Disproving Confluence of Term Rewriting Systems

Takahito Aoto (Tohoku University)

IWC 2013

Outline

- 1. Backgrounds
- 2. Proving Non-Joinability by Interpretation
- 3. Proving Non-Joinability by Ordering
- 4. Implementation and Experiments

Disproving Confluence of TRSs

Find terms t_1, t_2 such that

(1) s ^{*}→ t₁ and s ^{*}→ t₂ for some s, and (finding 'candidates' for non-confluence witness)
(2) t₁ ^{*}→ u and t₂ ^{*}→ u for no u,
i.e. {u | t₁ ^{*}→ u} ∩ {v | t₂ ^{*}→ v} = Ø. (proving non-joinability of 'candidates')

Disproving Confluence of TRSs

Find terms t_1, t_2 such that

(1) s ^{*}→ t₁ and s ^{*}→ t₂ for some s, and (finding 'candidates' for non-confluence witness)
(2) t₁ ^{*}→ u and t₂ ^{*}→ u for no u,
i.e. {u | t₁ ^{*}→ u} ∩ {v | t₂ ^{*}→ v} = Ø. (proving non-joinability of 'candidates')

We let the problem (1) untouched, and consider the problem (2).

Disproving Confluence of TRSs

Find terms t_1, t_2 such that

(1) s ^{*}→ t₁ and s ^{*}→ t₂ for some s, and (finding 'candidates' for non-confluence witness)
(2) t₁ ^{*}→ u and t₂ ^{*}→ u for no u,
i.e. {u | t₁ ^{*}→ u} ∩ {v | t₂ ^{*}→ v} = Ø. (proving non-joinability of 'candidates')

We let the problem (1) untouched, and consider the problem (2).

We abbreviate $\{u \mid t_1 \stackrel{*}{\rightarrow} u\} \cap \{v \mid t_2 \stackrel{*}{\rightarrow} v\} = \emptyset$ as $\operatorname{NJ}(t_1, t_2).$

Proving Non-Joinability by Tree Automata

Only(?) serious approach for proving non-joinability is using tree automata approximation (Durand-Middeldorp, CADE 1997; Genet, RTA 1998).

(1) Construct tree automata $\mathcal{A}_1, \mathcal{A}_2$ such that $\{u \mid t_i \xrightarrow{*} u\} \subseteq \mathcal{L}(\mathcal{A}_i)$ (i = 1, 2) by tree automata approximation.

(2) Check $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2) = \emptyset$.

Proving Non-Joinability by Tree Automata

Only(?) serious approach for proving non-joinability is using tree automata approximation (Durand-Middeldorp, CADE 1997; Genet, RTA 1998).

(1) Construct tree automata $\mathcal{A}_1, \mathcal{A}_2$ such that $\{u \mid t_i \xrightarrow{*} u\} \subseteq \mathcal{L}(\mathcal{A}_i)$ (i = 1, 2) by tree automata approximation.

(2) Check $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2) = \emptyset$.

Sometimes it is difficult to construct a wellapproximated tree automaton.

This work: another approach for proving non-joinability.

Outline

- 1. Backgrounds
- 2. Proving Non-Joinability by Interpretation
- 3. Proving Non-Joinability by Ordering
- 4. Implementation and Experiments

Interpretation

We first recall some standard definitions.

An \mathcal{F} -algebra $\mathcal{A} = \langle A, \langle f^{\mathcal{A}} \rangle_{f \in \mathcal{F}} \rangle$ is a set A equipped with functions $f^{\mathcal{A}} : A^n \to A$ for each n-ary function symbol $f \in \mathcal{F}$.

A valuation σ on a \mathcal{F} -algebra \mathcal{A} is a mapping $\sigma: \mathcal{V} \to A$.

