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Abstract. Polynomial interpretations are a useful technique for proving
termination of term rewrite systems. We show how polynomial interpre-
tations with negative coefficients, like x− 1 for a unary function symbol
or x− y for a binary function symbol, can be used to extend the class of
rewrite systems that can be automatically proved terminating.

1 Introduction

This paper is concerned with automatically proving termination of first-order
rewrite systems by means of polynomial interpretations. In the classical ap-
proach, which goes back to Lankford [16], one associates with every n-ary func-
tion symbol f a polynomial Pf over the natural numbers in n indeterminates,
which induces a mapping from terms to polynomials in the obvious way. Then
one shows that for every rewrite rule l → r the polynomial Pl associated with
the left-hand side l is strictly greater than the polynomial Pr associated with the
right-hand side r, i.e., Pl−Pr > 0 for all values of the indeterminates. In order to
conclude termination, the polynomial Pf associated with an n-ary function sym-
bol f must be strictly monotone in all n indeterminates. Techniques for finding
appropriate polynomials as well as approximating (in general undecidable) poly-
nomial inequalities P > 0 are described in several papers (e.g. [4, 6, 9, 15, 19]).
As a simple example, consider the rewrite rules

x + 0 → x x × 0 → 0

x + s(y) → s(x + y) x × s(y) → (x × y) + x

Termination can be shown by the strictly monotone polynomial interpretations

×N(x, y) = 2xy + y + 1 +N(x, y) = x + 2y sN(x) = x + 1 0N = 1

over the natural numbers:

x + 2 > x 2x + 2 > 1

x + 2y + 2 > x + 2y + 1 2xy + 2x + y + 2 > 2xy + 2x + y + 1

Compared to other classical methods for proving termination of rewrite sys-
tems (like recursive path orders and Knuth-Bendix orders), polynomial interpre-
tations are rather weak. Numerous natural examples cannot be handled because



of the strict monotonicity requirement which precludes interpretations like x+1
for binary function symbols. In connection with the dependency pair method
of Arts and Giesl [1], polynomial interpretations become much more useful be-
cause strict monotonicity is no longer required; weak monotonicity is sufficient
and hence x + 1 or even 0 as interpretation of a binary function symbol causes
no problems. Monotonicity is typically guaranteed by demanding that all coef-
ficients are positive.

In this paper we go a step further. We show that polynomial interpretations
over the integers with negative coefficients like x − 1 and x − y + 1 can also
be used for termination proofs. To make the discussion more concrete, let us
consider a somewhat artificial example: the recursive definition

f(x) = if x > 0 then f(f(x − 1)) + 1 else 0

from [8]. It computes the identity function over the natural numbers. Termina-
tion of the rewrite system

1: f(s(x)) → s(f(f(p(s(x))))) 2 : f(0) → 0 3: p(s(x)) → x

obtained after the obvious translation is not easily proved. The (manual) proof in
[8] relies on forward closures whereas powerful automatic tools like AProVE [11]
and CiME [5] that incorporate both polynomial interpretations and the depen-
dency pair method fail to prove termination. There are three dependency pairs
(here f] and p] are new function symbols):

4 : f](s(x)) → f](f(p(s(x)))) 5 : f](s(x)) → f](p(s(x))) 6 : f](s(x)) → p](s(x))

By taking the natural polynomial interpretation

fZ(x) = f
]
Z
(x) = x sZ(x) = x + 1 0Z = 0 pZ(x) = p

]
Z
(x) = x − 1

over the integers, the rule and dependency pair constraints reduce to the follow-
ing inequalities:

1 : x + 1 > x + 1 3: x > x 5: x + 1 > x

2: 0 > 0 4: x + 1 > x 6: x + 1 > x

These constraints are obviously satisfied. The question is whether we are al-
lowed to conclude termination at this point. We will argue that the answer is
affirmative and, moreover, that the search for appropriate natural polynomial
interpretations can be efficiently implemented.

