◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

 \exists

DQC.

イロト イポト イヨト イヨト

• Three unrelated termination problems :

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

• Three unrelated termination problems : partial specific answers known,

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

• Three unrelated termination problems : partial specific answers known, but no global understanding:

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen

• Three unrelated termination problems : partial specific answers known, but no global understanding: can some general tools be useful?

シック 正 エル・エー・ キャー・

1. The Polish Algorithm for Left-Selfdistributivity

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

1. The Polish Algorithm for Left-Selfdistributivity

2. Handle reduction of braids

- 1. The Polish Algorithm for Left-Selfdistributivity
- 2. Handle reduction of braids
- 3. Subword reversing for positively presented groups

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 1. The Polish Algorithm for Left-Selfdistributivity
- 2. Handle reduction of braids
- 3. Subword reversing for positively presented groups

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1. The Polish Algorithm for Left-Selfdistributivity

- 2. Handle reduction of braids
- 3. Subword reversing for positively presented groups

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• A "bi-term rewrite system"

• A "bi-term rewrite system" (????)

- A "bi-term rewrite system" (????)
- The associativity law

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

• A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

Given two terms t, t', decide whether t and t' are A-equivalent.

• A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: " t_1t_2 *" for t_1*t_2 (no bracket needed)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

Given two terms t, t', decide whether t and t' are A-equivalent.

• A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.

 (Right-) Polish expression of a term: "t₁t₂ *" for t₁ * t₂ (no bracket needed) Example: In Polish, associativity is xy z * * = xy * z *.

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

- A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.
- (Right-) Polish expression of a term: "t1t2*" for t1*t2 (no bracket needed) Example: In Polish, associativity is xyz** = xy*z*.

• Definition.— The Polish Algorithm for A:

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

• A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.

 (Right-) Polish expression of a term: "t₁t₂*" for t₁*t₂ (no bracket needed) Example: In Polish, associativity is xyz** = xy*z*.

• Definition.— The Polish Algorithm for A: starting with two terms t, t' (in Polish):

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

• A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.

 (Right-) Polish expression of a term: "t1t2*" for t1*t2 (no bracket needed) Example: In Polish, associativity is xyz** = xy*z*.

Definition.— The Polish Algorithm for A: starting with two terms t, t' (in Polish):
while t ≠ t' do
p := first clash between t and t' (pth letter of t ≠ pth letter of t')

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

Given two terms t, t', decide whether t and t' are A-equivalent.

• A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.

 (Right-) Polish expression of a term: "t1t2*" for t1*t2 (no bracket needed) Example: In Polish, associativity is xyz** = xy*z*.

Definition.— The Polish Algorithm for A: starting with two terms t, t' (in Polish):
 - while t ≠ t' do

- $p := \mathsf{first}$ clash between t and t' $(p\mathsf{th}$ letter of $t
 eq p\mathsf{th}$ letter of t')
- case type of p of

- "variable vs. blank" : return NO;

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

• A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.

 (Right-) Polish expression of a term: "t1t2*" for t1*t2 (no bracket needed) Example: In Polish, associativity is xyz** = xy*z*.

Definition.— The Polish Algorithm for A: starting with two terms t, t' (in Polish):
 - while t ≠ t' do

- $p := \mathsf{first} \; \mathsf{clash} \; \mathsf{between} \; t$ and $t' \; (p\mathsf{th} \; \mathsf{letter} \; \mathsf{of} \; t
 eq p\mathsf{th} \; \mathsf{letter} \; \mathsf{of} \; t')$
- case type of p of
 - "variable vs. blank" : return NO;
 - "blank vs. variable" : return NO;

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

Given two terms t, t', decide whether t and t' are A-equivalent.

• A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.

 (Right-) Polish expression of a term: "t1t2*" for t1*t2 (no bracket needed) Example: In Polish, associativity is xyz** = xy*z*.

Definition.— The Polish Algorithm for A: starting with two terms t, t' (in Polish):
 - while t ≠ t' do

- $p := \mathsf{first} \; \mathsf{clash} \; \mathsf{between} \; t$ and $t' \; (p\mathsf{th} \; \mathsf{letter} \; \mathsf{of} \; t
 eq p\mathsf{th} \; \mathsf{letter} \; \mathsf{of} \; t')$
- case type of p of
 - "variable vs. blank" : return NO;
 - "blank vs. variable" : return NO;
 - "variable vs. variable" : return NO;

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

• A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: " t_1t_2* " for t_1*t_2 (no bracket needed) Example: In Polish, associativity is xyz** = xy*z*.

• Definition.— The Polish Algorithm for A: starting with two terms t, t' (in Polish):		
- while $t eq t'$ do		
- $p:=$ first clash between t and t' $(p$ th letter of $t eq p$ th letter of $t')$		
- case type of p of		
- "variable <i>vs.</i> blank" : return NO;		
- "blank <i>vs.</i> variable" : return NO;		
- "variable <i>vs</i> . variable" : return NO;		
- "variable vs. $*$ ": apply A^+ to $m{t}$; $(t_1t_2m{t}_3** o t_1t_2*t_3*)$		

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

• A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: " t_1t_2* " for t_1*t_2 (no bracket needed) Example: In Polish, associativity is xyz**=xy*z*.

• Definition.— The Polish Algorithm for A: starting with two terms t, t' (in Polish): - while $t \neq t'$ do		
- $p :=$ first clash between t and t' (p th letter of $t \neq p$ th letter of t')		
- case type of p of		
- "variable <i>vs.</i> blank" : return NO;		
- " blank <i>vs.</i> variable" : return NO;		
- "variable <i>vs.</i> variable" : return NO;		
- "variable vs. $*$ ": apply A^+ to $m{t};$ $ig(t_1t_2m{t}_3** o t_1t_2*t_3*ig)$		
- " st vs. variable" : apply A^+ to t' ; $(t_1t_2t_3st st o t_1t_2st t_3st)$		

- A "bi-term rewrite system" (????)
- The associativity law (A): x * (y * z) = (x * y) * z,
 - ... and the corresponding Word Problem:

• A trivial problem: t, t' are A-equivalent iff become equal when brackets are removed.

• (Right-) Polish expression of a term: " t_1t_2* " for t_1*t_2 (no bracket needed) Example: In Polish, associativity is xyz** = xy*z*.

• Definition.— The Polish Algorithm for A: starting with two terms t, t' (in Polish): - while $t \neq t'$ do		
- $m{p}:=$ first clash between $m{t}$ and $m{t}'$ $(p$ th letter of $t eq p$ th letter of $m{t}')$		
- case type of $oldsymbol{p}$ of		
- "variable <i>vs.</i> blank": r	return NO;	
- " blank <i>vs.</i> variable" : r	return NO;	
- "variable <i>vs</i> . variable" : r	return NO;	
	apply A^+ to $m{t};$ $(m{t}_1m{t}_2m{t}_3** om{t}_1m{t}_2*m{t}_3*)$	
- " * <i>vs.</i> variable" : a	apply A^+ to $oldsymbol{t}';$ $(oldsymbol{t}_1oldsymbol{t}_2_{oldsymbol{t}_3}** o oldsymbol{t}_1oldsymbol{t}_2*oldsymbol{t}_3*)$	
- return YES.		

