
Automating the Dependency Pair Method

Nao Hirokawa Aart Middeldorp

Institute of Computer Science

University of Innsbruck

6020 Innsbruck, Austria

Abstract

Developing automatable methods for proving termination of term rewrite systems
that resist traditional techniques based on simplification orders has become an ac-
tive research area in the past few years. The dependency pair method of Arts and
Giesl is one of the most popular such methods. However, there are several obstacles
that hamper its automation. In this paper we present new ideas to overcome these
obstacles. We provide ample numerical data supporting our ideas.

Key words: Term Rewriting, Termination, Dependency Pair Method

1 Introduction

Proving termination of term rewrite systems has been an active research area
for several decades. In recent years the emphasis has shifted towards the de-
velopment of powerful methods for automatically proving termination. The
traditional methods for automated termination proofs of rewrite systems are
simplification orders like the recursive path order, the Knuth-Bendix order,
and (most) polynomial orders. The termination proving power of these meth-
ods has been significantly extended by the dependency pair method of Arts
and Giesl [2]. In this method, depicted in Fig. 1, a rewrite system is trans-
formed into groups of ordering constraints such that termination of the system
is equivalent to the (separate) solvability of these groups. The number and size
of these groups is determined by the approximation used to estimate the de-
pendency graph and, more importantly, by the cycle analysis algorithm that

Email addresses: nao.hirokawa@uibk.ac.at (Nao Hirokawa),
aart.middeldorp@uibk.ac.at (Aart Middeldorp).

Preprint submitted to Elsevier Science 25 October 2004

TRS // dependency pairs

��

approximations
_ _ _ _ _ _ _ _ _ _ _ _

dependency graph

vvmmmmmmmmmmmmmmmmmmmmmm

((QQQQQQQQQQQQQQQQQQQQQQ

cycle
analysis

_ _ _ _ _ _ _ _ ________

ordering constraints

��

ordering constraints

��

argument
filterings

_ _ _ _ _ _ _ _ _ _ _ _ ____________

simplified constraints

''NNNNNNNNNNNNNNNNNNNN

simplified constraints

wwpppppppppppppppppppp

standard
techniques

_ _ _ _ _ _ _ _______

termination proof // output

Fig. 1. The dependency pair method.

is used to extract the groups from the approximated dependency graph. Typi-
cally, the ordering constraints in the obtained groups must be simplified before
traditional simplification orders like the recursive path order or the Knuth-
Bendix order are applicable. Such simplifications are performed by so-called
argument filterings. It is fair to say that the dependency pair method derives
much of its power from the ability to use argument filterings to simplify con-
straints. The finiteness of the argument filtering search space has been stressed
in many papers on the dependency pair method, but we do not hesitate to label
the enormous size of this search space as the main obstacle for the successful
automation of the dependency pair method when using strongly monotone
simplification orders.

The dependency pair method can also be used for automatically proving inner-
most termination. Innermost termination is easier to prove than termination
for the following two reasons: (1) the innermost dependency graph is typically
much smaller than the dependency graph and (2) each group of ordering con-
straints for innermost termination is (often strictly) contained in a group of
ordering constraints for termination.

We present several new ideas which help to tackle the argument filtering prob-
lem in Section 5. In Section 4 we present a new algorithm for cycle analysis
and in Section 3 we present new approximations of the (innermost) depen-

2

dency graph. A brief introduction to the dependency pair method is given in
the next section. In Section 6 we report on the numerous experiments that we
performed to assess the viability of our ideas.

It goes without saying that the dependency pair method is not the only au-
tomatable method for proving termination of rewrite systems that cannot be
handled by traditional simplification orders. We mention here the pioneering
work of Steinbach [22] on automating the transformation order of Bellegarde
and Lescanne [5] and the more recent work of Borralleras et al. [6] on trans-
forming the semantic path order of Kamin and Lévy [17] into a monotonic
version that is amenable to automation. We believe that an implementation
of the monotonic semantic path order of [6] may benefit from the ideas pre-
sented in this paper.

