Disproving Confluence of Term Rewriting Systems

Takahito Aoto (Tohoku University)

IWC 2013

Outline

1. Backgrounds
2. Proving Non-Joinability by Interpretation
3. Proving Non-Joinability by Ordering
4. Implementation and Experiments

Disproving Confluence of TRSs

Find terms t_{1}, t_{2} such that
(1) $s \xrightarrow{*} t_{1}$ and $s \xrightarrow{*} t_{2}$ for some s, and
(finding 'candidates' for non-confluence witness)
(2) $t_{1} \xrightarrow{*} u$ and $t_{2} \xrightarrow{*} u$ for no u,
i.e. $\left\{u \mid t_{1} \xrightarrow{*} u\right\} \cap\left\{v \mid t_{2} \xrightarrow{*} v\right\}=\emptyset$. (proving non-joinability of 'candidates')

Disproving Confluence of TRSs

Find terms t_{1}, t_{2} such that
(1) $s \xrightarrow{*} t_{1}$ and $s \xrightarrow{*} t_{2}$ for some s, and
(finding 'candidates' for non-confluence witness)
(2) $t_{1} \xrightarrow{*} u$ and $t_{2} \xrightarrow{*} u$ for no u,
i.e. $\left\{u \mid t_{1} \xrightarrow{*} u\right\} \cap\left\{v \mid t_{2} \xrightarrow{*} v\right\}=\emptyset$. (proving non-joinability of 'candidates')

We let the problem (1) untouched, and consider the problem (2).

Disproving Confluence of TRSs

Find terms t_{1}, t_{2} such that
(1) $s \xrightarrow{*} t_{1}$ and $s \xrightarrow{*} t_{2}$ for some s, and
(finding 'candidates' for non-confluence witness)
(2) $t_{1} \xrightarrow{*} u$ and $t_{2} \xrightarrow{*} u$ for no u,
i.e. $\left\{u \mid t_{1} \xrightarrow{*} u\right\} \cap\left\{v \mid t_{2} \xrightarrow{*} v\right\}=\emptyset$.
(proving non-joinability of 'candidates')
We let the problem (1) untouched, and consider the problem (2).

We abbreviate $\left\{u \mid t_{1} \xrightarrow{*} u\right\} \cap\left\{v \mid t_{2} \xrightarrow{*} v\right\}=\emptyset$ as $\mathrm{NJ}\left(\boldsymbol{t}_{1}, \boldsymbol{t}_{2}\right)$.

Proving Non-Joinability by Tree Automata

Only(?) serious approach for proving non-joinability is using tree automata approximation (Durand-Middeldorp, CADE 1997; Genet, RTA 1998).
(1) Construct tree automata $\mathcal{A}_{1}, \mathcal{A}_{2}$ such that $\{u \mid$ $\left.t_{i} \xrightarrow{*} u\right\} \subseteq \mathcal{L}\left(\mathcal{A}_{i}\right) \quad(i=1,2)$ by tree automata approximation.
(2) Check $\mathcal{L}\left(\mathcal{A}_{1}\right) \cap \mathcal{L}\left(\mathcal{A}_{2}\right)=\emptyset$.

Proving Non-Joinability by Tree Automata

Only(?) serious approach for proving non-joinability is using tree automata approximation (Durand-Middeldorp, CADE 1997; Genet, RTA 1998).
(1) Construct tree automata $\mathcal{A}_{1}, \mathcal{A}_{2}$ such that $\{u \mid$ $\left.t_{i} \xrightarrow{*} u\right\} \subseteq \mathcal{L}\left(\mathcal{A}_{i}\right) \quad(i=1,2)$ by tree automata approximation.
(2) Check $\mathcal{L}\left(\mathcal{A}_{1}\right) \cap \mathcal{L}\left(\mathcal{A}_{2}\right)=\emptyset$.

Sometimes it is difficult to construct a wellapproximated tree automaton.

This work: another approach for proving non-joinability.

Outline

1. Backgrounds
2. Proving Non-Joinability by Interpretation
3. Proving Non-Joinability by Ordering
4. Implementation and Experiments

Interpretation

We first recall some standard definitions.

An \mathcal{F}-algebra $\mathcal{A}=\left\langle A,\left\langle f^{\mathcal{A}}\right\rangle_{f \in \mathcal{F}}\right\rangle$ is a set A equipped with functions $f^{\mathcal{A}}: A^{n} \rightarrow A$ for each n-ary function symbol $f \in \mathcal{F}$.