• Remember : in Polish, associativity is $\begin{cases} x \, y \, z \, * \, * \\ x \, y \, * \, z \, * \end{cases}$

• Remember : in Polish, associativity is
$$\begin{cases} xyz**\\xy*z* \end{cases}$$

• Example: t = x * (x * (x * x)), t' = ((x * x) * x) * x,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Remember : in Polish, associativity is
$$\begin{cases} xyz**\\xy*z* \end{cases}$$

• Example: $\mathbf{t} = x * (x * (x * x))$, $\mathbf{t}' = ((x * x) * x) * x$, i.e., in Polish,

 $\begin{array}{l} \boldsymbol{t}_0 = x x x x * * * \\ \boldsymbol{t}_0' = x x * x * x * \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Remember : in Polish, associativity is
$$\begin{cases} xyz**\\xy*z* \end{cases}$$

• Example: $\mathbf{t} = x * (x * (x * x))$, $\mathbf{t}' = ((x * x) * x) * x$, i.e., in Polish,

 $\begin{array}{l} \boldsymbol{t}_0 = xx x x x * * * \\ \boldsymbol{t}_0' = xx * x * x * \end{array}$

• Remember : in Polish, associativity is
$$\begin{cases} xyz**\\xy*z* \end{cases}$$

• Example: $\mathbf{t} = x * (x * (x * x)), \mathbf{t}' = ((x * x) * x) * x$, i.e., in Polish,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Remember : in Polish, associativity is
$$\begin{cases} xyz**\\xy*z* \end{cases}$$

• Example: $\mathbf{t} = x * (x * (x * x)), \mathbf{t}' = ((x * x) * x) * x$, i.e., in Polish,

 $\begin{array}{l} {\bm{t}_0} = xx\,{\bm{x}}\,x***\\ {\bm{t}_0} = xx\,{\ast}\,x*x*\\ {\bm{t}_1} = xx\,{\ast}\,x\,{\ast}\,x*\\ {\bm{t}_1} = xx\,{\ast}\,x\,{\ast}\,x*\\ {\bm{t}_1} = xx\,{\ast}\,x\,{\ast}\,x*\\ \end{array}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Remember : in Polish, associativity is
$$\begin{cases} xyz**\\xy*z* \end{cases}$$

• Example: $\mathbf{t} = x * (x * (x * x)), \mathbf{t}' = ((x * x) * x) * x$, i.e., in Polish,

• Remember : in Polish, associativity is
$$\begin{cases} xyz**\\xy*z* \end{cases}$$

• Example: $\mathbf{t} = x * (x * (x * x)), \mathbf{t}' = ((x * x) * x) * x$, i.e., in Polish,

 $\begin{array}{l} t_0 = xx x x * * * * \\ t'_0 = xx * x * x * \\ t_1 = xx * x x * \\ t'_1 = xx * x * x * \\ t'_2 = xx * x * x * \\ t'_2 = xx * x * x * \\ t'_2 = xx * x * x * \\ \end{array}$ So $t_2 = t'_2$, hence t_0 and t'_0 are A-equivalent.

• Remember : in Polish, associativity is
$$\begin{cases} xyz**\\xy*z* \end{cases}$$

• Example: $\mathbf{t} = x * (x * (x * x)), \mathbf{t}' = ((x * x) * x) * x$, i.e., in Polish,

 $\begin{array}{l} t_0 = xxxx*** \\ t'_0 = xx*x** \\ t_1 = xx*xx* \\ t'_1 = xx*x*x* \\ t'_2 = xx*x*x* \\ t'_2 = xx*x*x* \\ t'_2 = xx*x*x* \\ \end{array}$ So $t_2 = t'_2$, hence t_0 and t'_0 are A-equivalent.

• "Theorem".--

• Remember : in Polish, associativity is
$$\begin{cases} x \, y \, z \, * \, * \\ x \, y \, * \, z \, * \, \end{cases}$$

• Example: $\mathbf{t} = x * (x * (x * x)), \mathbf{t}' = ((x * x) * x) * x$, i.e., in Polish,

 $\begin{array}{l} t_0 = xxxx*** \\ t'_0 = xx*x** \\ t_1 = xx*x** \\ t'_1 = xx*x** \\ t'_2 = xx*x*x* \\ t'_2 = xx*x*x* \\ t'_2 = xx*x*x* \\ t'_2 = xx*x*x* \\ t'_2 = t'_2, \text{ hence } t_0 \text{ and } t'_0 \text{ are } A\text{-equivalent.} \end{array}$

• "Theorem" .- The Polish Algorithm works for associativity.

• Remember : in Polish, associativity is
$$\begin{cases} x \, y \, z \, * \, * \\ x \, y \, * \, z \, * \, \end{cases}$$

• Example: $\mathbf{t} = x * (x * (x * x)), \mathbf{t}' = ((x * x) * x) * x$, i.e., in Polish,

 $\begin{array}{l} t_0 = xxxx*** \\ t'_0 = xx*x** \\ t_1 = xx*x** \\ t'_1 = xx*x** \\ t'_2 = xx*x*x* \\ t'_2 = xx$

• "Theorem".— The Polish Algorithm works for associativity. (In particular, it terminates.)

```
• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z),
i.e., in Polish, \begin{cases} x y z * * \\ x y * x z * * \end{cases}
```

```
• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z),
i.e., in Polish, \begin{cases} x y z * * \\ x y * x z * * \end{cases} compare with associativity \begin{cases} x y z * * \\ x y * x z * * \end{cases}
```

• Polish Algorithm: the same as for associativity.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z), i.e., in Polish, $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$ compare with associativity $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$

- Polish Algorithm: the same as for associativity.
- Example: t = x * ((x * x) * (x * x)), t' = (x * x) * (x * (x * x)),

(日) (日) (日) (日) (日) (日) (日) (日)

• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z), i.e., in Polish, $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$ compare with associativity $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$

- Polish Algorithm: the same as for associativity.
- Example: $\boldsymbol{t}=x*((x*x)*(x*x)),$ $\boldsymbol{t}'=(x*x)*(x*(x*x)),$ i.e., in Polish, $\boldsymbol{t}_0=xxx*xx***$ $\boldsymbol{t}_0'=xx*xx***$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z), i.e., in Polish, $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$ compare with associativity $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$

- Polish Algorithm: the same as for associativity.
- Example: t = x * ((x * x) * (x * x)), t' = (x * x) * (x * (x * x)), i.e., in Polish, $t_0 = xxx * xx * * *$ $t'_0 = xx * xxx * * *$

(日) (日) (日) (日) (日) (日) (日) (日)

• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z), i.e., in Polish, $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$ compare with associativity $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$

Polish Algorithm: the same as for associativity.

• Example: t = x * ((x * x) * (x * x)), t' = (x * x) * (x * (x * x)), i.e., in Polish, $t_0 = xxx * xx * * *$ $t'_0 = xx * xxx * * *$ $t_1 = xx * xx * * xxx * *$ $t'_1 = xx * xx * * * (= t'_0)$

(日) (日) (日) (日) (日) (日) (日) (日)

• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z), i.e., in Polish, $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$ compare with associativity $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$

• Polish Algorithm: the same as for associativity.

• Example: t = x * ((x * x) * (x * x)), t' = (x * x) * (x * (x * x)), i.e., in Polish, $t_0 = xxx * xx * * *$ $t'_0 = xx * xxx * * *$ $t_1 = xx * xx * * xxx * *$ $t'_1 = xx * xx * * * (= t'_0)$

• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z), i.e., in Polish, $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$ compare with associativity $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$

Polish Algorithm: the same as for associativity.

• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z), i.e., in Polish, $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$ compare with associativity $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$

Polish Algorithm: the same as for associativity.

(日) (日) (日) (日) (日) (日) (日) (日)

• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z), i.e., in Polish, $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$ compare with associativity $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$

Polish Algorithm: the same as for associativity.

• Example: t = x * ((x * x) * (x * x)), t' = (x * x) * (x * (x * x)), i.e., in Polish, $t_0 = xxx * xx * * * * * t'_0 = xx * xx * * * * * * * t_1 = xx * xx * * * * * (= t_0)$ $t_1 = xx * xx * * xx * * * (= t_1)$ $t_2 = xx * xx * * xx * * * (= t_1)$ $t_2 = xx * xx * * xx * * * (= t_2)$ $t_3 = xx * xx * * xx * * * (= t_2)$

(日) (日) (日) (日) (日) (日) (日) (日)

• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z), i.e., in Polish, $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$ compare with associativity $\begin{cases} xyz * * \\ xy * xz * * \end{cases}$

Polish Algorithm: the same as for associativity.

