \text { patterns into }+- \text { patterns") }\end{array}$
- Aim: transforming an arbitrary signed word into a positive-negative word.
- Example: $\mathrm{BBABabb} \rightarrow \mathrm{BBb} A a b b \rightarrow \mathrm{BAabb} \rightarrow \underline{\mathrm{Bbb}} \rightarrow \mathrm{b}$.
－＂Theorem＂．－It terminates in quadratic time．
- "Theorem".- It terminates in quadratic time.
- Proof: (obvious).
- "Theorem".- It terminates in quadratic time.
- Proof: (obvious). Construct a reversing grid:
- "Theorem" - It terminates in quadratic time.
- Proof: (obvious). Construct a reversing grid:

- "Theorem" - It terminates in quadratic time.
- Proof: (obvious). Construct a reversing grid:

- "Theorem".- It terminates in quadratic time.
- Proof: (obvious). Construct a reversing grid:

- "Theorem".- It terminates in quadratic time.
- Proof: (obvious). Construct a reversing grid:

- "Theorem".- It terminates in quadratic time.
- Proof: (obvious). Construct a reversing grid:

- "Theorem".- It terminates in quadratic time.
- Proof: (obvious). Construct a reversing grid:

- "Theorem".- It terminates in quadratic time.
- Proof: (obvious). Construct a reversing grid:

- "Theorem".- It terminates in quadratic time.
- Proof: (obvious). Construct a reversing grid:

- "Theorem".- It terminates in quadratic time.
- Proof: (obvious). Construct a reversing grid:

- "Theorem".- It terminates in quadratic time.
- Proof: (obvious). Construct a reversing grid:

\leadsto Clear that reversing terminates with quadratic time upper bound (and linear space upper bound).
- "Theorem".- It terminates in quadratic time.
- Proof: (obvious). Construct a reversing grid:

\leadsto Clear that reversing terminates with quadratic time upper bound (and linear space upper bound).
- Obviously: id. for any number of letters.
- Example 2:
- Same alphabet: a, b, A, B
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$
(free group reduction in one direction)
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
- $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$
$-\mathrm{Ab} \longrightarrow \mathrm{baBA}$,
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$.
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$.
(free group reduction in one direction)
(" reverse -+ into +- ", but different rule)
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$
(free group reduction in one direction)
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$. ("reverse -+ into +- ", but different rule)
\leadsto Again: transforms an arbitrary signed word into a positive-negative word.
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
- $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (free group reduction in one direction)
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$. ("reverse -+ into +- ", but different rule)
\leadsto Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
- $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (free group reduction in one direction)
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$. ("reverse -+ into +- ", but different rule)
\leadsto Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...
- Example: BBAbabb
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
- $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (free group reduction in one direction)
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$. ("reverse -+ into +- ", but different rule)
\leadsto Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...
- Example: BBAbabb
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
- $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (free group reduction in one direction)
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$. ("reverse -+ into +- ", but different rule)
\leadsto Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...
- Example: BBAbabb \rightarrow BBbaBAabb
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (free group reduction in one direction)
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$. ("reverse -+ into +- ", but different rule)
\leadsto Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...
- Example: BBAbabb \rightarrow BBㅡaBAabb $\rightarrow \underline{\text { BaBAabb }}$
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (free group reduction in one direction)
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$. ("reverse -+ into +- ", but different rule)
\leadsto Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...
- Example: BBAbabb \rightarrow BbaBAabb $\rightarrow \underline{\text { BaBAabb }}$ \rightarrow abABBAabb
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (free group reduction in one direction)
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$. ("reverse -+ into +- ", but different rule)
\leadsto Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...
- Example: BBAbabb \rightarrow BbaBAabb $\rightarrow \underline{\text { BaBAabb }}$ \rightarrow abABBAabb \rightarrow abABBbb
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (free group reduction in one direction)
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$. ("reverse -+ into +- ", but different rule)
\leadsto Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...
- Example: BBAbabb \rightarrow BBbaBAabb $\rightarrow \underline{\text { BaBAabb }}$ \rightarrow abABBAabb \rightarrow abABBbb \rightarrow abABb
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (free group reduction in one direction)
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$. ("reverse -+ into +- ", but different rule)
\leadsto Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...
- Example: BBAbabb \rightarrow BBbaBAabb $\rightarrow \underline{\text { BaBAabb }}$ \rightarrow abABBAabb \rightarrow abABBbb \rightarrow abABb \rightarrow abA.
- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
$-\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon \quad$ (free group reduction in one direction)
$-\mathrm{Ab} \rightarrow \mathrm{baBA}, \mathrm{Ba} \rightarrow \mathrm{abAB}$. ("reverse -+ into +- ", but different rule)
\leadsto Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...
- Example: BBAbabb \rightarrow BBbaBAabb $\rightarrow \underline{\text { BaBAabb }}$ \rightarrow abABBAabb \rightarrow abABBbb \rightarrow abABb \rightarrow abA.
- Reversing grid:
- Reversing grid: same, but possibly smaller and smaller arrows.