A valuation σ on a \mathcal{F}-algebra \mathcal{A} is a mapping $\sigma: \mathcal{V} \rightarrow A$.
The interpretation $\llbracket t \rrbracket_{\sigma} \in A$ of a term $t \in \mathrm{~T}(\mathcal{F}, \mathcal{V})$ is given by

$$
\begin{aligned}
& \llbracket x \rrbracket_{\sigma}=\sigma(x) \\
& \llbracket f\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\sigma}=f^{\mathcal{A}}\left(\llbracket t_{1} \rrbracket_{\sigma}, \ldots, \llbracket t_{n} \rrbracket_{\sigma}\right)
\end{aligned}
$$

Idea of Using Interpretation

If there exist an \mathcal{F}-algebra and a valuation σ such that (i) $u \rightarrow_{\mathcal{R}} v$ implies $\llbracket u \rrbracket_{\sigma}=\llbracket v \rrbracket_{\sigma}$ and (ii) $\llbracket s \rrbracket_{\sigma} \neq \llbracket t \rrbracket_{\sigma}$, then $\operatorname{NJ}(s, t)$.

Idea of Using Interpretation

If there exist an \mathcal{F}-algebra and a valuation σ such that (i) $u \rightarrow_{\mathcal{R}} v$ implies $\llbracket u \rrbracket_{\sigma}=\llbracket v \rrbracket_{\sigma}$ and (ii) $\llbracket s \rrbracket_{\sigma} \neq \llbracket t \rrbracket_{\sigma}$, then $\operatorname{NJ}(s, t)$.

But, since $u \xrightarrow{*} s$ and $u \xrightarrow{*} t$ for some u, there is no such an \mathcal{F}-algebra for our candidates s, t.

Idea of Using Interpretation

If there exist an \mathcal{F}-algebra and a valuation σ such that
(i) $u \rightarrow_{\mathcal{R}} v$ implies $\llbracket u \rrbracket_{\sigma}=\llbracket v \rrbracket_{\sigma}$ and (ii) $\llbracket s \rrbracket_{\sigma} \neq \llbracket t \rrbracket_{\sigma}$, then $\operatorname{NJ}(s, t)$.

But, since $u \xrightarrow{*} s$ and $u \xrightarrow{*} t$ for some u, there is no such an \mathcal{F}-algebra for our candidates s, t.

Idea: replace (\mathbf{i}) by the following (i^{\prime})
($\left.\mathrm{i}^{\prime}\right) u \rightarrow_{\{l \rightarrow r\}} v$ implies $\llbracket u \rrbracket_{\sigma}=\llbracket v \rrbracket_{\sigma}$ for any usable rule $l \rightarrow r \in \mathcal{R}$.

Here, usable means it can happen $s \xrightarrow{*}_{\mathcal{R}} \circ \rightarrow_{\{l \rightarrow r\}} u$ or $t \xrightarrow{*}_{\mathcal{R}} \circ \rightarrow_{\{l \rightarrow r\}} u$ for some u (given in the next slide).

Usable Rules for Non-Joinability

Definition. The set of usable rules $\mathcal{U}(s) \subseteq \mathcal{R}$ is the smallest set satisfying:
(i) for any non-variable subterm $f\left(u_{1}, \ldots, u_{n}\right)$ of s and $l \rightarrow r \in \mathcal{R}$, if $f\left(\operatorname{TCAP}\left(u_{1}\right), \ldots, \operatorname{TCAP}\left(u_{n}\right)\right)$ and l are unifiable then $l \rightarrow r \in \mathcal{U}(s)$; and
(ii) if $l^{\prime} \rightarrow r^{\prime} \in \mathcal{U}(s)$ and $l \rightarrow r \in \mathcal{U}\left(r^{\prime}\right)$, then $l \rightarrow r \in$ $\mathcal{U}(s)$.

Lemma. If $s \xrightarrow{*}_{\mathcal{R}} \circ \rightarrow_{\{l \rightarrow r\}} t$ then $l \rightarrow r \in \mathcal{U}(s)$.
Here, we assume variable conditions of rewrite rules. It is straightforward to generalize usable rules to the case variable conditions do not hold.

Non-Joinability by Interpretation

Theorem 1. Let $\mathcal{A}=\left\langle A,\left\langle f^{\mathcal{A}}\right\rangle_{f \in \mathcal{F}}\right\rangle$ be an \mathcal{F}-algebra with $A=\biguplus_{i \in I} A_{i}$, and s, t terms. Suppose
(i) $\llbracket l \rrbracket_{\sigma} \in A_{i}$ implies $\llbracket r \rrbracket_{\sigma} \in A_{i}$ for any $l \rightarrow r \in \mathcal{U}(s) \cup$ $\mathcal{U}(t)$,
(ii) if $a \in A_{i}$ implies $f^{\mathcal{A}}(\ldots, a, \ldots) \in A_{j}$, then for any $b \in A_{i}, f^{\mathcal{A}}(\ldots, b, \ldots) \in A_{j}$, and
(iii) $\llbracket s \rrbracket_{\rho} \in A_{i}$ and $\llbracket t \rrbracket_{\rho} \in A_{j}$ with $i \neq j$ for some ρ.