• Example: t = x * ((x * x) * (x * x)), t' = (x * x) * (x * (x * x)), i.e., in Polish, $t_0 = xxx * xx * * *$ $t_0 = xx * xx * * * *$ $t_1 = xx * xx * * xx * * *$ $t_1 = xx * xx * * xx * * * (= t_0)$ $t_2 = xx * xx * * xx * * (= t_1)$ $t_2' = xx * xx * xx * * * (= t_1)$ $t_3 = xx * xx * * xx * * (= t_2)$ $t_3' = xx * xx * * xx * * * (= t_2)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z), i.e., in Polish, $\begin{cases} x y z * * \\ x y * x z * * \end{cases}$ compare with associativity $\begin{cases} x y z * * \\ x y * x * \end{cases}$

• Polish Algorithm: the same as for associativity.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Left-selfdistributivity (LD) : x * (y * z) = (x * y) * (x * z), i.e., in Polish, $\begin{cases} x y z * * \\ x y * x z * * \end{cases}$ compare with associativity $\begin{cases} x y z * * \\ x y * x * \end{cases}$

• Polish Algorithm: the same as for associativity.

• Example:
$$t = x * ((x * x) * (x * x)), t' = (x * x) * (x * (x * x)), i.e., in Polish,$$

 $t_0 = xx * xx * * * * * t_0' = xx * xx * * * * * t_1' = xx * xx * * * * (= t_0')$
 $t_1 = xx * xx * * xx * * * (= t_0')$
 $t_2 = xx * xx * * xx * * * (= t_1)$
 $t_2' = xx * xx * xx * * * (= t_1)$
 $t_3' = xx * xx * * xx * * * (= t_2)$
 $t_3' = xx * xx * * xx * * xx * * * (= t_2)$
 $t_3' = xx * xx * * xx * xx * * (= t_2)$
 $t_4' = xx * xx * * xx * xx * * (= t_3')$
So $t_4 = t_4'$, hence t_0 and t_0' are LD-equivalent.

• Conjecture.— The Polish Algorithm works for left-selfdistributivity.

• Conjecture.— The Polish Algorithm works for left-selfdistributivity.

• Known.- (i) If it terminates, the Polish Algorithm works for left-selfdistributivity.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

• Conjecture.— The Polish Algorithm works for left-selfdistributivity.

• Known.— (i) If it terminates, the Polish Algorithm works for left-selfdistributivity. (ii) The smallest counter-example to termination (if any) is huge.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

1. The Polish Algorithm for Left-Selfdistributivity

- 2. Handle reduction of braids
- 3. Subword reversing for positively presented groups

• A true (but infinite) rewrite system.

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $aA \rightarrow \varepsilon$, $Aa \rightarrow \varepsilon$, $bB \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:

- $aA \rightarrow \varepsilon$, $Aa \rightarrow \varepsilon$, $bB \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ (so far trivial: "free group reduction")

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:

 - $abA \rightarrow Bab$,

- $aA \rightarrow \varepsilon$, $Aa \rightarrow \varepsilon$, $bB \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ (so far trivial: "free group reduction")

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:

 - $abA \rightarrow Bab$, $aBA \rightarrow BAb$,

- $aA \rightarrow \varepsilon$, $Aa \rightarrow \varepsilon$, $bB \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ (so far trivial: "free group reduction")

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $aA \rightarrow \varepsilon$, $Aa \rightarrow \varepsilon$, $bB \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ (so far trivial: "free group reduction")
 - $abA \rightarrow Bab$, $aBA \rightarrow BAb$, $Aba \rightarrow baB$, $ABa \rightarrow bAB$,

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

```
• Rewrite rules:

- aA \rightarrow \varepsilon, Aa \rightarrow \varepsilon, bB \rightarrow \varepsilon, Bb \rightarrow \varepsilon (so far trivial: "free group reduction")

- abA \rightarrow Bab, aBA \rightarrow BAb, Aba \rightarrow baB, ABa \rightarrow bAB,

and, more generally,

- ab^iA \rightarrow Ba^ib, aB^iA \rightarrow BA^ib, Ab^ia \rightarrow ba^iB, AB^ia \rightarrow bA^iB for i \ge 1.
```

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

```
• Rewrite rules:

- aA \rightarrow \varepsilon, Aa \rightarrow \varepsilon, bB \rightarrow \varepsilon, Bb \rightarrow \varepsilon (so far trivial: "free group reduction")

- abA \rightarrow Bab, aBA \rightarrow BAb, Aba \rightarrow baB, ABa \rightarrow bAB,

and, more generally,

- ab^iA \rightarrow Ba^ib, aB^iA \rightarrow BA^ib, Ab^ia \rightarrow ba^iB, AB^ia \rightarrow bA^iB for i \ge 1.
```

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

```
• Rewrite rules:

- aA \rightarrow \varepsilon, Aa \rightarrow \varepsilon, bB \rightarrow \varepsilon, Bb \rightarrow \varepsilon (so far trivial: "free group reduction")

- abA \rightarrow Bab, aBA \rightarrow BAb, Aba \rightarrow baB, ABa \rightarrow bAB,

and, more generally,

- ab^iA \rightarrow Ba^ib, aB^iA \rightarrow BA^ib, Ab^ia \rightarrow ba^iB, AB^ia \rightarrow bA^iB for i \ge 1.
```

• Aim: obtain a word that does not contain both a and A.

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

```
• Rewrite rules:

- aA \rightarrow \varepsilon, Aa \rightarrow \varepsilon, bB \rightarrow \varepsilon, Bb \rightarrow \varepsilon (so far trivial: "free group reduction")

- abA \rightarrow Bab, aBA \rightarrow BAb, Aba \rightarrow baB, ABa \rightarrow bAB,

and, more generally,

- ab^iA \rightarrow Ba^ib, aB^iA \rightarrow BA^ib, Ab^ia \rightarrow ba^iB, AB^ia \rightarrow bA^iB for i \ge 1.
```

• Aim: obtain a word that does not contain both a and A.

• Example:

 $oldsymbol{w}_0=oldsymbol{ extsf{abbb}}$ AAbbbAA

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

```
• Rewrite rules:

- aA \rightarrow \varepsilon, Aa \rightarrow \varepsilon, bB \rightarrow \varepsilon, Bb \rightarrow \varepsilon (so far trivial: "free group reduction")

- abA \rightarrow Bab, aBA \rightarrow BAb, Aba \rightarrow baB, ABa \rightarrow bAB,

and, more generally,

- ab^iA \rightarrow Ba^ib, aB^iA \rightarrow BA^ib, Ab^ia \rightarrow ba^iB, AB^ia \rightarrow bA^iB for i \ge 1.
```

• Aim: obtain a word that does not contain both a and A.

• Example:

 $oldsymbol{w}_0 = oldsymbol{a} \mathbf{a} \mathbf{b} \mathbf{A} \mathbf{b} \mathbf{b} \mathbf{A} \mathbf{A}$

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

```
• Rewrite rules:

- aA \rightarrow \varepsilon, Aa \rightarrow \varepsilon, bB \rightarrow \varepsilon, Bb \rightarrow \varepsilon (so far trivial: "free group reduction")

- abA \rightarrow Bab, aBA \rightarrow BAb, Aba \rightarrow baB, ABa \rightarrow bAB,

and, more generally,

- ab^iA \rightarrow Ba^ib, aB^iA \rightarrow BA^ib, Ab^ia \rightarrow ba^iB, AB^ia \rightarrow bA^iB for i \ge 1.
```

• Aim: obtain a word that does not contain both a and A.