- Reversing grid: same, but possibly smaller and smaller arrows.

- Reversing grid: same, but possibly smaller and smaller arrows.

- Reversing grid: same, but possibly smaller and smaller arrows.

- Reversing grid: same, but possibly smaller and smaller arrows.

- Reversing grid: same, but possibly smaller and smaller arrows.

- Reversing grid: same, but possibly smaller and smaller arrows.

- Reversing grid: same, but possibly smaller and smaller arrows.

- Reversing grid: same, but possibly smaller and smaller arrows.

- Reversing grid: same, but possibly smaller and smaller arrows.

- Reversing grid: same, but possibly smaller and smaller arrows.

- Reversing grid: same, but possibly smaller and smaller arrows.

- Theorem.- Reversing terminates in quadratic time (in this specific case).
- Proof:
- Reversing grid: same, but possibly smaller and smaller arrows.

- Theorem.- Reversing terminates in quadratic time (in this specific case).
- Proof: Return to the baby case
- Reversing grid: same, but possibly smaller and smaller arrows.

- Theorem.- Reversing terminates in quadratic time (in this specific case).
- Proof: Return to the baby case $=$ find a (finite) set of words S that includes the alphabet and closed under reversing.
- Reversing grid: same, but possibly smaller and smaller arrows.

- Theorem.- Reversing terminates in quadratic time (in this specific case).
- Proof: Return to the baby case $=$ find a (finite) set of words S that includes the alphabet and closed under reversing.

- Reversing grid: same, but possibly smaller and smaller arrows.

- Theorem.- Reversing terminates in quadratic time (in this specific case).
- Proof: Return to the baby case $=$ find a (finite) set of words S that includes the alphabet and closed under reversing.
for all $\boldsymbol{u}, \boldsymbol{v}$ in S, exist $\boldsymbol{u}^{\prime}, \boldsymbol{v}^{\prime}$ in S s.t. \exists reversing grid $u \downarrow \xrightarrow[\boldsymbol{v}^{\prime}]{\downarrow} u^{\prime}$
ith $S=\{\mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}\}$.
Here: works with $S=\{\mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}\}$.

- Always like that?
- Always like that? Not really...
- Example 3:

Alphabet a, b, A, B,

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$,

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba.. }}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {m letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba.. }}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {m letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet a, b, A, B,

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba.. }}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {m letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$,

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba.. }}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {m letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba.. }}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {m letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$ Start with Bab:

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba.. }}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {m letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$ Start with Bab: Bab

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba.. }}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {m letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$ Start with Bab: Bab \rightarrow aBAb

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$
Start with Bab: $\underline{\mathrm{Bab}} \rightarrow \mathrm{aB} \underline{\mathrm{Ab}} \rightarrow$ aBabA

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$
Start with Bab: ㅁab \rightarrow aBAb \rightarrow aBabA \rightarrow aaB틀

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$
Start with Bab: $\underline{\text { Bab }} \rightarrow$ aBAb \rightarrow aBabA \rightarrow aaBAbA \rightarrow aaBabAA

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba.. }}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {m letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$
Start with Bab: $\underline{\text { Bab }} \rightarrow$ aBAb \rightarrow aBabA \rightarrow aaBAbA \rightarrow aaBabAA \rightarrow aab브́A \rightarrow aaaBabAAA