2 Dependency Pairs

We assume familiarity with the basics of term rewriting ([4]). In this section we
recall the basic notions and results of the dependency pair method. Through-
out this paper we deal with finite term rewrite systems over finite signatures.
We refer to [2,9,10,12,21,26] for motivations and additional refinements. 1 Let
R be a term rewrite system (TRS for short) over a signature F . The set of
function symbols appearing in a term t is denoted by Fun(t). The root symbol
of a term t is denoted by root(t); if t is a variable then root(t) = t. A function
symbol f ∈ F is defined if f = root(l) for some rewrite rule l → r ∈ R.
Let F] denote the union of F and {f] | f is a defined symbol of R} where
f] has the same arity as f . Given a term t = f(t1, . . . , tn) ∈ T (F ,V) with f
defined, we write t] for the term f](t1, . . . , tn). (Here V denotes the infinite
set of variables at our disposal.) If l → r ∈ R and t is a subterm of r with
defined root symbol then the rewrite rule l] → t] is a dependency pair of R.
The set of all dependency pairs of R is denoted by DP(R). In examples we
often write F for f]. An argument filtering for a signature F is a mapping
π that assigns to every n-ary function symbol f ∈ F an argument position
i ∈ {1, . . . , n} or a (possibly empty) list [i1, . . . , im] of argument positions with
1 6 i1 < · · · < im 6 n. The signature Fπ consists of all function symbols f
such that π(f) is some list [i1, . . . , im], where in Fπ the arity of f is m. Every ar-
gument filtering π induces a mapping from T (F ,V) to T (Fπ,V), also denoted
by π: π(t) = t if t is a variable, π(t) = π(ti) if t = f(t1, . . . , tn) and π(f) = i,
and π(t) = f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im].

1 Some of the refinements (like narrowing and instantiation) transform dependency
pairs with the aim of simplifying the resulting ordering constraints, other refine-
ments use the modular structure of the TRS to reduce the number of constraints;
most refinements are orthogonal to the ideas we develop in this paper.

3

Thus, an argument filtering is used to replace function symbols by one of
their arguments or to eliminate certain arguments of function symbols. In
Section 5 we consider argument filterings that are partially defined.

A reduction pair consists of a rewrite preorder & (i.e., a transitive and reflex-
ive relation on terms which is closed under contexts and substitutions) and a
compatible well-founded order > which is closed under substitutions. Compat-
ibility means that the inclusion & · > ⊆ > or the inclusion > · & ⊆ > holds.
Reduction pairs are used to solve groups of simplified ordering constraints and
hence are typically based on traditional simplification orders. In all our exam-
ples and experiments we use the pair (�=

lpo,�lpo) for some strict precedence
�. Here �lpo denotes the lexicographic path order (LPO) induced by � and
�=

lpo denotes the reflexive closure of �lpo.

Theorem 1 (Arts and Giesl [2]) A TRS R over a signature F is terminating
if and only if there exist an argument filtering π for F] and a reduction pair
(&, >) such that π(l) & π(r) for every rewrite rule l → r ∈ R and π(l) > π(r)
for every dependency pair l→ r ∈ DP(R). 2

We abbreviate the two conditions in the above theorem to π(R) ⊆ & and
π(DP(R)) ⊆ >. Rather than considering all dependency pairs at the same
time, like in the above theorem, it is advantageous to treat groups of depen-
dency pairs separately. These groups are extracted from the dependency graph
DG(R) of R. The nodes of DG(R) are the dependency pairs of R and there
is an arrow from s → t to u → v if and only if there exists a substitution σ
such that tσ →∗

R uσ. 2 A cycle is a non-empty subset C of dependency pairs
of DP(R) if for every two (not necessarily distinct) pairs s→ t and u→ v in
C there exists a non-empty path in C from s→ t to u→ v.

Theorem 2 (Giesl, Arts, and Ohlebusch [10]) A TRSR is terminating if and
only if for every cycle C in DG(R) there exist an argument filtering π and a re-
duction pair (&, >) such that π(R) ⊆ &, π(C) ⊆ & ∪>, and π(C)∩> 6= ∅. 2

The last condition in Theorem 2 denotes the situation that π(s) > π(t) for at
least one dependency pair s→ t ∈ C.