• Example:

 $oldsymbol{w}_0 = oldsymbol{a} \mathbf{a} \mathbf{b} \mathbf{A} \mathbf{b} \mathbf{b} \mathbf{A} \mathbf{a} \mathbf{w}_1 = oldsymbol{a} \mathbf{a} \mathbf{B} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{A} \mathbf{A}$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

```
• Rewrite rules:

- aA \rightarrow \varepsilon, Aa \rightarrow \varepsilon, bB \rightarrow \varepsilon, Bb \rightarrow \varepsilon (so far trivial: "free group reduction")

- abA \rightarrow Bab, aBA \rightarrow BAb, Aba \rightarrow baB, ABa \rightarrow bAB,

and, more generally,

- ab^iA \rightarrow Ba^ib, aB^iA \rightarrow BA^ib, Ab^ia \rightarrow ba^iB, AB^ia \rightarrow bA^iB for i \ge 1.
```

• Aim: obtain a word that does not contain both a and A.

• Example:

 $oldsymbol{w}_0 = extbf{a} extbf{a} extbf{b} extbf{b} extbf{a} extbf{a} \ oldsymbol{w}_1 = extbf{a} extbf{a} extbf{a} extbf{b} extbf{b} extbf{a} extbf{a}$

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

```
Rewrite rules:
- aA → ε, Aa → ε, bB → ε, Bb → ε (so far trivial: "free group reduction")
- abA → Bab, aBA → BAb, Aba → baB, ABa → bAB,
and, more generally,
- ab<sup>i</sup>A → Ba<sup>i</sup>b, aB<sup>i</sup>A → BA<sup>i</sup>b, Ab<sup>i</sup>a → ba<sup>i</sup>B, AB<sup>i</sup>a → bA<sup>i</sup>B for i ≥ 1.
```

• Aim: obtain a word that does not contain both a and A.

• Example:

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

```
• Rewrite rules:

- aA \rightarrow \varepsilon, Aa \rightarrow \varepsilon, bB \rightarrow \varepsilon, Bb \rightarrow \varepsilon (so far trivial: "free group reduction")

- abA \rightarrow Bab, aBA \rightarrow BAb, Aba \rightarrow baB, ABa \rightarrow bAB,

and, more generally,

- ab^iA \rightarrow Ba^ib, aB^iA \rightarrow BA^ib, Ab^ia \rightarrow ba^iB, AB^ia \rightarrow bA^iB for i \ge 1.
```

• Aim: obtain a word that does not contain both a and A.

• Example:

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

```
Rewrite rules:
- aA → ε, Aa → ε, bB → ε, Bb → ε (so far trivial: "free group reduction")
- abA → Bab, aBA → BAb, Aba → baB, ABa → bAB,
and, more generally,
- ab<sup>i</sup>A → Ba<sup>i</sup>b, aB<sup>i</sup>A → BA<sup>i</sup>b, Ab<sup>i</sup>a → ba<sup>i</sup>B, AB<sup>i</sup>a → bA<sup>i</sup>B for i ≥ 1.
```

• Aim: obtain a word that does not contain both a and A.

• Example:

▲ロト ▲局ト ▲ヨト ▲ヨト ヨー のの⊙

- A true (but infinite) rewrite system.
- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

```
Rewrite rules:
- aA → ε, Aa → ε, bB → ε, Bb → ε (so far trivial: "free group reduction")
- abA → Bab, aBA → BAb, Aba → baB, ABa → bAB,
and, more generally,
- ab<sup>i</sup>A → Ba<sup>i</sup>b, aB<sup>i</sup>A → BA<sup>i</sup>b, Ab<sup>i</sup>a → ba<sup>i</sup>B, AB<sup>i</sup>a → bA<sup>i</sup>B for i ≥ 1.
```

• Aim: obtain a word that does not contain both a and A.

• Example:

↔ a word without A

• Proof: (Length does not increase, but could cycle.)

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー わえぐ

• Theorem.— The process terminates in quadratic time.

• Proof: (Length does not increase, but could cycle.) Associate with the sequence of reductions a rectangular grid (quadratic area).

• Proof: (Length does not increase, but could cycle.) Associate with the sequence of reductions a rectangular grid (quadratic area).

For the example:

draw the grid:

• Proof: (Length does not increase, but could cycle.) Associate with the sequence of reductions a rectangular grid (quadratic area). For the example:

draw the grid:

• Proof: (Length does not increase, but could cycle.) Associate with the sequence of reductions a rectangular grid (quadratic area). For the example:

draw the grid:

• Proof: (Length does not increase, but could cycle.) Associate with the sequence of reductions a rectangular grid (quadratic area). For the example:

> $oldsymbol{w}_0=$ aabAbbAA $oldsymbol{w}_1=$ aBabbbAA $oldsymbol{w}_2=$ aBBaaabA $oldsymbol{w}_3=$ aBBaaBab

draw the grid:

• Proof: (Length does not increase, but could cycle.) Associate with the sequence of reductions a rectangular grid (quadratic area). For the example:

 $oldsymbol{w}_0=$ aabAbbAA $oldsymbol{w}_1=$ aBabbbAA $oldsymbol{w}_2=$ aBBaaabA $oldsymbol{w}_3=$ aBBaaBab

draw the grid:

• Proof: (Length does not increase, but could cycle.) Associate with the sequence of reductions a rectangular grid (quadratic area). For the example:

 $oldsymbol{w}_0=$ aabAbbAA $oldsymbol{w}_1=$ aBabbbAA $oldsymbol{w}_2=$ aBBaaabA $oldsymbol{w}_3=$ aBBaaBab

draw the grid:

• This is the braid handle reduction procedure;

• This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids • This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids (case of "n strand" braids entirely similar for every n).

- This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids (case of "n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.

- This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids (case of "n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:

- $aA \rightarrow \varepsilon$, $Aa \rightarrow \varepsilon$, $bB \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$, $cC \rightarrow \varepsilon$, $Cc \rightarrow \varepsilon$,

- This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids (case of "n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:

- $aA \rightarrow \varepsilon$, $Aa \rightarrow \varepsilon$, $bB \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$, $cC \rightarrow \varepsilon$, $Cc \rightarrow \varepsilon$, (as above)

- This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids (case of "n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
 - $aA \rightarrow \varepsilon$, $Aa \rightarrow \varepsilon$, $bB \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$, $cC \rightarrow \varepsilon$, $Cc \rightarrow \varepsilon$, (as above)
 - for \boldsymbol{w} in $\{b, c, C\}^*$ or $\{B, c, C\}^*$:

- This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids (case of "n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
 - $aA \rightarrow \varepsilon$, $Aa \rightarrow \varepsilon$, $bB \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$, $cC \rightarrow \varepsilon$, $Cc \rightarrow \varepsilon$, (as above)
 - for \boldsymbol{w} in $\{b, c, C\}^*$ or $\{B, c, C\}^*$: $\mathbf{a}\boldsymbol{w} A \rightarrow \phi_{a}(\boldsymbol{w})$,

- This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids (case of "n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
 - $aA \rightarrow \varepsilon$, $Aa \rightarrow \varepsilon$, $bB \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$, $cC \rightarrow \varepsilon$, $Cc \rightarrow \varepsilon$, (as above)
 - for w in $\{b, c, C\}^*$ or $\{B, c, C\}^*$: $awA \rightarrow \phi_a(w)$, $Awa \rightarrow \phi_A(w)$,