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$
Start with Bab: $\underline{\text { Bab }} \rightarrow$ aBAb \rightarrow aBabA \rightarrow aaBAbA \rightarrow aaBabaA \rightarrow aaagabAA \rightarrow aaaBabAAA \rightarrow aaaaBAbAAA

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$

\leadsto Here: non-terminating

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$

\leadsto Here: non-terminating

- Example 5:

Alphabet a, b, A, B,

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$

\leadsto Here: non-terminating

- Example 5:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$,

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$

\leadsto Here: non-terminating

- Example 5:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ba} \rightarrow \varepsilon, \mathrm{Ab} \rightarrow \mathrm{abab}^{2} \mathrm{ab}^{2} \mathrm{abab}$

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$

\leadsto Here: non-terminating

- Example 5:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ba} \rightarrow \varepsilon, \mathrm{Ab} \rightarrow \mathrm{abab}^{2} \mathrm{ab}^{2} \mathrm{abab}$
\leadsto Here : terminating in cubic time and quadratic space

- Always like that? Not really...
- Example 3:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \underbrace{\text { baba } \ldots}_{\text {m letters }} \underbrace{\ldots \mathrm{BABA}}_{\text {letters }}, \mathrm{Ba} \rightarrow \underbrace{\mathrm{abab} \ldots}_{\text {mletters }} \underbrace{\ldots \mathrm{ABAB}}_{\text {mletters }}$.
\leadsto Here : terminating in quadratic time and linear space

- Example 4:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ab} \rightarrow \mathrm{abA}, \mathrm{Ba} \rightarrow \mathrm{aBA}$

\leadsto Here: non-terminating

- Example 5:

Alphabet $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}$, rules $\mathrm{Aa} \rightarrow \varepsilon, \mathrm{Bb} \rightarrow \varepsilon$, plus $\mathrm{Ba} \rightarrow \varepsilon, \mathrm{Ab} \rightarrow \mathrm{abab}^{2} \mathrm{ab}^{2} \mathrm{abab}$
\leadsto Here : terminating in cubic time and quadratic space

- What are we doing?

Reversing: connection with monoids and groups

- What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.
- A semigroup presentation: list of generators (alphabet), plus list of relations,
- What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.
- A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{\mathrm{a}, \mathrm{b}\}$, plus $\{\mathrm{aba}=\mathrm{bab}\}$.
- What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.
- A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{\mathrm{a}, \mathrm{b}\}$, plus $\{\mathrm{aba}=\mathrm{bab}\} . \leadsto$ monoid $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle^{+}$,
- What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.
- A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{\mathrm{a}, \mathrm{b}\}$, plus $\{\mathrm{aba}=\mathrm{bab}\} . \leadsto \operatorname{monoid}\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle^{+}$, group $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle$.
- What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.
- A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{\mathrm{a}, \mathrm{b}\}$, plus $\{\mathrm{aba}=\mathrm{bab}\} . \leadsto \operatorname{monoid}\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle^{+}$, group $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle$.

```
- Definition.- Assume (A,R) semigroup presentation and, for all s\not=t in }\boldsymbol{A}\mathrm{ ,
    there is exactly one relation s... =t\ldots.. in R}R\mathrm{ , say sC(s,t)=tC(t,s).
Then reversing is the rewrite system on }\boldsymbol{A}\cup\overline{A}\mathrm{ (a copy of }A\mathrm{ , here : capitalized letters)
    with rules }\overline{s}s->\varepsilon\mathrm{ and }\overline{s}t->C(s,t)\overline{C(t,s)}\mathrm{ for s}\not=t\mathrm{ in A.
```