The approach described in this paper is inspired by the combination of the
general path order and forward closures [8] as well as semantic labelling [24].
Concerning related work, Lucas [17, 18] considers polynomials with real coef-
ficients for automatically proving termination of (context-sensitive) rewriting
systems. He solves the problem of well-foundedness by replacing the standard
order on R with >δ for some fixed positive δ ∈ R: x >δ y if and only if x−y > δ.
In addition, he demands that interpretations are uniformly bounded from below



(i.e., there exists an m ∈ R such that fR(x1, . . . , xn) > m for all function symbols
f and x1, . . . , xn > m). The latter requirement entails that interpretations like
x − 1 or x − y + 1 cannot be handled.

The remainder of the paper is organized as follows. In Section 3 we discuss
polynomial interpretations with negative constants. Polynomial interpretations
with negative coefficients require a different approach, which is detailed in Sec-
tion 4. In Section 5 we discuss briefly how to find suitable polynomial interpreta-
tions automatically and we report on the many experiments that we performed.

2 Preliminaries

We assume familiarity with the basics of term rewriting [3, 21] and with the
dependency pair method [1] for proving (innermost) termination. In the latter
method a term rewrite system (TRS for short) is transformed into a collection
of ordering constraints of the form l & r and l > r that need to be solved in
order to conclude termination. Solutions (&, >) must be reduction pairs which
consist of a rewrite preorder & (i.e., a transitive and reflexive relation which
is closed under contexts and substitutions) on terms and a compatible well-
founded order > which is closed under substitutions. Compatibility means that
the inclusion & · > ⊆ > or the inclusion > · & ⊆ > holds. (Here · denotes
relational composition.)

A general semantic construction of reduction pairs, which covers traditional
polynomial interpretations, is based on the concept of algebra. If we equip the
carrier A of an F-algebra A = (A, {fA}f∈F) with a well-founded order > such
that every interpretation function is weakly monotone in all arguments (i.e.,
fA(x1, . . . , xn) > fA(y1, . . . , yn) whenever xi > yi for all 1 6 i 6 n, for every n-
ary function symbol f ∈ F) then (>A, >A) is a reduction pair. Here the relations
>A and >A are defined as follows: s >A t if [α]A(s) > [α]A(t) and s >A t if
[α]A(s) > [α]A(t), for all assignments α of elements of A to the variables in s

and t ([α]A(·) denotes the usual evaluation function associated with the algebra
A). In general, the relation >A is not closed under contexts, >A is a preorder
but not a partial order, and >A is not the strict part of >A. Compatibility holds
because of the identity >A · >A = >A. We write s =A t if [α]A(s) = [α]A(t)
for all assignments α. We say that A is a model for a TRS R if l =A r for all
rewrite rules in R.

In this paper we use the following results from [10] concerning dependency
pairs.

Theorem 1. A TRS R is terminating if for every cycle C in its dependency

graph there exists a reduction pair (&, >) such that R ⊆ &, C ⊆ & ∪ >, and

C ∩ > 6= ∅. ut

Theorem 2. A TRS R is innermost terminating if for every cycle C in its in-

nermost dependency graph there exists a reduction pair (&, >) such that U(C) ⊆
&, C ⊆ & ∪ >, and C ∩ > 6= ∅. ut



3 Negative Constants

3.1 Theoretical Framework

When using polynomial interpretations with negative constants like in the ex-
ample of the introduction, the first challenge we face is that the standard order
> on Z is not well-founded. Restricting the domain to the set N of natural
numbers makes an interpretation like pZ(x) = x − 1 ill-defined. Dershowitz and
Hoot observe in [8] that if all (instantiated) subterms in the rules of the TRS
are interpreted as non-negative integers, such interpretations can work correctly.
Following their observation, we propose to modify the interpretation of p to
pN(x) = max{0, x − 1}.

Definition 3. Let F be a signature and let (Z, {fZ}f∈F) be an F-algebra such

that every interpretation function fZ is weakly monotone in all its arguments.

The interpretation functions of the induced algebra (N, {fN}f∈F) are defined as

follows: fN(x1, . . . , xn) = max{0, fZ(x1, . . . , xn)} for all x1, . . . , xn ∈ N.