- This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids (case of "n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
 - $aA \rightarrow \varepsilon$, $Aa \rightarrow \varepsilon$, $bB \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$, $cC \rightarrow \varepsilon$, $Cc \rightarrow \varepsilon$, (as above)
 - for \boldsymbol{w} in $\{b, c, C\}^*$ or $\{B, c, C\}^*$: $a\boldsymbol{w} A \to \phi_a(\boldsymbol{w})$, $A\boldsymbol{w} a \to \phi_A(\boldsymbol{w})$,

with $\phi_{a}(\boldsymbol{w})$ obtained from \boldsymbol{w} by $b \rightarrow Bab$ and $B \rightarrow BAb$,

- This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids (case of "n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
 - aA $\rightarrow \varepsilon$, Aa $\rightarrow \varepsilon$, bB $\rightarrow \varepsilon$, Bb $\rightarrow \varepsilon$, cC $\rightarrow \varepsilon$, Cc $\rightarrow \varepsilon$, (as above)
 - for \boldsymbol{w} in $\{b, c, C\}^*$ or $\{B, c, C\}^*$: $a\boldsymbol{w}A \rightarrow \phi_a(\boldsymbol{w})$, $A\boldsymbol{w}a \rightarrow \phi_A(\boldsymbol{w})$,
 - with $\phi_{a}(w)$ obtained from w by $b \rightarrow Bab$ and $B \rightarrow BAb$, and $\phi_{A}(w)$ obtained from w by $b \rightarrow baB$ and $B \rightarrow bAB$,

- This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids (case of "n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:

- This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids (case of "n strand" braids entirely similar for every n).
- Alphabet: a, b, c, A, B, C.
- Rewrite rules:
 - $\begin{array}{l} -\mathbf{a}A \rightarrow \boldsymbol{\varepsilon}, \ \mathbf{A}\mathbf{a} \rightarrow \boldsymbol{\varepsilon}, \ \mathbf{b}B \rightarrow \boldsymbol{\varepsilon}, \ \mathbf{B}\mathbf{b} \rightarrow \boldsymbol{\varepsilon}, \ \mathbf{c}C \rightarrow \boldsymbol{\varepsilon}, \ \mathbf{C}C \rightarrow \boldsymbol{\varepsilon}, \ (\text{as above}) \\ -\text{ for } \boldsymbol{w} \text{ in } \{\mathbf{b}, \mathbf{c}, \mathbf{C}\}^* \text{ or } \{\mathbf{B}, \mathbf{c}, \mathbf{C}\}^* : \mathbf{a}\boldsymbol{w}A \rightarrow \phi_{\mathbf{a}}(\boldsymbol{w}), \ A\boldsymbol{w}\mathbf{a} \rightarrow \phi_{\mathbf{A}}(\boldsymbol{w}), \\ & \text{ with } \phi_{\mathbf{a}}(\boldsymbol{w}) \text{ obtained from } \boldsymbol{w} \text{ by } \mathbf{b} \rightarrow \text{Bab and } \mathbf{B} \rightarrow \text{BAb}, \\ & \text{ and } \phi_{\mathbf{A}}(\boldsymbol{w}) \text{ obtained from } \boldsymbol{w} \text{ by } \mathbf{b} \rightarrow \text{baB and } \mathbf{B} \rightarrow \text{bAB}, \\ -\text{ for } \boldsymbol{w} \text{ in } \{\mathbf{c}\}^* \text{ or } \{\mathbf{C}\}^* : \ \mathbf{b}\boldsymbol{w}B \rightarrow \phi_{\mathbf{b}}(\boldsymbol{w}), \ \mathbf{B}\boldsymbol{w}\mathbf{b} \rightarrow \phi_{\mathbf{B}}(\boldsymbol{w}), \\ & \text{ with } \phi_{\mathbf{b}}(\boldsymbol{w}) \text{ obtained from } \boldsymbol{w} \text{ by } \mathbf{c} \rightarrow \text{Cbc and } \mathbf{C} \rightarrow \text{CBc}, \\ & \text{ and } \phi_{\mathbf{B}}(\boldsymbol{w}) \text{ obtained from } \boldsymbol{w} \text{ by } \mathbf{c} \rightarrow \text{cbC and } \mathbf{C} \rightarrow \text{cBC}. \end{array}$

- This is the braid handle reduction procedure; so far: case of "3-strand" braids; now: case of "4-strand" braids (case of "n strand" braids entirely similar for every n).
 Alphabet: a, b, c, A, B, C.
- Rewrite rules:

• Remark.— $ab^i A \rightarrow (Bab)^i \rightarrow Ba^i b$: extends the 3-strand case.

abcbABABCBA

abcbABABCBA

abcbABABCBA BabcBabBABCBA

abcbABABCBA BabcBabBABCBA BabcB<u>aA</u>BCBA

abcbABABCBA BabcBabBABCBA BabcB<u>aA</u>BCBA BabcB<u>aA</u>BCBA

• Example:

abcbABABCBA BabcBabBABCBA BabcB<u>aA</u>BCBA BabcBBCBA BaCbcBCBA

• Example:

abcbABABCBA BabcBabBABCBA BabcBaABCBA BabcBBCBA BaCbcBCBA BaCCbcCBA

• Example:

abcbABABCBA BabcBabBABCBA BabcBaABCBA BabcBBCBA BaCbcBCBA BaCCbcCBA BaCCbBA • Example:

abcbABABCBA BabcBabBABCBA BabcBaABCBA BabcBBCBA BaCbcBCBA BaCCb<u>cC</u>BA BaCCb<u>BA</u> BaCCA

• Example:

abcbABABCBA BabcBabBABCBA BabcBaABCBA BabcBBCBA BaCbbCBCBA BaCCbbCBA BaCCbBA BaCCbBA BaCCA BCC

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへぐ

• Example:

abcbABABCBA BabcBabBABCBA BabcBaABCBA BabcBBCBA BaCbbCBCBA BaCCbbCBA BaCCbBA BaCCbBA BaCCA BCC

 \leftrightarrow Terminates: the final word does not contain both a and A

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Example:

abcbABABCBA BabcBabBABCBA BabcBaABCBA BabcBBCBA BaCbcBCBA BaCCbcCBA BaCCbBA BaCCbBA BaCCA BCC

↔ Terminates: the final word does not contain both a and A (by the way: contains neither a nor A, and not both b and B.)

• Example:

abcbABABCBA BabcBabBABCBA BabcBaABCBA BabcBBCBA BaCbcBCBA BaCCbcCBA BaCCbCBA BaCCbBA BaCCA BCC

↔ Terminates: the final word does not contain both a and A (by the way: contains neither a nor A, and not both b and B.)

• Theorem.— Handle reduction always terminates in exponential time

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ _ のく⊙

• Example:

abcbABABCBA BabcBabBABCBA BabcBaABCBA BabcBBCBA BaCbcBCBA BaCCbcCBA BaCCbBA BaCCA BCC

↔ Terminates: the final word does not contain both a and A (by the way: contains neither a nor A, and not both b and B.)

• Theorem.— Handle reduction always terminates in exponential time (and *id.* for *n*-strand version).

• Example:

abcbABABCBA BabcBabBABCBA BabcBaABCBA BabcBBCBA BaCbbBCBA BaCCbbCBA BaCCbBA BaCCbBA BaCCA BCC

↔ Terminates: the final word does not contain both a and A (by the way: contains neither a nor A, and not both b and B.)

• A 4-strand braid diagram

• A 4-strand braid diagram

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

• a braid := an isotopy class 😁 represented by 2D-diagram,

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

• a braid := an isotopy class 😁 represented by 2D-diagram,

but different 2D-diagrams may give rise to the same braid.