- Reversing does not change the element of the group that is represented;
- What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.
- A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{\mathrm{a}, \mathrm{b}\}$, plus $\{\mathrm{aba}=\mathrm{bab}\} . \leadsto \operatorname{monoid}\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle^{+}$, group $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle$.

```
- Definition. - Assume \((\boldsymbol{A}, \boldsymbol{R})\) semigroup presentation and, for all \(s \neq t\) in \(\boldsymbol{A}\),
    there is exactly one relation \(s \ldots=t \ldots\) in \(R\), say \(s C(s, t)=t C(t, s)\).
Then reversing is the rewrite system on \(\boldsymbol{A} \cup \bar{A}\) (a copy of \(\boldsymbol{A}\), here : capitalized letters)
    with rules \(\bar{s} s \rightarrow \varepsilon\) and \(\bar{s} t \rightarrow C(s, t) \overline{C(t, s)}\) for \(s \neq t\) in \(A\).
```

- Reversing does not change the element of the group that is represented; \leadsto if it terminates, every element of the group is a fraction $\boldsymbol{f} \boldsymbol{g}^{-1}$ with f, \boldsymbol{g} positive.
- Example $1=$ reversing for the free Abelian group: $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{ab}=\mathrm{ba}\rangle$;
- What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.
- A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{\mathrm{a}, \mathrm{b}\}$, plus $\{\mathrm{aba}=\mathrm{bab}\} . \leadsto \operatorname{monoid}\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle^{+}$, group $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle$.

```
- Definition. - Assume \((\boldsymbol{A}, \boldsymbol{R})\) semigroup presentation and, for all \(s \neq t\) in \(\boldsymbol{A}\),
    there is exactly one relation \(s \ldots=t \ldots\) in \(R\), say \(s C(s, t)=t C(t, s)\).
Then reversing is the rewrite system on \(\boldsymbol{A} \cup \bar{A}\) (a copy of \(\boldsymbol{A}\), here : capitalized letters)
    with rules \(\bar{s} s \rightarrow \varepsilon\) and \(\bar{s} t \rightarrow C(s, t) \overline{C(t, s)}\) for \(s \neq t\) in \(A\).
```

- Reversing does not change the element of the group that is represented;
\leadsto if it terminates, every element of the group is a fraction $\boldsymbol{f} \boldsymbol{g}^{-1}$ with f, \boldsymbol{g} positive.
- Example $1=$ reversing for the free Abelian group: $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{ab}=\mathrm{ba}\rangle$;
- Example $2=$ reversing for the 3 -strand braid group: $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle$;
- What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.
- A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{\mathrm{a}, \mathrm{b}\}$, plus $\{\mathrm{aba}=\mathrm{bab}\} . \leadsto \operatorname{monoid}\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle^{+}$, group $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle$.

```
- Definition.- Assume \((\boldsymbol{A}, \boldsymbol{R})\) semigroup presentation and, for all \(s \neq t\) in \(A\),
    there is exactly one relation \(s \ldots=t \ldots\) in \(R\), say \(s C(s, t)=t C(t, s)\).
Then reversing is the rewrite system on \(A \cup \bar{A}\) (a copy of \(A\), here : capitalized letters)
    with rules \(\bar{s} s \rightarrow \varepsilon\) and \(\bar{s} t \rightarrow C(s, t) \overline{C(t, s)}\) for \(s \neq t\) in \(A\).
```

- Reversing does not change the element of the group that is represented;
\leadsto if it terminates, every element of the group is a fraction $f g^{-1}$ with f, g positive.
- Example $1=$ reversing for the free Abelian group: $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{ab}=\mathrm{ba}\rangle$;
- Example $2=$ reversing for the 3 -strand braid group: $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle$;
- Example 3 = reversing for type $I_{2}(\boldsymbol{m}+1)$ Artin group: $\langle\mathrm{a}, \mathrm{b} \mid \underbrace{\text { abab... }}_{m+1}=\underbrace{\text { baba... }}_{m+1}\rangle$;
- What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.
- A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{\mathrm{a}, \mathrm{b}\}$, plus $\{\mathrm{aba}=\mathrm{bab}\} . \leadsto \operatorname{monoid}\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle^{+}$, group $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle$.

> - Definition.- Assume (A, R) semigroup presentation and, for all $s \neq t$ in A, there is exactly one relation $s \ldots=t \ldots$ in R, say $s C(s, t)=t C(t, s)$. Then reversing is the rewrite system on $\boldsymbol{A} \cup \bar{A}$ (a copy of A, here : capitalized letters) with rules $\bar{s} s \rightarrow \varepsilon$ and $\bar{s} t \rightarrow C(s, t) \overline{C(t, s)}$ for $s \neq t$ in A.