Then $\operatorname{NJ}(s, t)$.
(Proof Sketch) (i),(ii) imply that for any $s \xrightarrow{*}_{\mathcal{R}} u \rightarrow_{\mathcal{R}} v$, $\llbracket u \rrbracket_{\rho} \in A_{i}$ implies $\llbracket v \rrbracket_{\rho} \in \boldsymbol{A}_{\boldsymbol{i}}$.

Example 1.

$$
\mathcal{R}=\left\{\begin{array}{llll}
(1) & \mathrm{a} \rightarrow \mathrm{~h}(\mathrm{c}) & (3) & \mathrm{h}(x) \rightarrow \mathrm{h}(\mathrm{~h}(x)) \\
(2) & \mathrm{a} \rightarrow \mathrm{~h}(\mathrm{f}(\mathrm{c})) & (4) & \mathrm{f}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x))
\end{array}\right\} .
$$

Take candidates $h(c), h(f(c))$. Usable rules are $\{(3),(4)\}$.
Take an \mathcal{F}-algebra $\mathcal{A}=\left\langle\{0,1\},\left\langle f^{\mathcal{A}}\right\rangle_{f \in \mathcal{F}}\right\rangle$ as

$$
\begin{aligned}
& \mathrm{a} \mathcal{A}=\mathrm{c}^{\mathcal{A}}=0, \\
& \mathrm{f}^{\mathcal{A}}(n)=1-n, \\
& \mathrm{~h}^{\mathcal{A}}(n)=\mathrm{g}^{\mathcal{A}}(n)=n
\end{aligned}
$$

Then $\llbracket \mathrm{h}(x) \rrbracket_{\sigma}=\llbracket \mathrm{h}(\mathrm{h}(x)) \rrbracket_{\sigma}, \llbracket f(x) \rrbracket_{\sigma}=\llbracket \mathrm{f}(\mathrm{g}(x)) \rrbracket_{\sigma}$ and $\llbracket h(c) \rrbracket \neq \llbracket h(f(c)) \rrbracket$. Hence, $N J(h(c), h(f(c)))$.

Example 2.

$$
\mathcal{R}=\left\{\begin{array}{llll}
(1) & \mathrm{a} \rightarrow \mathrm{f}(\mathrm{c}) & (3) & \mathrm{f}(x) \rightarrow \mathrm{h}(\mathrm{~g}(x)) \\
(2) & \mathrm{a} \rightarrow \mathrm{~h}(\mathrm{c}) & (4) & \mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x))
\end{array}\right\}
$$

Take candidates $f(c)$ and $h(c)$. Usable rules are $\{(3),(4)\}$.
Take an \mathcal{F}-algebra $\mathcal{A}=\left\langle\mathbb{N},\left\langle f^{\mathcal{A}}\right\rangle_{f \in \mathcal{F}}\right\rangle$ as

$$
\begin{aligned}
& \mathrm{a}^{\mathcal{A}}=\mathrm{c} \mathcal{A}=0 \\
& \mathrm{~g}^{\mathcal{A}}(n)=n+1 \\
& \mathrm{f}^{\mathcal{A}}(n)=n \\
& \mathrm{~h}^{\mathcal{A}}(n)=n+1
\end{aligned}
$$

Then $\llbracket f(x) \rrbracket_{\sigma} \equiv \llbracket \mathrm{h}(\mathrm{g}(x)) \rrbracket_{\sigma}(\bmod 2), \llbracket \mathrm{h}(x) \rrbracket_{\sigma} \equiv$ $\llbracket \mathrm{f}(\mathrm{g}(x)) \rrbracket_{\sigma}(\bmod 2)$ and $\llbracket \mathrm{f}(\mathrm{c}) \rrbracket \not \equiv \llbracket \mathrm{h}(\mathrm{c}) \rrbracket(\bmod 2)$. Hence $\mathrm{NJ}(\mathrm{f}(\mathrm{c}), \mathrm{h}(\mathrm{c}))$.