The interpretation $[\![t]\!]_{\sigma} \in A$ of a term $t \in \mathrm{T}(\mathcal{F},\mathcal{V})$ is given by

$$\llbracket x \rrbracket_{\sigma} = \sigma(x)$$

$$\llbracket f(t_1, \dots, t_n) \rrbracket_{\sigma} = f^{\mathcal{A}}(\llbracket t_1 \rrbracket_{\sigma}, \dots, \llbracket t_n \rrbracket_{\sigma})$$

Idea of Using Interpretation

If there exist an \mathcal{F} -algebra and a valuation σ such that (i) $u \to_{\mathcal{R}} v$ implies $\llbracket u \rrbracket_{\sigma} = \llbracket v \rrbracket_{\sigma}$ and (ii) $\llbracket s \rrbracket_{\sigma} \neq \llbracket t \rrbracket_{\sigma}$, then $\mathrm{NJ}(s, t)$.

Idea of Using Interpretation

If there exist an \mathcal{F} -algebra and a valuation σ such that (i) $u \to_{\mathcal{R}} v$ implies $\llbracket u \rrbracket_{\sigma} = \llbracket v \rrbracket_{\sigma}$ and (ii) $\llbracket s \rrbracket_{\sigma} \neq \llbracket t \rrbracket_{\sigma}$, then $\mathrm{NJ}(s, t)$.

But, since $u \xrightarrow{*} s$ and $u \xrightarrow{*} t$ for some u, there is no such an \mathcal{F} -algebra for our candidates s, t.

Idea of Using Interpretation

If there exist an \mathcal{F} -algebra and a valuation σ such that (i) $u \to_{\mathcal{R}} v$ implies $\llbracket u \rrbracket_{\sigma} = \llbracket v \rrbracket_{\sigma}$ and (ii) $\llbracket s \rrbracket_{\sigma} \neq \llbracket t \rrbracket_{\sigma}$, then $\mathrm{NJ}(s, t)$.

But, since $u \xrightarrow{*} s$ and $u \xrightarrow{*} t$ for some u, there is no such an \mathcal{F} -algebra for our candidates s, t.

Here, usable means it can happen $s \xrightarrow{*}_{\mathcal{R}} \circ \rightarrow_{\{l \to r\}} u$ or $t \xrightarrow{*}_{\mathcal{R}} \circ \rightarrow_{\{l \to r\}} u$ for some u (given in the next slide).

Usable Rules for Non-Joinability

Definition. The set of usable rules $\mathcal{U}(s) \subseteq \mathcal{R}$ is the smallest set satisfying:

(i) for any non-variable subterm $f(u_1, \ldots, u_n)$ of s and $l \rightarrow r \in \mathcal{R}$, if $f(\text{TCAP}(u_1), \ldots, \text{TCAP}(u_n))$ and l are unifiable then $l \rightarrow r \in \mathcal{U}(s)$; and (ii) if $l' \rightarrow r' \in \mathcal{U}(s)$ and $l \rightarrow r \in \mathcal{U}(r')$, then $l \rightarrow r \in \mathcal{U}(s)$.

Lemma. If $s \xrightarrow{*}_{\mathcal{R}} \circ \to_{\{l \to r\}} t$ then $l \to r \in \mathcal{U}(s)$.

Here, we assume variable conditions of rewrite rules. It is straightforward to generalize usable rules to the case variable conditions do not hold.

Non-Joinability by Interpretation

Theorem 1. Let $\mathcal{A} = \langle A, \langle f^{\mathcal{A}} \rangle_{f \in \mathcal{F}} \rangle$ be an \mathcal{F} -algebra with $A = \biguplus_{i \in I} A_i$, and s, t terms. Suppose (i) $\llbracket l \rrbracket_{\sigma} \in A_i$ implies $\llbracket r \rrbracket_{\sigma} \in A_i$ for any $l \to r \in \mathcal{U}(s) \cup \mathcal{U}(t)$, (ii) if $a \in A_i$ implies $f^{\mathcal{A}}(\dots, a, \dots) \in A_j$, then for any $b \in A_i, f^{\mathcal{A}}(\dots, b, \dots) \in A_j$, and (iii) $\llbracket s \rrbracket_{\rho} \in A_i$ and $\llbracket t \rrbracket_{\rho} \in A_j$ with $i \neq j$ for some ρ . Then $\operatorname{NJ}(s, t)$.