• Product of two braids:

< □ > < □ > < 臣 > < 臣 > < 臣 > < 臣 < つへぐ

Braid groups

• Product of two braids:

< □ > < □ > < 臣 > < 臣 > < 臣 > < 臣 < つへぐ

Braid groups

• Product of two braids:

< □ > < □ > < 臣 > < 臣 > < 臣 > < 臣 < つへぐ

• Product of two braids:

• Then well-defined with respect to isotopy), associative, admits a unit:

• Product of two braids:

• Then well-defined with respect to isotopy), associative, admits a unit:

• Then well-defined with respect to isotopy), associative, admits a unit:

• Then well-defined with respect to isotopy), associative, admits a unit:

• Then well-defined with respect to isotopy), associative, admits a unit:

• Then well-defined with respect to isotopy), associative, admits a unit:

and inverses:

isotopic to

• Then well-defined with respect to isotopy), associative, admits a unit:

and inverses:

isotopic to

• Then well-defined with respect to isotopy), associative, admits a unit:

and inverses:

isotopic to

• Then well-defined with respect to isotopy), associative, admits a unit:

and inverses:

isotopic to

• Then well-defined with respect to isotopy), associative, admits a unit:

and inverses:

isotopic to

 \leftrightarrow For each *n*, the group B_n of *n*-strand braids (E.Artin, 1925).

<ロト < @ ト < E ト < E ト E の < @</p>

• Reducing a handle:

• A σ_i -handle:

• Reducing a handle:

• A σ_i -handle:

• Reducing a handle:

• Reducing a handle:

• A σ_i -handle:

• Reducing a handle:

• Handle reduction is an isotopy;

• A σ_i -handle:

• Reducing a handle:

• Handle reduction is an isotopy; It extends free group reduction;

<□▶ <□▶ < □▶ < □▶ < □▶ = □ の < ⊙

• A σ_i -handle:

• Reducing a handle:

• Handle reduction is an isotopy; It extends free group reduction; Terminal words cannot contain both σ_1 and σ_1^{-1} .

• A σ_i -handle:

• Reducing a handle:

• Handle reduction is an isotopy; It extends free group reduction; Terminal words cannot contain both σ_1 and σ_1^{-1} .

• Theorem.— Every sequence of handle reductions terminates.

- 1. The Polish Algorithm for Left-Selfdistributivity
- 2. Handle reduction of braids
- 3. Subword reversing for positively presented groups

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B

• This time: a truly true rewrite system...

• Alphabet: a, b, A, B (think of A as an inverse of a, etc.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - Aa $ightarrow oldsymbol{arepsilon}$, Bb $ightarrow oldsymbol{arepsilon}$

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ ("free group reduction" as usual, but only one direction)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ ("free group reduction" as usual, but only one direction)
 - Ab \rightarrow bA,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ ("free group reduction" as usual, but only one direction)
 - Ab \rightarrow bA, Ba \rightarrow aB.

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ ("free group reduction" as usual, but only one direction)
 - Ab \rightarrow bA. Ba \rightarrow aB.

("reverse -+ patterns into +- patterns")

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ ("free group reduction" as usual, but only one direction) - $Ab \rightarrow bA$, $Ba \rightarrow aB$. ("reverse -+ patterns into +- patterns")

• Aim: transforming an arbitrary signed word into a positive-negative word.

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ ("free group reduction" as usual, but only one direction) - $Ab \rightarrow bA$, $Ba \rightarrow aB$. ("reverse -+ patterns into +- patterns")

• Aim: transforming an arbitrary signed word into a positive-negative word.

• Example: BBAbabb

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ ("free group reduction" as usual, but only one direction) - $Ab \rightarrow bA$, $Ba \rightarrow aB$. ("reverse -+ patterns into +- patterns")

• Aim: transforming an arbitrary signed word into a positive-negative word.

• Example: BBAbabb

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ ("free group reduction" as usual, but only one direction) - $Ab \rightarrow bA$, $Ba \rightarrow aB$. ("reverse -+ patterns into +- patterns")

• Aim: transforming an arbitrary signed word into a positive-negative word.

• Example: $BBAbabb \rightarrow BBbAabb$

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ ("free group reduction" as usual, but only one direction) - $Ab \rightarrow bA$, $Ba \rightarrow aB$. ("reverse -+ patterns into +- patterns")

• Aim: transforming an arbitrary signed word into a positive-negative word.

• Example: $BBAbabb \rightarrow BBbAabb \rightarrow BAabb$

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ ("free group reduction" as usual, but only one direction) - $Ab \rightarrow bA$, $Ba \rightarrow aB$. ("reverse -+ patterns into +- patterns")

• Aim: transforming an arbitrary signed word into a positive-negative word.

• Example: $BBAbabb \rightarrow BBbAabb \rightarrow BAabb \rightarrow Bbb$

• This time: a truly true rewrite system...

- Alphabet: a, b, A, B (think of A as an inverse of a, etc.)
- Rewrite rules:
 - $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ ("free group reduction" as usual, but only one direction) - $Ab \rightarrow bA$, $Ba \rightarrow aB$. ("reverse -+ patterns into +- patterns")

• Aim: transforming an arbitrary signed word into a positive-negative word.

• Example: $BBAbabb \rightarrow BBbAabb \rightarrow BAabb \rightarrow Bbb \rightarrow b$.

• Proof: (obvious).

• Proof: (obvious). Construct a reversing grid:

• Proof: (obvious). Construct a reversing grid:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• "Theorem" .-- It terminates in quadratic time.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• "Theorem" .-- It terminates in quadratic time.

• Proof: (obvious). Construct a reversing grid:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Proof: (obvious). Construct a reversing grid:

↔ Clear that reversing terminates with quadratic time upper bound (and linear space upper bound).

- ↔ Clear that reversing terminates with quadratic time upper bound (and linear space upper bound).
- Obviously: id. for any number of letters.

- Example 2:
- Same alphabet: a, b, A, B

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa ightarrow arepsilon, Bb ightarrow arepsilon

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa $ightarrow oldsymbol{arepsilon}$, Bb $ightarrow oldsymbol{arepsilon}$

(free group reduction in one direction)

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa $ightarrow oldsymbol{arepsilon}$, Bb $ightarrow oldsymbol{arepsilon}$
 - Ab \rightarrow baBA,

(free group reduction in one direction)

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa $ightarrow oldsymbol{arepsilon}$, Bb $ightarrow oldsymbol{arepsilon}$
 - Ab \rightarrow baBA, Ba \rightarrow abAB.

(free group reduction in one direction)

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa $ightarrow oldsymbol{arepsilon}$, Bb $ightarrow oldsymbol{arepsilon}$
 - Ab \rightarrow baBA, Ba \rightarrow abAB.

(free group reduction in **one** direction) ("reverse -+ into +-", but different rule)

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 = の � @

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa → ε, Bb → ε (free group reduction in one direction)
 Ab → baBA, Ba → abAB. ("reverse -+ into +-", but different rule)
 → Again: transforms an arbitrary signed word into a positive-negative word.

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$ (free group reduction in one direction) - $Ab \rightarrow baBA$, $Ba \rightarrow abAB$. ("reverse -+ into +-", but different rule)
 - Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa → ε, Bb → ε (free group reduction in one direction)
 Ab → baBA, Ba → abAB. ("reverse -+ into +-", but different rule)
 → Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...
- Example: BBAbabb

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - $\begin{array}{ll} Aa \to \varepsilon, \ Bb \to \varepsilon & (free \ group \ reduction \ in \ one \ direction) \\ Ab \to baBA, \ Ba \to abAB. & ("reverse \ -+ \ into \ +-", \ but \ different \ rule) \end{array}$
 - → Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...
- Example: BBAbabb

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa → ε, Bb → ε (free group reduction in one direction)
 Ab → baBA, Ba → abAB. ("reverse -+ into +-", but different rule)
 → Again: transforms an arbitrary signed word into a positive-negative word.