Definition 3 Let R be a TRS and let C be a subset of DP(R). For R′ ⊆ R
we write �∃ R

′, C if there exist an argument filtering π and a reduction pair
(&, >) such that π(R′) ⊆ &, π(C) ⊆ & ∪ >, and π(C) ∩ > 6= ∅. We write
(&, >)π �∃ R

′, C if we want to indicate a combination of argument filtering
and reduction pair that makes �∃ R

′, C true.

The existential quantifier in the notation indicates that some pair in C should

2 The terms t and u do not share variables since different occurrences of dependency
pairs are always assumed to be variable disjoint.

4

be strictly decreasing. Theorem 2 can now be simply stated as “A TRS R is
terminating if and only if �∃ R, C for every cycle C in DG(R).”

Example 4 Consider the following TRS (from [3]):

evenodd(x, 0)→ not(evenodd(x, s(0))) not(true)→ false

evenodd(0, s(0))→ false not(false)→ true

evenodd(s(x), s(0))→ evenodd(x, 0)

There are three dependency pairs:

1: EVENODD(x, 0)→ NOT(evenodd(x, s(0)))

2 : EVENODD(x, 0)→ EVENODD(x, s(0))

3 : EVENODD(s(x), s(0))→ EVENODD(x, 0)

The dependency graph

1 3oo oo // 2

contains one cycle: {2, 3}. The constraints generated by Theorem 2 can be
solved by taking the argument filtering π with π(EVENODD) = 1, π(evenodd) =
2, π(not) = [] and LPO with precedence 0 � not � false and not � true.

We conclude this introductory section by stating the following variant of The-
orem 2 for innermost termination. Here IDG(R) denotes the innermost de-
pendency graph of R, whose nodes are the dependency pairs of R and there
is an arrow from s → t to u → v if and only if there exist substitutions
σ and τ such that sσ and uτ are in normal form and tσ i→∗

R uτ , where
i→R denotes innermost rewriting. Furthermore, U(C) denotes the set of us-

able rules of R for the function symbols in the right-hand sides of the de-
pendency pairs in C. These are defined as follows. We write f �d g if there
exists a rewrite rule l → r ∈ R such that f = root(l) and g ∈ Fun(r). For
a set G of function symbols we denote by R�G the set of all rewrite rules
l → r ∈ R with root(l) ∈ G. The set U(t) of usable rules of a term t is defined
as R�{g | f �

∗
d g for some f ∈ Fun(t)}. Finally, if C is a set of dependency

pairs then U(C) =
⋃

l→r∈C

U(r).

Theorem 5 ([10]) A TRS R is innermost terminating if �∃ U(C), C for every
cycle C in IDG(R). 2

The constraints of Theorem 5 are easier to satisfy than those of Theorem 2.
Moreover, several conditions are known which guarantee that innermost ter-
mination implies termination, the most important of which is the absence of
critical pairs ([13]).

5

Example 6 We show that the following TRS R (from [3]) is terminating:

1: 0 + y → y 3: quot(x, 0, s(z))→ s(quot(x, z + s(0), s(z)))

2 : s(x) + y → s(x + y) 4 : quot(0, s(y), s(z))→ 0

5: quot(s(x), s(y), z)→ quot(x, y, z)

Since R is non-overlapping, it is sufficient to prove innermost termination.
There are four dependency pairs:

6: s(x) +] y → x +] y

7: QUOT(x, 0, s(z))→ z +] s(0)

8 : QUOT(x, 0, s(z))→ QUOT(x, z + s(0), s(z))

9 : QUOT(s(x), s(y), z)→ QUOT(x, y, z)

The innermost dependency graph

6
��

7oo 9oo

��

oo // 8oo

contains three cycles: {6}, {9}, and {8, 9}. However, the computable approxi-
mations of the innermost dependency graph presented in the next section con-
tain additional arrows from 8 to 7 and from 8 to 8, resulting in the additional
cycle {8}. The constraints generated by Theorem 5 can be solved as follows.

• For cycle {6} there are no usable rules. LPO with empty precedence orients
rule 6 from left to right.

• For cycle {8} the usable rules are {1, 2}. If we take the argument filtering
π with π(+) = [2], π(s) = [], and π(QUOT) = 2, the resulting constraints
are satisfied by LPO with precedence 0 � + � s.