With respect to the interpretations in the introduction we obtain sN(pN(x)) =
max{0, max{0, x − 1} + 1} = max{0, x − 1} + 1, pN(0N) = max{0, 0} = 0, and
pN(sN(x)) = max{0, max{0, x + 1} − 1} = x.

Lemma 4. If (Z, {fZ}f∈F) is an F-algebra with weakly monotone interpreta-

tions then (>N, >N) is a reduction pair.

Proof. It is easy to show that the interpretation functions of the induced alge-
bra are weakly monotone in all arguments. Routine arguments reveal that the
relation >N is a well-founded order which is closed under substitutions and that
>N is a preorder closed under contexts and substitutions. Moreover, the identity
>N · >N = >N holds. Hence (>N, >N) is a reduction pair. ut

It is interesting to remark that unlike usual polynomial interpretations, the
relation >N does not have the (weak) subterm property. For instance, with re-
spect to the interpretations in the example of the introduction, we have s(0) >N

p(s(0)) and not p(s(0)) >N p(0).
In recent modular refinements of the dependency pair method [23, 13, 22]

suitable reduction pairs (&, >) have to satisfy the additional property of CE-
compatibility : & must orient the rules of the TRS CE consisting of the two
rewrite rules cons(x, y) → x and cons(x, y) → y, where cons is a fresh func-
tion symbol, from left to right. This is not a problem because we can simply
define consN(x, y) = max{x, y}. In this way we obtain a reduction pair (%,�)
on terms over the original signature extended with cons such that & ∪ CE ⊆ %

and > ⊆ �.

Example 5. Consider the TRS consisting of the following rewrite rules:

1 : half(0) → 0 4: bits(0) → 0

2: half(s(0)) → 0 5: bits(s(x)) → s(bits(half(s(x))))

3 : half(s(s(x))) → s(half(x))



The function half(x) computes dx
2
e and bits(x) computes the number of bits that

are needed to represent all numbers less than or equal to x. Termination of this
TRS is proved in [2] by using the dependency pair method together with the
narrowing refinement. There are three dependency pairs:

6 : half](s(s(x))) → half](x)

7 : bits](s(x)) → bits](half(s(x)))

8 : bits](s(x)) → half](s(x))

By taking the interpretations 0Z = 0, halfZ(x) = x − 1, bitsZ(x) = half
]
Z
(x) = x,

and sZ(x) = bits
]
Z
(x) = x + 1, we obtain the following constraints over N:

1 : 0 > 0 5: x + 1 > x + 1

2: 0 > 0 6: x + 2 > x

3: x + 1 > max{0, x− 1} + 1 7: x + 2 > x + 1

4: 0 > 0 8: x + 2 > x + 1

These constraints are satisfied, so the TRS is terminating, but how can an in-
equality like x + 1 > max{0, x − 1}+ 1 be verified automatically?

3.2 Towards Automation

Because the inequalities resulting from interpretations with negative constants
may contain the max operator, we cannot use standard techniques for comparing
polynomial expressions. In order to avoid reasoning by case analysis (x − 1 > 0
or x − 1 6 0 for constraint 3 in Example 5), we approximate the evaluation
function of the induced algebra.

Definition 6. Given a polynomial P with coefficients in Z, we denote the con-

stant part by c(P ) and the non-constant part P −c(P ) by n(P ). Let (Z, {fZ}f∈F)
be an F-algebra such that every fZ is a weakly monotone polynomial. With every

term t we associate polynomials Pleft (t) and Pright (t) with coefficients in Z and

variables in t as indeterminates:

Pleft (t) =











t if t is a variable

0 if t = f(t1, . . . , tn), n(P1) = 0, and c(P1) < 0

P1 otherwise

where P1 = fZ(Pleft (t1), . . . , Pleft (tn)) and

Pright (t) =











t if t is a variable

n(P2) if t = f(t1, . . . , tn) and c(P2) < 0

P2 otherwise

where P2 = fZ(Pright (t1), . . . , Pright (tn)). Let α : V → N be an assignment. The

result of evaluating Pleft (t) and Pright (t) under α is denoted by [α]l
Z
(t) and

[α]r
Z
(t). The result of evaluating a polynomial P under α is denoted by α(P ).