- Termination? Not clear: length may increase...
- Example: $BBAbabb \rightarrow BBbaBAabb$

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa → ε, Bb → ε (free group reduction in one direction)
 Ab → baBA, Ba → abAB. ("reverse -+ into +-", but different rule)
 → Again: transforms an arbitrary signed word into a positive-negative word.

- Termination? Not clear: length may increase...
- Example: $BBAbabb \rightarrow BBbaBAabb \rightarrow BaBAabb$

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa → ε, Bb → ε (free group reduction in one direction)
 Ab → baBA, Ba → abAB. ("reverse -+ into +-", but different rule)
 → Again: transforms an arbitrary signed word into a positive-negative word.

- Termination? Not clear: length may increase...
- Example: $B\underline{B}\underline{A}\underline{b}abb \rightarrow \underline{B}\underline{B}\underline{b}aBAabb \rightarrow \underline{B}\underline{a}BAabb \rightarrow abABBAabb \rightarrow abABBAabb$

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa → ε, Bb → ε (free group reduction in one direction)
 Ab → baBA, Ba → abAB. ("reverse -+ into +-", but different rule)
 → Again: transforms an arbitrary signed word into a positive-negative word.

- Termination? Not clear: length may increase...
- Example: $B\underline{B}\underline{A}\underline{b}abb \rightarrow \underline{B}\underline{B}\underline{b}aBAabb \rightarrow \underline{B}\underline{a}BAabb \rightarrow abABBAabb \rightarrow abABBbb$

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa → ε, Bb → ε (free group reduction in one direction)
 Ab → baBA, Ba → abAB. ("reverse -+ into +-", but different rule)
 → Again: transforms an arbitrary signed word into a positive-negative word.

- Termination? Not clear: length may increase...

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa → ε, Bb → ε (free group reduction in one direction)
 Ab → baBA, Ba → abAB. ("reverse -+ into +-", but different rule)
 → Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...

- Example 2:
- Same alphabet: a, b, A, B
- Rewrite rules:
 - Aa → ε, Bb → ε (free group reduction in one direction)
 Ab → baBA, Ba → abAB. ("reverse -+ into +-", but different rule)
 → Again: transforms an arbitrary signed word into a positive-negative word.
- Termination? Not clear: length may increase...

• Reversing grid:

€ 990

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

€ 990

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Reversing grid: same, but possibly smaller and smaller arrows.

• Theorem.— Reversing terminates in quadratic time (in this specific case).

• Proof:

• Reversing grid: same, but possibly smaller and smaller arrows.

• Theorem.— Reversing terminates in quadratic time (in this specific case).

• Proof: Return to the baby case

・ロト ・ 同ト ・ ヨト ・ ヨト

 \exists

SQC

• Reversing grid: same, but possibly smaller and smaller arrows.

• Theorem.— Reversing terminates in quadratic time (in this specific case).

• Proof: Return to the baby case = find a (finite) set of words \boldsymbol{S} that includes the alphabet and closed under reversing.

• Theorem.— Reversing terminates in quadratic time (in this specific case).

• Proof: Return to the baby case = find a (finite) set of words S that includes the alphabet and closed under reversing. for all u, v in S, exist u', v' in S s.t. \exists reversing grid $u \bigvee_{v'} \bigvee_{v'} u'$

◆ロト ◆昼 ト ◆臣 ト ◆臣 - 今へ⊙

• Theorem.— Reversing terminates in quadratic time (in this specific case).

• Proof: Return to the baby case = find a (finite) set of words S that includes the alphabet and closed under reversing. for all u, v in S, exist u', v' in S s.t. \exists reversing grid $u \bigvee_{v'} \bigvee_{v'} u'$ Here: works with $S = \{a, b, ab, ba\}$.

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

• Always like that?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

• Always like that? Not really...

• Example 3: Alphabet a, b, A, B, • Always like that? Not really...

• Example 3: Alphabet a, b, A, B, rules $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$,

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Always like that? Not really...

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Always like that? Not really...

<ロト 4月ト 4日ト 4日ト 日 900</p>

Always like that? Not really...

• Example 4: Alphabet a, b, A, B,

<ロト 4月ト 4日ト 4日ト 日 900</p>

Always like that? Not really...

• Example 4: Alphabet a, b, A, B, rules $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$,

<ロト 4月ト 4日ト 4日ト 日 900</p>

Always like that? Not really...

• Example 4: Alphabet a, b, A, B, rules $Aa \rightarrow \epsilon$, $Bb \rightarrow \epsilon$, plus $Ab \rightarrow abA$, $Ba \rightarrow aBA$

Always like that? Not really...


```
• Example 4:
Alphabet a, b, A, B, rules Aa \rightarrow \epsilon, Bb \rightarrow \epsilon, plus Ab \rightarrow abA, Ba \rightarrow aBA
Start with Bab:
```

Always like that? Not really...

• Example 4: Alphabet a, b, A, B, rules $Aa \rightarrow \epsilon$, $Bb \rightarrow \epsilon$, plus $Ab \rightarrow abA$, $Ba \rightarrow aBA$ Start with $Bab: \underline{Ba}b$ Always like that? Not really...


```
• Example 4:
Alphabet a, b, A, B, rules Aa \rightarrow \epsilon, Bb \rightarrow \epsilon, plus Ab \rightarrow abA, Ba \rightarrow aBA
Start with Bab: \underline{Bab} \rightarrow a\underline{BAb}
```

Always like that? Not really...

• Example 4: Alphabet a, b, A, B, rules $Aa \rightarrow \epsilon$, $Bb \rightarrow \epsilon$, plus $Ab \rightarrow abA$, $Ba \rightarrow aBA$ Start with $Bab: \underline{Ba}b \rightarrow a\underline{BAb} \rightarrow a\underline{Ba}bA$

Always like that? Not really...

• Example 4: Alphabet a, b, A, B, rules $Aa \rightarrow \epsilon$, $Bb \rightarrow \epsilon$, plus $Ab \rightarrow abA$, $Ba \rightarrow aBA$ Start with $Bab: \underline{Ba}b \rightarrow a\underline{BAb} \rightarrow a\underline{BabA} \rightarrow a\underline{aBAbA}$

• Always like that? Not really...

• Example 4: Alphabet a, b, A, B, rules $Aa \rightarrow \epsilon$, $Bb \rightarrow \epsilon$, plus $Ab \rightarrow abA$, $Ba \rightarrow aBA$ Start with $Bab: \underline{Bab} \rightarrow a\underline{BAb} \rightarrow a\underline{BabA} \rightarrow a\underline{aBabAA}$

Always like that? Not really...

• Example 4: Alphabet a, b, A, B, rules $Aa \rightarrow \varepsilon$, $Bb \rightarrow \varepsilon$, plus $Ab \rightarrow abA$, $Ba \rightarrow aBA$ Start with Bab: $\underline{Ba}b \rightarrow a\underline{BAb} \rightarrow a\underline{Bab}A \rightarrow a\underline{aBab}A \rightarrow a\underline{aBab}A \rightarrow a\underline{aBab}A \rightarrow a\underline{aBab}A \rightarrow a\underline{aBab}AA$

Always like that? Not really...

Always like that? Not really...

Alphabet a, b, A, B,

Always like that? Not really...

Alphabet a, b, A, B, rules $Aa \rightarrow \epsilon$, $Bb \rightarrow \epsilon$, plus $Ba \rightarrow \epsilon$, $Ab \rightarrow abab^2ab^2abab$

• What are we doing?