Outline

1. Backgrounds
2. Proving Non-Joinability by Interpretation
3. Proving Non-Joinability by Ordering
4. Implementation and Experiments

Non-Joinability by Ordered \mathcal{F}-algebras

For a set of integers, an obvious choice of partition is $A=\{n \in A \mid n<k\} \uplus\{n \in A \mid k \leq n\}$ for some fixed k. More generally, one can use ordered \mathcal{F}-algebras $\mathcal{A}=\left\langle A, \leq,\left\langle f^{\mathcal{A}}\right\rangle_{f \in \mathcal{F}}\right\rangle$, where \leq is a partial order on A.

Theorem 2. Let \mathcal{A} be a weakly monotone ordered \mathcal{F} algebra and s, t be terms. Suppose
(i) $\llbracket l \rrbracket_{\sigma} \leq \llbracket r \rrbracket_{\sigma}$ for any valuation σ and any $l \rightarrow r \in \mathcal{U}(s)$, (ii) $\llbracket l \rrbracket_{\sigma} \geq \llbracket r \rrbracket_{\sigma}$ for any valuation σ and any $l \rightarrow r \in \mathcal{U}(t)$, (iii) $\llbracket s \rrbracket_{\rho}>\llbracket t \rrbracket_{\rho}$ for some valuation ρ.

Then $\operatorname{NJ}(s, t)$.

Discrimination Pair

We now take term algebras for \mathcal{F}-algebras, and ordering on terms.

Definition. A pair $\langle\gtrsim, \succ\rangle$ of two relations \gtrsim and \succ is said to be a discrimination pair if (i) \gtrsim is a rewrite relation, (ii) \succ is a strict partial order and (iii) $\gtrsim \circ \succ \subseteq \succ$ and $\succ 0 \gtrsim \subseteq \succ$.

Theorem 3. Let \mathcal{R} be a TRS and s, t terms. Suppose there exists a discrimination pair $\langle\gtrsim, \succ\rangle$ such that $\mathcal{U}(s) \subseteq$ $\lesssim, \mathcal{U}(t) \subseteq \gtrsim$ and $s \succ t$. Then $\operatorname{NJ}(s, t)$.
(Proof Sketch) Since \gtrsim is a rewrite relation, it follows that $u \rightarrow_{\{l \rightarrow r\}} v$ implies $u \lesssim v$ for any $l \rightarrow r \in \mathcal{U}(s)$, and $u \rightarrow_{\{l \rightarrow r\}} v$ implies $u \gtrsim v$ for any $l \rightarrow r \in \mathcal{U}(t)$.

Suppose $s \xrightarrow{*} u$ and $t \xrightarrow{*} u$. Let $s=s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow$ $s_{n}=u$. Then $s=s_{0} \rightarrow \mathcal{U}(s) s_{1} \rightarrow \mathcal{U}(s) \cdots \rightarrow \mathcal{U}(s) s_{n}=u$. Thus $s \lesssim \cdots \lesssim u$. Since $t \prec s \lesssim \cdots \lesssim u$, we obtain $\boldsymbol{t} \prec \boldsymbol{u}$ by the property $\gtrsim 0 \succ \subseteq \succ$ of the discrimination pair.

Similarly, from $t \rightarrow \cdots \rightarrow u$, we obtain $t \gtrsim \cdots \gtrsim u$. By $u \succ t \gtrsim \cdots \gtrsim u$, we obtain $u \succ u$ by the property $\succ \circ \gtrsim \subseteq \succ$ of the discrimination pair.

This contradicts our assumption that \succ is a strict partial order.

Argument Filtering for Non-Joinability

One can incorporates the same notion of argument filtering in dependency pairs.

An argument filtering is a mapping such that $\pi(f) \in$ $\left\{\left[i_{1}, \ldots, i_{k}\right] \mid 1 \leq i_{1}<\cdots<i_{k} \leq \operatorname{arity}(f)\right\} \cup\{i \mid$ $1 \leq i \leq \operatorname{arity}(f)\}$ for each $f \in \mathcal{F}$. We define $f\left(t_{1}, \ldots, t_{n}\right)^{\pi}=f\left(t_{i_{1}}^{\pi}, \ldots, t_{i_{k}}^{\pi}\right)$ if $\pi(f)=\left[i_{1}, \ldots, i_{k}\right]$, $f\left(t_{1}, \ldots, t_{n}\right)^{\pi}=t_{i}^{\pi}$ if $\pi(f)=i$. For TRS \mathcal{R}, we put $\mathcal{R}^{\pi}=\left\{l^{\pi} \rightarrow r^{\pi} \mid l \rightarrow r \in \mathcal{R}\right\}$.