(Proof Sketch) (i),(ii) imply that for any $s \stackrel{*}{\rightarrow}_{\mathcal{R}} u \rightarrow_{\mathcal{R}} v$, $\llbracket u \rrbracket_{\rho} \in A_i$ implies $\llbracket v \rrbracket_{\rho} \in A_i$. Example 1.

$$\mathcal{R} = \left\{ \begin{array}{ll} (1) & \mathsf{a} \to \mathsf{h}(\mathsf{c}) & (3) & \mathsf{h}(x) \to \mathsf{h}(\mathsf{h}(x)) \\ (2) & \mathsf{a} \to \mathsf{h}(\mathsf{f}(\mathsf{c})) & (4) & \mathsf{f}(x) \to \mathsf{f}(\mathsf{g}(x)) \end{array} \right\}.$$

Take candidates h(c), h(f(c)). Usable rules are $\{(3), (4)\}$.

Take an
$$\mathcal{F}$$
-algebra $\mathcal{A} = \langle \{0, 1\}, \langle f^{\mathcal{A}} \rangle_{f \in \mathcal{F}} \rangle$ as
 $a^{\mathcal{A}} = c^{\mathcal{A}} = 0,$
 $f^{\mathcal{A}}(n) = 1 - n,$
 $h^{\mathcal{A}}(n) = g^{\mathcal{A}}(n) = n.$

Then $\llbracket h(x) \rrbracket_{\sigma} = \llbracket h(h(x)) \rrbracket_{\sigma}$, $\llbracket f(x) \rrbracket_{\sigma} = \llbracket f(g(x)) \rrbracket_{\sigma}$ and $\llbracket h(c) \rrbracket \neq \llbracket h(f(c)) \rrbracket$. Hence, NJ(h(c), h(f(c))).

Example 2.

$$\mathcal{R} = \left\{ egin{array}{cccc} (1) & \mathsf{a} o \mathsf{f}(\mathsf{c}) & (3) & \mathsf{f}(x) o \mathsf{h}(\mathsf{g}(x)) \ (2) & \mathsf{a} o \mathsf{h}(\mathsf{c}) & (4) & \mathsf{h}(x) o \mathsf{f}(\mathsf{g}(x)) \end{array}
ight\}.$$

Take candidates f(c) and h(c). Usable rules are $\{(3), (4)\}$.

Take an
$$\mathcal{F}$$
-algebra $\mathcal{A} = \langle \mathbb{N}, \langle f^{\mathcal{A}} \rangle_{f \in \mathcal{F}} \rangle$ as
 $a^{\mathcal{A}} = c^{\mathcal{A}} = 0$
 $g^{\mathcal{A}}(n) = n + 1$
 $f^{\mathcal{A}}(n) = n$
 $h^{\mathcal{A}}(n) = n + 1$

Then $\llbracket f(x) \rrbracket_{\sigma} \equiv \llbracket h(g(x)) \rrbracket_{\sigma} \pmod{2}$, $\llbracket h(x) \rrbracket_{\sigma} \equiv \llbracket f(g(x)) \rrbracket_{\sigma} \pmod{2}$ and $\llbracket f(c) \rrbracket \not\equiv \llbracket h(c) \rrbracket \pmod{2}$. Hence NJ(f(c), h(c)).

Outline

- 1. Backgrounds
- 2. Proving Non-Joinability by Interpretation
- 3. Proving Non-Joinability by Ordering
- 4. Implementation and Experiments

Non-Joinability by Ordered \mathcal{F} -algebras

For a set of integers, an obvious choice of partition is $A = \{n \in A \mid n < k\} \uplus \{n \in A \mid k \leq n\}$ for some fixed k. More generally, one can use ordered \mathcal{F} -algebras $\mathcal{A} = \langle A, \leq, \langle f^{\mathcal{A}} \rangle_{f \in \mathcal{F}} \rangle$, where \leq is a partial order on A.