According the following lemma, Pleft (t) is a lower bound and Pright (t) is an
upper bound of the interpretation of t in the induced algebra.

Lemma 7. Let (Z, {fZ}f∈F) be an F-algebra such that every fZ is a weakly

monotone polynomial. Let t be a term. For every assignment α : V → N we have

[α]r
Z
(t) > [α]N(t) > [α]l

Z
(t).

Proof. By induction on the structure of t. If t ∈ V then [α]r
Z
(t) = [α]l

Z
(t) =

α(t) = [α]N(t). Suppose t = f(t1, . . . , tn). According to the induction hypothesis,
[α]r

Z
(ti) > [α]N(ti) > [α]l

Z
(ti) for all i. Since fZ is weakly monotone,

fZ([α]rZ(t1), . . . , [α]rZ(tn)) > fZ([α]N(t1), . . . , [α]N(tn)) > fZ([α]lZ(t1), . . . , [α]lZ(tn))

By applying the weakly monotone function max{0, ·} we obtain max{0, α(P2)} >
[α]N(t) > max{0, α(P1)} where P1 = fZ(Pleft (t1), . . . , Pleft (tn)) and P2 =
fZ(Pright (t1), . . . , Pright (tn)). We have

[α]lZ(t) =

{

0 if n(P1) = 0 and c(P1) < 0

α(P1) otherwise

and thus [α]l
Z
(t) 6 max{0, α(P1)}. Likewise,

[α]rZ(t) =

{

α(n(P2)) if c(P2) < 0

α(P2) otherwise

In the former case, α(n(P2)) = α(P2)− c(P2) > α(P2) and α(n(P2)) > 0. In the
latter case α(P2) > 0. So in both cases we have [α]r

Z
(t) > max{0, α(P2)}. Hence

we obtain the desired inequalities. ut

Corollary 8. Let (Z, {fZ}f∈F) be an F-algebra such that every fZ is a weakly

monotone polynomial. Let s and t be terms. If Pleft (s)−Pright (t) > 0 then s >N t.

If Pleft (s) − Pright (t) > 0 then s >N t. ut

Example 9. Consider again the TRS of Example 5. By applying Pleft to the
left-hand sides and Pright to the right-hand sides of the rewrite rules and the
dependency pairs, the following ordering constraints are obtained:

1: 0 > 0 3: x + 1 > x + 1 5: x + 1 > x + 1 7: x + 2 > x + 1

2: 0 > 0 4: 0 > 0 6: x + 2 > x 8: x + 2 > x + 1

The only difference with the constraints in Example 5 is the interpretation of
the term s(half(x)) on the right-hand side of rule 3. We have Pright (half(x)) =
n(x − 1) = x and thus Pright (s(half(x))) = x + 1. Although x + 1 is less precise
than max{0, x − 1} + 1, it is accurate enough to solve the ordering constraint
resulting from rule 3.

So once the interpretations fZ are determined, we transform a rule l → r

into the polynomial Pleft (l) − Pright (r). Standard techniques can then be used
to test whether this polynomial is positive (or non-negative) for all values in N

for the variables. The remaining question is how to find suitable interpretations
for the function symbols. This problem will be discussed in Section 5.



4 Negative Coefficients

Let us start with an example which shows that negative coefficients in polynomial
interpretations can be useful.