Theorem 4. Let \mathcal{R} be a TRS and s, t terms. Suppose there exists a discrimination pair $\langle\gtrsim, \succ\rangle$ and argument filtering π such that $\mathcal{U}_{\mathcal{R}^{\pi}}\left(s^{\pi}\right) \subseteq \lesssim, \mathcal{U}_{\mathcal{R}^{\pi}}\left(t^{\pi}\right) \subseteq \gtrsim$ and $s^{\pi} \succ t^{\pi}$. Then $\mathrm{NJ}(s, t)$.

Example 3.

$$
\mathcal{R}=\left\{\begin{array}{llll}
(1) & \mathrm{c} \rightarrow \mathrm{f}(\mathrm{c}, \mathrm{~d}), & (3) & \mathrm{f}(x, y) \rightarrow \mathrm{h}(\mathrm{~g}(\boldsymbol{y}), \boldsymbol{x}), \\
(2) & \mathrm{c} \rightarrow \mathrm{~h}(\mathrm{c}, \mathrm{~d}) & (4) & \mathrm{h}(x, y) \rightarrow \mathrm{f}(\mathrm{~g}(\boldsymbol{y}), \boldsymbol{x})
\end{array}\right\} .
$$

Take candidates $h(f(c, d), d)$ and $f(c, d)$.
Take $\pi(\mathrm{g})=1, \pi(\mathrm{f})=[2]$ and $\pi(\mathrm{h})=[1]$. Then $\mathcal{U}\left(s^{\pi}\right)=\left\{(3)^{\pi},(4)^{\pi}\right\}$ and $\mathcal{U}\left(t^{\pi}\right)=\left\{(3)^{\pi},(4)^{\pi}\right\}$.

Then we obtain the constraint

$$
\mathrm{h}(\mathrm{f}(\mathrm{~d})) \succ \mathrm{f}(\mathrm{~d}), \mathrm{f}(\boldsymbol{y}) \simeq \mathrm{h}(\boldsymbol{y}), \mathrm{h}(x) \simeq \mathrm{f}(x)
$$

which is satisfied by a discrimination pair $\left\langle\gtrsim_{r p o}, \gtrsim_{r p o} \backslash\right.$ $\left.\lesssim_{r p o}\right\rangle$ with precedence $\mathrm{f} \simeq h$. Thus $\operatorname{NJ}(s, t)$.

Outline

1. Backgrounds
2. Proving Non-Joinability by Interpretation
3. Proving Non-Joinability by Ordering
4. Implementation and Experiments

Implementation

We implemented our techniques on the confluence prover ACP.

- Interpretation by \mathcal{F}-algebras (Theorem 1) using the polynomial interpretation with linear polynomials and partition $\mathbb{N}=\biguplus_{0 \leq i<k}\{n \mid n \bmod k=i\} \quad(k=2,3)$.
- Interpretation by ordered \mathcal{F}-algebras (Theorem 2) with polynomial interpretation via linear polynomials.
- Descrimination pair (Theorem 4) using recursive path order with argument filtering.

Criteria are encoded as a constraint and an external SMT-solver is called to check it has a solution.

Experiments

	Th.1 $(k=$ 2)	Th.1 $(k=$ 3)	Th.2 (poly)	Th.4 (rpo)	al
Example 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Example 2	\checkmark	\checkmark	\times	\times	\checkmark
Example 3	\times	\times	\times	\checkmark	\checkmark
23 ex. (success/t.o.)	$16 / 0$	$16 / 3$	$14 / 0$	$19 / 0$	$21 / 1$
23 ex. (time)	25	293	206	26	84
35 ex. (success/t.o.)	$17 / 5$	$16 / 8$	$17 / 3$	$17 / 1$	$16 / 9$
35 ex. (time)	318	562	446	106	76
	Example 1	\times	\times	\times	
Example 2	\times	\times	\times	35 examples from Cops	
Example 3	\times	\times	\times	ACP v.0.31	
23 ex. (success/t.o.)	$9 / 0$	$12 /-$	$3 / 1$	CSI v.0.2	
23 ex. (time)	2	2107	228	Saigawa v.1.4	
35 ex. (success/t.o.)	$18 / 1$	$21 /-$	$17 / 6$		
35 ex. (time)	71	485	482		

Conclusion

Disproving confluence by showing non-joinability of candidates.

- Proving non-joinability by interpretation \mathcal{F}-algebra, usable rules
- Proving non-joinability by ordering ordered \mathcal{F}-algebra discrimination pairs, argument filtering
- Implementation and experiments

Future Works

- More effective interpretation and ordering