Theorem 2. Let \mathcal{A} be a weakly monotone ordered \mathcal{F} algebra and s, t be terms. Suppose
(i) $\llbracket l \rrbracket_{\sigma} \leq \llbracket r \rrbracket_{\sigma}$ for any valuation σ and any $l \to r \in \mathcal{U}(s)$,
(ii) $\llbracket l \rrbracket_{\sigma} \geq \llbracket r \rrbracket_{\sigma}$ for any valuation σ and any $l \to r \in \mathcal{U}(t)$,
(iii) $\llbracket s \rrbracket_{\rho} > \llbracket t \rrbracket_{\rho}$ for some valuation ρ .
Then $\operatorname{NJ}(s, t)$.

Discrimination Pair

We now take term algebras for \mathcal{F} -algebras, and ordering on terms.

Definition. A pair $\langle \gtrsim, \succ \rangle$ of two relations \gtrsim and \succ is said to be a discrimination pair if (i) \gtrsim is a rewrite relation, (ii) \succ is a strict partial order and (iii) $\gtrsim \circ \succ \subseteq \succ$ and $\succ \circ \gtrsim \subseteq \succ$.

Theorem 3. Let \mathcal{R} be a TRS and s, t terms. Suppose there exists a discrimination pair $\langle \gtrsim, \succ \rangle$ such that $\mathcal{U}(s) \subseteq \leq$, $\mathcal{U}(t) \subseteq \gtrsim$ and $s \succ t$. Then $\mathrm{NJ}(s, t)$.

(Proof Sketch) Since \gtrsim is a rewrite relation, it follows that $u \rightarrow_{\{l \rightarrow r\}} v$ implies $u \lesssim v$ for any $l \rightarrow r \in \mathcal{U}(s)$, and $u \rightarrow_{\{l \rightarrow r\}} v$ implies $u \gtrsim v$ for any $l \rightarrow r \in \mathcal{U}(t)$.

Suppose $s \xrightarrow{*} u$ and $t \xrightarrow{*} u$. Let $s = s_0 \rightarrow s_1 \rightarrow \cdots \rightarrow s_n = u$. Then $s = s_0 \rightarrow_{\mathcal{U}(s)} s_1 \rightarrow_{\mathcal{U}(s)} \cdots \rightarrow_{\mathcal{U}(s)} s_n = u$. Thus $s \lesssim \cdots \lesssim u$. Since $t \prec s \lesssim \cdots \lesssim u$, we obtain $t \prec u$ by the property $\gtrsim \circ \succ \subseteq \succ$ of the discrimination pair.

Similarly, from $t \to \cdots \to u$, we obtain $t \gtrsim \cdots \gtrsim u$. By $u \succ t \gtrsim \cdots \gtrsim u$, we obtain $u \succ u$ by the property $\succ \circ \gtrsim \subseteq \succ$ of the discrimination pair.

This contradicts our assumption that \succ is a strict partial order.

Argument Filtering for Non-Joinability

One can incorporates the same notion of argument filtering in dependency pairs.

An argument filtering is a mapping such that $\pi(f) \in$ $\{[i_1, \ldots, i_k] \mid 1 \leq i_1 < \cdots < i_k \leq \operatorname{arity}(f)\} \cup \{i \mid 1 \leq i \leq \operatorname{arity}(f)\}$ for each $f \in \mathcal{F}$. We define $f(t_1, \ldots, t_n)^{\pi} = f(t_{i_1}^{\pi}, \ldots, t_{i_k}^{\pi})$ if $\pi(f) = [i_1, \ldots, i_k]$, $f(t_1, \ldots, t_n)^{\pi} = t_i^{\pi}$ if $\pi(f) = i$. For TRS \mathcal{R} , we put $\mathcal{R}^{\pi} = \{l^{\pi} \to r^{\pi} \mid l \to r \in \mathcal{R}\}$.