<ロト 4 目 ト 4 目 ト 4 目 ト 9 0 0 0</p>

- What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.
- A semigroup presentation: list of generators (alphabet), plus list of relations,

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{a, b\}$, plus $\{aba = bab\}$.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{a, b\}$, plus $\{aba = bab\}$. \rightsquigarrow monoid $\langle a, b \mid aba = bab\rangle^+$,

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{a, b\}$, plus $\{aba = bab\}$. \rightsquigarrow monoid $\langle a, b \mid aba = bab\rangle^+$, group $\langle a, b \mid aba = bab\rangle$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{a, b\}$, plus $\{aba = bab\}$. \rightsquigarrow monoid $\langle a, b \mid aba = bab\rangle^+$, group $\langle a, b \mid aba = bab\rangle$.

• Definition.— Assume (A, R) semigroup presentation and, for all $s \neq t$ in A, there is exactly one relation s... = t... in R, say sC(s,t) = tC(t,s). Then reversing is the rewrite system on $A \cup \overline{A}$ (a copy of A, here : capitalized letters) with rules $\overline{s}s \to \varepsilon$ and $\overline{s}t \to C(s,t)\overline{C(t,s)}$ for $s \neq t$ in A.

• Reversing does not change the element of the group that is represented;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{a, b\}$, plus $\{aba = bab\}$. \rightsquigarrow monoid $\langle a, b \mid aba = bab\rangle^+$, group $\langle a, b \mid aba = bab\rangle$.

• Definition.— Assume (A, R) semigroup presentation and, for all $s \neq t$ in A, there is exactly one relation s... = t... in R, say sC(s,t) = tC(t,s). Then reversing is the rewrite system on $A \cup \overline{A}$ (a copy of A, here : capitalized letters) with rules $\overline{s}s \to \varepsilon$ and $\overline{s}t \to C(s,t)\overline{C(t,s)}$ for $s \neq t$ in A.

Reversing does not change the element of the group that is represented;
 → if it terminates, every element of the group is a fraction fg⁻¹ with f, g positive.

• Example 1 = reversing for the free Abelian group: $\langle a, b | ab = ba \rangle$;

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{a, b\}$, plus $\{aba = bab\}$. \rightsquigarrow monoid $\langle a, b \mid aba = bab\rangle^+$, group $\langle a, b \mid aba = bab\rangle$.

• Definition.— Assume (A, R) semigroup presentation and, for all $s \neq t$ in A, there is exactly one relation s... = t... in R, say sC(s,t) = tC(t,s). Then reversing is the rewrite system on $A \cup \overline{A}$ (a copy of A, here : capitalized letters) with rules $\overline{s}s \to \varepsilon$ and $\overline{s}t \to C(s,t)\overline{C(t,s)}$ for $s \neq t$ in A.

Reversing does not change the element of the group that is represented;
 → if it terminates, every element of the group is a fraction fg⁻¹ with f, g positive.

- Example 1 = reversing for the free Abelian group: $\langle a, b | ab = ba \rangle$;
- Example 2 = reversing for the 3-strand braid group: $\langle a, b \mid aba = bab \rangle$;

m+1

m+1

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• What are we doing? We are working with a semigroup presentation and trying to represent the elements of the presented group by fractions.

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{a, b\}$, plus $\{aba = bab\}$. \rightsquigarrow monoid $\langle a, b \mid aba = bab\rangle^+$, group $\langle a, b \mid aba = bab\rangle$.

• Definition.— Assume (A, R) semigroup presentation and, for all $s \neq t$ in A, there is exactly one relation s... = t... in R, say sC(s,t) = tC(t,s). Then reversing is the rewrite system on $A \cup \overline{A}$ (a copy of A, here : capitalized letters) with rules $\overline{s}s \to \varepsilon$ and $\overline{s}t \to C(s,t)\overline{C(t,s)}$ for $s \neq t$ in A.

Reversing does not change the element of the group that is represented;
 → if it terminates, every element of the group is a fraction fg⁻¹ with f, g positive.

- Example 1 = reversing for the free Abelian group: $\langle a, b | ab = ba \rangle$;
- Example 2 = reversing for the 3-strand braid group: $\langle a, b \mid aba = bab \rangle$;
- Example 3 = reversing for type $I_2(m+1)$ Artin group: (a, b | abab... = baba...);

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{a, b\}$, plus $\{aba = bab\}$. \rightsquigarrow monoid $\langle a, b \mid aba = bab\rangle^+$, group $\langle a, b \mid aba = bab\rangle$.

• Definition.— Assume (A, R) semigroup presentation and, for all $s \neq t$ in A, there is exactly one relation s... = t... in R, say sC(s,t) = tC(t,s). Then reversing is the rewrite system on $A \cup \overline{A}$ (a copy of A, here : capitalized letters) with rules $\overline{s}s \to \varepsilon$ and $\overline{s}t \to C(s,t)\overline{C(t,s)}$ for $s \neq t$ in A.

Reversing does not change the element of the group that is represented;
 → if it terminates, every element of the group is a fraction fg⁻¹ with f, g positive.

- Example 1 = reversing for the free Abelian group: (a, b | ab = ba);
- Example 2 = reversing for the 3-strand braid group: $\langle a, b \mid aba = bab \rangle$;
- Example 3 = reversing for type $I_2(m+1)$ Artin group: (a, b | abab... = baba...);

• Example 4 = reversing for the Baumslag–Solitar group: $\langle a, b | ab^2 = ba \rangle$;

m+1

m+1

• A semigroup presentation: list of generators (alphabet), plus list of relations, e.g., $\{a, b\}$, plus $\{aba = bab\}$. \rightsquigarrow monoid $\langle a, b \mid aba = bab\rangle^+$, group $\langle a, b \mid aba = bab\rangle$.

• Definition.— Assume (A, R) semigroup presentation and, for all $s \neq t$ in A, there is exactly one relation s... = t... in R, say sC(s, t) = tC(t, s). Then reversing is the rewrite system on $A \cup \overline{A}$ (a copy of A, here : capitalized letters) with rules $\overline{s}s \to \varepsilon$ and $\overline{s}t \to C(s, t)\overline{C(t, s)}$ for $s \neq t$ in A.

Reversing does not change the element of the group that is represented;
 → if it terminates, every element of the group is a fraction fg⁻¹ with f, g positive.

- Example 1 = reversing for the free Abelian group: $\langle a, b | ab = ba \rangle$;
- Example 2 = reversing for the 3-strand braid group: (a, b | aba = bab);
- Example 3 = reversing for type $I_2(m+1)$ Artin group: (a, b | abab... = baba...);
- Example 4 = reversing for the Baumslag–Solitar group: $\langle a, b | ab^2 = ba \rangle$;
- Example 5 = reversing for the ordered group: $\langle a, b \mid a = babab^2 ab^2 abab \rangle$.

m+1

m+1

• The only known facts:

- The only known facts:
 - reduction to the baby case \Rightarrow termination;

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 = の � @

- The only known facts:
 - reduction to the baby case \Rightarrow termination;
 - self-reproducing pattern \Rightarrow non-termination;

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

- The only known facts:
 - reduction to the baby case \Rightarrow termination;
 - self-reproducing pattern \Rightarrow non-termination;
 - if reversing is complete for (A, R), then it is terminating iff any two elements of the monoid $\langle A | R \rangle^+$ admit a common right-multiple.

• Question.— What are YOU say about reversing?

For the Polish Algorithm:

- P. Dehornoy, Braids and selfdistributivity, Progress in math. vol 192, Birkhaüser 2000 (Chapter VIII)
- O. Deiser, Notes on the Polish Algorithm, deiser@tum.de (Technishe Universität München)

For Handle Reduction of braids:

• P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Braid ordering, Math. Surveys and Monographs vol. 148, Amer. Math. Soc. 2008 (Chapter V)

For reversing associated with a semigroup presentation:

• P. Dehornoy, with F. Digne, E. Godelle, D. Krammer, J. Michel, Foundations of Garside Theory, submitted www.math.unicaen.fr/ \sim dehornoy/ (Chapter II)