Example 10. Consider the following variation of a TRS in [2]:

1 : 0 6 x → true 7: x − 0 → x

2: s(x) 6 0 → false 8: s(x) − s(y) → x − y

3: s(x) 6 s(y) → x 6 y 9: if(true, x, y) → x

4: mod(0, s(y)) → 0 10: if(false, x, y) → y

5: mod(s(x), 0) → 0

6: mod(s(x), s(y)) → if(y 6 x, mod(s(x) − s(y), s(y)), s(x))

There are 6 dependency pairs:

11: s(x) 6] s(y) → x 6] y

12: s(x) −] s(y) → x −] y

13: mod](s(x), s(y)) → if](y 6 x, mod(s(x) − s(y), s(y)), s(x))

14: mod](s(x), s(y)) → y 6] x

15: mod](s(x), s(y)) → mod](s(x) − s(y), s(y))

16: mod](s(x), s(y)) → s(x) −] s(y)

Since the TRS is non-overlapping, it is sufficient to prove innermost termination.
The problematic cycle in the (innermost) dependency graph is C = {15}. The
usable rewrite rules for this cycle are U(C) = {7, 8}. We need to find a reduction
pair (&, >) such that rules 4 and 5 are weakly decreasing (i.e., compatible with &)
and dependency pair 15 is strictly decreasing (with respect to >). The only way
to achieve the latter is by using the observation that s(x) is semantically greater
than the syntactically larger term s(x)−s(y). If we take the natural interpretation

−Z(x, y) = x− y, sZ(x) = x− 1, and 0Z = 0, together with mod
]
Z
(x, y) = x then

we obtain the following ordering constraints over the natural numbers:

7 : x > x 8: max{0, x − y} > max{0, x− y} 15: x + 1 > max{0, x − y}

4.1 Theoretical Framework

The constraints in the above example are obviously satisfied, but are we allowed
to use an interpretation like −Z(x, y) = x−y in (innermost) termination proofs?
The answer appears to be negative because Lemma 4 no longer holds. Because
the induced interpretation −N(x, y) = max{0, x− y} is not weakly monotone in
its second argument, the order >N of the induced algebra is not closed under
contexts, so if s >N t then it may happen that C[s] 6N C[t]. Consequently,
we do not obtain a reduction pair. However, if we have s =N t rather than



s >N t, closure under contexts is obtained for free. So we could take (=N, >N)
as reduction pair. This works fine in the above example because the induced
algebra is a model of the set of usable rules {7, 8} and >N orients dependency
pair 15. However, requiring that all dependency pairs in a cycle are compatible
with =N∪>N is rather restrictive because dependency pairs that are transformed
into a polynomial constraint of the form x2 > x or x + 2y > x + y cannot be
handled. So we will allow >N for the orientation of dependency pairs in a cycle
C but insist that at least one dependency pair in C is compatible with >N. (Note
that the relation =N ∪ >N is properly contained in >N.) The theorems below
state the soundness of this approach in a more abstract setting. The proofs
are straightforward modifications from the ones in [13]. The phrase “there are
no minimal C-rewrite sequences” intuitively means that if a TRS R is non-
terminating then this is due to a different cycle of the dependency graph.

Theorem 11. Let R be a TRS and let C be a cycle in its dependency graph. If

there exists an algebra A equipped with a well-founded order > such that R ⊆ =A,

C ⊆ >A, and C ∩ >A 6= ∅ then there are no minimal C-rewrite sequences. ut

In other words, when proving termination, a cycle C of the dependency graph
can be ignored if the conditions of Theorem 11 are satisfied. A similar statement
holds for innermost termination.

Theorem 12. Let R be a TRS and let C be a cycle in its innermost dependency

graph. If there exists an algebra A equipped with a well-founded order > such

that U(C) ⊆ =A, C ⊆ >A, and C∩>A 6= ∅ then there are no minimal innermost

C-rewrite sequences. ut

The difference with Theorem 11 is the use of the innermost dependency
graph and, more importantly, the replacement of the set R of all rewrite rules
by the set U(C) of usable rules for C, which in general is a much smaller set.
Very recently, it has been proved [13, 22] that the usable rules criterion can also
be used for termination, provided the employed reduction pair is CE -compatible.
However, replacing R by U(C) in Theorem 11 would be unsound. The reason is
that the TRS CE admits no non-trivial models.