- Reversing does not change the element of the group that is represented;
\leadsto if it terminates, every element of the group is a fraction $\boldsymbol{f} \boldsymbol{g}^{-1}$ with f, \boldsymbol{g} positive.
- Example $1=$ reversing for the free Abelian group: $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{ab}=\mathrm{ba}\rangle$;
- Example $2=$ reversing for the 3 -strand braid group: $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle$;
- Example $3=$ reversing for type $I_{2}(\boldsymbol{m}+1)$ Artin group: $\langle\mathrm{a}, \mathrm{b} \mid \underbrace{\text { abab... }}_{m+1}=\underbrace{\text { baba... }}_{m+1}\rangle$;
- Example $4=$ reversing for the Baumslag-Solitar group: $\left\langle\mathrm{a}, \mathrm{b} \mid \mathrm{ab}^{2}=\mathrm{ba}\right\rangle$;
- What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.
- A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{\mathrm{a}, \mathrm{b}\}$, plus $\{\mathrm{aba}=\mathrm{bab}\} . \leadsto \operatorname{monoid}\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle^{+}$, group $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle$.

> - Definition.- Assume (A, R) semigroup presentation and, for all $s \neq t$ in A, there is exactly one relation $s \ldots=t \ldots$ in R, say $s C(s, t)=t C(t, s)$. Then reversing is the rewrite system on $A \cup \bar{A}$ (a copy of A, here : capitalized letters) with rules $\bar{s} s \rightarrow \varepsilon$ and $\bar{s} t \rightarrow C(s, t) \overline{C(t, s)}$ for $s \neq t$ in A.

- Reversing does not change the element of the group that is represented;
\leadsto if it terminates, every element of the group is a fraction $f g^{-1}$ with f, g positive.
- Example $1=$ reversing for the free Abelian group: $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{ab}=\mathrm{ba}\rangle$;
- Example $2=$ reversing for the 3 -strand braid group: $\langle\mathrm{a}, \mathrm{b} \mid \mathrm{aba}=\mathrm{bab}\rangle$;
- Example 3 = reversing for type $I_{2}(\boldsymbol{m}+1)$ Artin group: $\langle\mathrm{a}, \mathrm{b} \mid \underbrace{\text { abab... }}_{m+1}=\underbrace{\text { baba... }}_{m+1}\rangle$;
- Example $4=$ reversing for the Baumslag-Solitar group: $\left\langle\mathrm{a}, \mathrm{b} \mid \mathrm{ab}^{2}=\mathrm{ba}\right\rangle$;
- Example $5=$ reversing for the ordered group: $\left\langle\mathrm{a}, \mathrm{b} \mid \mathrm{a}=\mathrm{babab}^{2} \mathrm{ab}^{2} \mathrm{abab}\right\rangle$.
- The only known facts:
- The only known facts:
- reduction to the baby case \Rightarrow termination;
- The only known facts:
- reduction to the baby case \Rightarrow termination;
- self-reproducing pattern \Rightarrow non-termination;
- The only known facts:
- reduction to the baby case \Rightarrow termination;
- self-reproducing pattern \Rightarrow non-termination;
- if reversing is complete for $(\boldsymbol{A}, \boldsymbol{R})$, then it is terminating
iff any two elements of the monoid $\langle\boldsymbol{A} \mid \boldsymbol{R}\rangle^{+}$admit a common right-multiple.
- Question.- What are YOU say about reversing?

For the Polish Algorithm:

- P. Dehornoy, Braids and selfdistributivity, Progress in math. vol 192, Birkhaüser 2000 (Chapter VIII)
- O. Deiser, Notes on the Polish Algorithm, deiser@tum.de (Technishe Universität München)

For Handle Reduction of braids:

- P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Braid ordering, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. 2008 (Chapter V)

For reversing associated with a semigroup presentation:

- P. Dehornoy, with F. Digne, E. Godelle, D. Krammer, J. Michel, Foundations of Garside Theory, submitted www.math.unicaen.fr/~dehornoy/ (Chapter II)