• For cycle {9} there are no usable rules. We take LPO with empty precedence.
• For cycle {8, 9} the usable rules are {1, 2}. We take the argument filtering

π with π(QUOT) = 1 and LPO with precedence + � s.

In the next three sections we address the various problems that arise when
automating the dependency pair technique.

3 Dependency Graph Approximations

Since it is undecidable whether there exist substitutions σ, τ such that tσ →∗
R

uτ (tσ i→∗
R uτ), the (innermost) dependency graph cannot be computed in

general. Hence, in order to mechanize the termination criterion of Theorem 2
(5) one has to approximate the (innermost) dependency graph. Arts and
Giesl [2] proposed simple approximations based on syntactic unification for
this purpose.

6

Definition 7 Let R be a TRS. The nodes of the estimated dependency graph
EDG(R) are the dependency pairs of R and there is an arrow from s → t to
u→ v if and only if REN(CAP(t)) and u are unifiable. Here CAP replaces all
outermost subterms with a defined root symbol by distinct fresh variables and
REN replaces all occurrences of variables by distinct fresh variables.

Definition 8 ([2]) Let R be a TRS. The nodes of the estimated innermost
dependency graph EIDG(R) are the dependency pairs of R and there is an
arrow from s → t to u → v if and only if CAPs(t) and u are unifiable with
mgu σ such that sσ and uσ are in normal form. Here CAPs(t) replaces all
outermost subterms of t different from all subterms of s with a defined root
symbol by distinct fresh variables.

Middeldorp [19] showed that better approximations of the dependency graph
are obtained by adopting tree automata techniques. These techniques are how-
ever computationally expensive. In a recent paper Middeldorp [20] showed that
the approximation of Definition 7 can be improved by symmetry considera-
tions without incurring the overhead of tree automata techniques.

Definition 9 Let R be a TRS over a signature F . The result of replacing
all outermost subterms of a term t with a root symbol in D−1

S by distinct
fresh variables is denoted by CAP−1

S (t). Here D−1
S = {root(r) | l → r ∈ S}

if S is non-collapsing and D−1
S = F otherwise. The nodes of the estimated∗

dependency graph EDG∗(R) are the dependency pairs of R and there is an
arrow from s → t to u → v if and only if both REN(CAP(t)) and u are
unifiable, and t and REN(CAP−1

R (u)) are unifiable.

A comparison between the new estimation and the tree automata based ap-
proximations described in [19] can be found in [20]. From the latter paper we
recall the identity EDG(R) = EDG∗(R) for collapsing R. This explains why
for most examples the new estimation does not improve upon the one of Arts
of Giesl. However, when the two approximations do differ, the difference can
be substantial.

Example 10 Using the new estimation, automatically proving termination
of notorious TRSs like the famous rule f(a, b, x) → f(x, x, x) of Toyama [25]
becomes trivial, as in this case the estimated ∗ dependency graph coincides
with the real dependency graph, and the latter is empty since no instance of
F(x, x, x) rewrites to an instance of F(a, b, x). On the other hand, the esti-
mated dependency graph contains a cycle and the constraints resulting from
Theorem 2 cannot be solved by any quasi-simplification order.

Next we introduce a new estimation of the innermost dependency graph.

Definition 11 Let R be a TRS. The nodes of the estimated∗ innermost de-
pendency graph EIDG∗(R) are the dependency pairs of R and there is an arrow

7

from s→ t to u→ v if and only if both CAPs(t) and u are unifiable with mgu
σ such that sσ and uσ are normal forms, and t and REN(CAP−1

U(t)(u)) are
unifiable with mgu τ such that sτ is a normal form.

The following example shows that the new estimation is strictly more powerful
than the one of Arts and Giesl if one uses reduction pairs based on quasi-
simplification orders.