Example 13. Consider the following non-terminating TRS R:

1 : h(f(a, b, x)) → h(f(x, x, x)) 2 : g(x, y) → x 3: g(x, y) → y

The only dependency pair h](f(a, b, x)) → h](f(x, x, x)) forms a cycle in the
dependency graph. There are no usable rules. If we take the polynomial inter-
pretation aZ = 1, bZ = 0, fZ(x, y, z) = x−y, and h

]
Z
(x) = x then the dependency

pair is transformed into 1 > 0. Note that it is not possible to extend the inter-
pretation to a model for R. Choosing hZ(x) = 0 will take care of rule 1, but there
is no interpretation gZ such that max{0, gZ(x, y)} = x and max{0, gZ(x, y)} = y

for all natural numbers x and y.



4.2 Towards Automation

How do we verify a constraint like x + 1 > max{0, x − y}? The approach that
we developed in Section 3.2 for dealing with negative constants is not applicable
because Lemma 7 relies essentially on weak monotonicity of the polynomial
interpretations.

Let P>0 be a subset of the set of polynomials P with integer coefficients
such that α(P ) > 0 for all α : V → N for which membership is decidable. For
instance, P>0 could be the set of polynomials without negative coefficients. We
define P<0 in the same way.

Definition 14. Let (Z, {fZ}f∈F) be an algebra. With every term t we associate

a polynomial Q(t) as follows:

Q(t) =



















t if t is a variable

P if t = f(t1, . . . , tn) and P ∈ P>0

0 if t = f(t1, . . . , tn) and P ∈ P<0

v(P ) otherwise

where P = fZ(Q(t1), . . . , Q(tn)). In the last clause v(P ) denotes a fresh abstract
variable that we uniquely associate with P .

There are two kinds of indeterminates in Q(t): ordinary variables occurring
in t and abstract variables. The intuitive meaning of an abstract variable v(P ) is
max{0, P}. The latter quantity is always non-negative, like an ordinary variable
ranging over the natural numbers, but from v(P ) we can extract the original
polynomial P and this information may be crucial for a comparison between
two polynomial expressions to succeed. Note that the polynomial P associated
with an abstract variable v(P ) may contain other abstract variables. However,
because v(P ) is different from previously selected abstract variables, there are
no spurious loops like P1 = v(x − v(P2)) and P2 = v(x − v(P1)).

The reason for using P>0 and P<0 in the above definition is to make our ap-
proach independent of the particular method that is used to test non-negativeness
or negativeness of polynomials.

Definition 15. With every assignment α : V → N we associate an assignment

α∗ : V → N defined as follows:

α∗(x) =

{

max{0, α∗(P )} if x is an abstract variable v(P )

α(x) otherwise

The above definition is recursive because P may contain abstract variables.
However, since v(P ) is different from previously selected abstract variables, the
recursion terminates and it follows that α∗ is well-defined.

Theorem 16. Let (Z, {fZ}f∈F) be an algebra such that every fZ is a polynomial.

Let t be a term. For every assignment α we have [α]N(t) = α∗(Q(t)).



Proof. We show that [α]N(t) = α∗(Q(t)) by induction on t. If t is a variable
then [α]N(t) = α(t) = α∗(t) = α∗(Q(t)). Suppose t = f(t1, . . . , tn). Let P =
fZ(Q(t1), . . . , Q(tn)). The induction hypothesis yields [α]N(ti) = α∗(Q(ti)) for
all i and thus

[α]N(t) = fN(α∗(Q(t1)), . . . , α
∗(Q(tn)))

= max{0, fZ(α∗(Q(t1)), . . . , α
∗(Q(tn)))} = max{0, α∗(P )}

We distinguish three cases, corresponding to the definition of Q(t).

– First suppose that P ∈ P>0. This implies that α∗(P ) > 0 and thus we have
max{0, α∗(P )} = α∗(P ). Hence [α]N(t) = α∗(P ) = α∗(Q(t)).

– Next suppose that P ∈ P<0. So α∗(P ) < 0 and thus max{0, α∗(P )} = 0.
Hence [α]N(t) = 0 = α∗(Q(t)).