Theorem 4. Let \mathcal{R} be a TRS and s, t terms. Suppose there exists a discrimination pair $\langle \gtrsim, \succ \rangle$ and argument filtering π such that $\mathcal{U}_{\mathcal{R}^{\pi}}(s^{\pi}) \subseteq \lesssim$, $\mathcal{U}_{\mathcal{R}^{\pi}}(t^{\pi}) \subseteq \gtrsim$ and $s^{\pi} \succ t^{\pi}$. Then $\mathrm{NJ}(s, t)$.

12/16

Example 3.

$$\mathcal{R} = \left\{ egin{array}{cccc} (1) & \mathsf{c} o \mathsf{f}(\mathsf{c},\mathsf{d}), & (3) & \mathsf{f}(x,y) o \mathsf{h}(\mathsf{g}(y),x), \ (2) & \mathsf{c} o \mathsf{h}(\mathsf{c},\mathsf{d}) & (4) & \mathsf{h}(x,y) o \mathsf{f}(\mathsf{g}(y),x) \end{array}
ight\}.$$

Take candidates h(f(c,d),d) and f(c,d).

Take
$$\pi(g) = 1$$
, $\pi(f) = [2]$ and $\pi(h) = [1]$. Then
 $\mathcal{U}(s^{\pi}) = \{(3)^{\pi}, (4)^{\pi}\}$ and $\mathcal{U}(t^{\pi}) = \{(3)^{\pi}, (4)^{\pi}\}.$

Then we obtain the constraint

$$h(f(d)) \succ f(d), f(y) \simeq h(y), h(x) \simeq f(x)$$

which is satisfied by a discrimination pair $\langle \gtrsim_{rpo}, \gtrsim_{rpo} \setminus \leq_{rpo} \rangle$ with precedence f \simeq h. Thus NJ(s, t).

Outline

- 1. Backgrounds
- 2. Proving Non-Joinability by Interpretation
- 3. Proving Non-Joinability by Ordering
- 4. Implementation and Experiments

Implementation

We implemented our techniques on the confluence prover ACP.

• Interpretation by \mathcal{F} -algebras (Theorem 1) using the polynomial interpretation with linear polynomials and partition $\mathbb{N} = \biguplus_{0 \leq i < k} \{n \mid n \mod k = i\}$ (k = 2, 3).

• Interpretation by ordered \mathcal{F} -algebras (Theorem 2) with polynomial interpretation via linear polynomials.

• Descrimination pair (Theorem 4) using recursive path order with argument filtering.

Criteria are encoded as a constraint and an external SMT-solver is called to check it has a solution.

Experiments

		${f Th.1} \ (k=2)$	${f Th.1}\ (k=3)$	Th.2 (poly)	Th.4 (rpo)	all
Example 1		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Example 2		\checkmark	\checkmark	×	×	\checkmark
Example 3		×	×	×	\checkmark	\checkmark
23 ex. (success/t.o.)		16/0	16 /3	14/0	19/0	21 /1
23 ex. (time)		25	293	206	26	8 4
35 ex. (success/t.o.)		17/5	16 /8	17/3	17 /1	16/9
35 ex. (time)		318	562	446	106	761
	ACP	CSI	Saigawa			
Example 1	Х	×	×	23 new examples		
Example 2	× ×		×	35 examples from Cops		
Example 3	×	×	×	ACP v.0.31		
23 ex. (success/t.o.)	<mark>9</mark> /0	12 /-	<mark>3</mark> /1	CSI v.0.2		
23 ex. (time)	2	2107	228	Saigawa v.1.4		
35 ex. (success/t.o.)	18/1	<mark>21</mark> /-	17 /6			
35 ex. (time)	71	485	482			

Conclusion

Disproving confluence by showing non-joinability of candidates.

- Proving non-joinability by interpretation \mathcal{F} -algebra, usable rules
- Proving non-joinability by ordering ordered \mathcal{F} -algebra discrimination pairs, argument filtering
- Implementation and experiments

Future Works

• More effective interpretation and ordering