– In the remaining case we do not know the status of P . We have Q(t) = v(P )
and thus α∗(Q(t)) = max{0, α∗(P )} which immediately yields the desired
identity [α]N(t) = α∗(Q(t)).

ut

Corollary 17. Let (Z, {fZ}f∈F) be an F-algebra such that every fZ is a poly-

nomial. Let s and t be terms. If Q(s) = Q(t) then s =N t. If α∗(Q(s)−Q(t)) > 0
for all assignments α : V → N then s >N t. If α∗(Q(s) − Q(t)) > 0 for all as-

signments α : V → N then s >N t. ut

Example 18. Consider again dependency pair 15 from Example 10:

mod](s(x), s(y)) → mod](s(x) − s(y), s(y))

We have Q(mod](s(x), s(y))) = x + 1 and Q(mod](s(x) − s(y), s(y))) = v(x− y).
Since x+1−v(x−y) may be negative (when interpreting v(x−y) as a variable),
the above corollary cannot be used to conclude that 15 is strictly decreasing.
However, if we estimate v(x − y) by x, the non-negative part of x − y, then we
obtain x + 1 − x = 1 which is clearly positive.

Given a polynomial P with coefficients in Z, we denote the non-negative part
of P by N(P ).

Lemma 19. Let Q be a polynomial with integer coefficients. Suppose v(P ) is

an abstract variable that occurs in Q but not in N(Q). If Q′ is the polynomial

obtained from Q by replacing v(P ) with N(P ) then α∗(Q) > α∗(Q′) for all

assignments α : V → N.

Proof. Let α : V → N be an arbitrary assignment. In α∗(Q) every occurrence
of v(P ) is assigned the value α∗(v(P )) = max{0, α∗(P )}. We have α∗(N(P )) >

α∗(P ) > α∗(v(P )). By assumption, v(P ) occurs only in the negative part of Q.
Hence Q is (strictly) anti-monotone in v(P ) and therefore α∗(Q) > α∗(Q′). ut



In order to determine whether s >N t (or s >N t) holds, the idea now is to first
use standard techniques to test the non-negativeness of Q = Q(s) − Q(t) (i.e.,
we determine whether α(Q) > 0 for all assignments α by checking whether Q ∈
P>0). If Q is non-negative then we certainly have α∗(Q) > 0 for all assignments α

and thus s >N t follows from Corollary 17. If non-negativeness cannot be shown
then we apply the previous lemma to replace an abstract variable that occurs
only in the negative part of Q. The resulting polynomial Q′ is tested for non-
negativeness. If the test succeeds then for all assignments α we have α∗(Q′) > 0
and thus also α∗(Q) > 0 by the previous lemma. According to Corollary 17 this
is sufficient to conclude s >N t. Otherwise we repeat the above process with
Q′. The process terminates when there are no more abstract variables left that
appear only in the negative part of the current polynomial.

5 Experimental Results

We implemented the techniques described in this paper in the Tyrolean Termina-
tion Tool [14]. We tested 219 terminating TRSs and 239 innermost terminating
TRSs from three different sources:

– all 89 terminating and 109 innermost terminating TRSs from Arts and
Giesl [2],

– all 23 TRSs from Dershowitz [7],
– all 116 terminating TRSs from Steinbach and Kühler [20, Sections 3 and 4].

Nine of these TRSs appear in more than one collection, so the total number
is 219 for termination and 239 for innermost termination. In our experiments
we use the dependency pair method with the recursive SCC algorithm of [12]
for analyzing the dependency graph. The recent modular refinements mentioned
after Theorem 12 are also used, except when we try to prove (full) termination
with the approach of Section 4 (but when the TRS is non-overlapping we do use
modularity since in that case innermost termination guarantees termination).
All experiments were performed on a PC equipped with a 2.20 GHz Mobile Intel
Pentium 4 Processor - M and 512 MB of memory.

Tables 1 and 2 show the effect of the negative constant method developed in
Section 3. In Table 1 we prove termination whereas in Table 1 we prove innermost
termination. In the columns labelled n we use the natural interpretation for
certain function symbols that appear in many example TRSs:

0Z = 0 1Z = 1 2Z = 2 · · ·

sZ(x) = x + 1 +Z(x, y) = x + y ×Z(x, y) = xy

pZ(x) = x − 11 −Z(x, y) = x − y1

For other function symbols we take linear interpretations

fZ(x1, . . . , xn) = a1x1 + · · · + anxn + b

1 In Tables 1 and 2 we do not fix the interpretation of p when −1 is not included in
the indicated constant range and the natural interpretation of − is not used.



Table 1. Negative constants: termination.

constant 0, 1 0, 1, 2 0, 1,−1

coefficient 0, 1 0, 1, 2 0, 1

interpretation e n ne e n ne e n ne

success 179 158 182 180 159 183 188 164 191
0.20 0.09 0.08 0.20 0.09 0.09 0.24 0.14 0.12

failure 40 61 37 39 60 36 31 55 28
0.03 0.02 0.03 1.11 0.15 1.43 0.93 0.43 1.29

timeout 0 0 0 0 0 0 0 0 0

total time 36.41 15.72 16.56 78.48 23.88 67.29 73.01 46.14 59.45

with a1, . . . , an in the indicated coefficient range and b in the indicated constant
range. In the columns labelled e we do not fix the interpretations in advance; for
all function symbols we search for an appropriate linear interpretation. In the
columns labelled ne we start with the default natural interpretations but allow
other linear interpretations if (innermost) termination cannot be proved. Deter-
mining appropriate coefficients can be done by a straightforward but inefficient
“generate and test” algorithm. We implemented a more involved algorithm in
our termination tool, but we anticipate that the recent techniques described in
[6] might be useful to optimize the search for coefficients.

We list the number of successful termination attempts, the number of failures
(which means that no termination proof was found while fully exploring the
search space implied by the options), and the number of timeouts, which we set
to 30 seconds. The figures below the number of successes and failures indicate
the average time in seconds.

By using coefficients from {0, 1, 2} very few additional examples can be han-
dled. For termination the only difference is [2, Example 3.18] which contains a
unary function double that requires 2x as interpretation. The effect of allowing
−1 as constant is more apparent. Taking default natural interpretations for cer-
tain common function symbols reduces the execution time considerably but also
reduces the termination proving power. However, the ne columns clearly show
that fixing natural interpretations initially but allowing different interpretations
later is a very useful idea.

In Table 3 we use the negative coefficient method developed in Section 4.
Not surprisingly, this method is more suited for proving innermost termination
because the method is incompatible with the recent modular refinements of the
dependency pair method when proving termination (for non-overlapping TRSs).

Comparing the first (last) three columns in Table 3 with the last three
columns in Table 1 (Table 2) one might be tempted to conclude that the approach
developed in Section 4 is useless in practice. We note however that several chal-



Table 2. Negative constants: innermost termination.

constant 0, 1 0, 1, 2 0, 1,−1

coefficient 0, 1 0, 1, 2 0, 1

interpretation e n ne e n ne e n ne

success 200 177 202 202 179 204 209 183 211
0.19 0.10 0.09 0.19 0.10 0.09 0.23 0.14 0.12

failure 39 62 37 37 60 35 30 56 28
0.04 0.03 0.05 1.19 0.16 1.47 0.92 0.43 1.26

timeout 0 0 0 0 0 0 0 0 0

total time 39.46 18.92 19.59 81.94 26.97 70.07 75.24 49.10 61.24

Table 3. Negative coefficients.

termination innermost termination

interpretation e n ne e n ne

success 109 102 114 181 161 185
0.74 0.39 0.58 0.04 0.06 0.07

failure 71 96 66 30 62 28
2.50 0.71 2.48 1.72 0.33 2.00

timeout 39 21 39 28 16 26

total time 1428.41 738.16 1400.60 899.01 511.14 848.25

lenging examples can only be handled by polynomial interpretations with nega-
tive coefficients. We mention TRSs that are (innermost) terminating because of
non-linearity (e.g. [2, Examples 3.46, 4.12, 4.25]) and TRSs that are terminating
because the difference of certain arguments decreases (e.g. [2, Example 4.30]).
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