Example 12 Consider the non-terminating TRS R consisting of the rules

h(f(a, b, x))→ h(f(x, x, x)) g(x, y)→ x

f(x, x, x)→ c g(x, y)→ y

There are two dependency pairs:

1: H(f(a, b, x))→ H(f(x, x, x)) 2 : H(f(a, b, x))→ F(x, x, x)

Because there are no terms s and t such that H(f(s, s, s)) i→∗ H(f(a, b, t)),
the innermost dependency graph IDG(R) contains no arrows. Hence R is in-
nermost terminating. We have U(H(f(x, x, x))) = {f(x, x, x) → c} and thus
H(f(x, x, x)) and REN(CAP−1

U(H(f(x,x,x)))(H(f(a, b, x′)))) = REN(H(f(a, b, x′))) =
H(f(a, b, x′′)) are not unifiable. Hence EIDG∗(R) coincides with IDG(R). The
estimated innermost dependency graph EIDG(R) contains arrows from 1 to 1
and 2 as CAPH(f(a,b,x))(H(f(x, x, x))) = H(y) unifies with H(f(a, b, x′)). How-
ever, the constraints for the resulting cycle {1} cannot be solved by any com-
bination of an argument filtering π and a reduction pair (&, >) based on a
quasi-simplification order &. Suppose to the contrary that π(H(f(a, b, x))) >
π(H(f(x, x, x))) and π(f(x, x, x)) & π(c). The first condition can only be sat-
isfied if π(H) ∈ {1, [1]} and π(f) ∈ {[1, 3], [2, 3], [1, 2, 3]}. Let t = f(a, a, b).
Because & is a quasi-simplification order, π(t) & a and π(t) & b. We obtain
π(H(f(a, b, t))) > π(H(f(t, t, t))) as > is closed under substitutions. Closure un-
der contexts of & yields π(H(f(t, t, t))) & π(H(f(a, b, t))). Hence π(H(f(a, b, t)))
> π(H(f(a, b, t))) by the compatibility of > and &, contradicting the well-
foundedness of >.

The following lemma states the soundness of the new approximation.

Lemma 13 For a TRS R, IDG(R) ⊆ EIDG∗(R).

PROOF. Suppose there is an arrow from s → t to u → v in IDG(R). So
there exists a substitution σ such that tσ i→∗

R uσ and sσ and uσ are normal
forms. The first condition of the definition of EIDG∗ holds because IDG(R) ⊆
EIDG(R). We claim that tσ = REN(CAP−1

U(t)(u))µ for some substitution µ.

Since t and REN(CAP−1
U(t)(u)) do not share variables, the substitution τ = σ]µ

is well-defined and clearly a unifier of t and REN(CAP−1
U(t)(u)). Hence these two

8

terms admit an mgu τ ′ which subsumes τ . We have sτ = sσ. The latter term
is a normal form by assumption and hence so is sτ ′. Consequently, the second
condition of the definition of EIDG∗ holds as well. We prove the claim by induc-
tion on u. If u is a variable or root(u) ∈ D−1

U(t) then REN(CAP−1
U(t)(u)) is a fresh

variable, say x, and we can take µ = {x 7→ tσ}. If u = f(u1, . . . , un) with f /∈
D−1

U(t) then REN(CAP−1
U(t)(u)) = f(REN(CAP−1

U(t)(u1)), . . . , REN(CAP−1
U(t)(un))).

Because sσ is a normal form and Var(t) ⊆ Var(s), tσ →∗
R uσ if and only if

tσ →∗
U(t) uσ. The latter is equivalent to uσ →∗

U(t)−1 tσ. We distinguish two
cases. If t is a variable then tσ is a subterm of sσ and thus a normal form. Hence
tσ = uσ and since uσ is an instance of REN(CAP−1

U(t)(u)), we are done. Other-

wise, since root(u) = f /∈ D−1
U(t), tσ must be of the form f(t1σ, . . . , tnσ) and we

have uiσ →
∗
U(t)−1 tiσ for each i ∈ {1, . . . , n}. The induction hypothesis yields

for each i a substitution µi such that tiσ = REN(CAP−1
U(t)(ui))µi. Since different

REN(CAP−1
U(t)(ui)) do not share variables, the substitution µ = µ1] · · ·] µn is

well-defined and clearly satisfies tσ = REN(CAP−1
U(t)(u))µ. 2

The following example shows that we cannot omit REN from REN(CAP−1
U(t)(u))

without violating the soundness condition IDG(R) ⊆ EIDG∗(R) of Lemma 13,
which is essential for inferring innermost termination.

Example 14 Consider the TRS R consisting of the rules

f(x, x)→ f(g(x), x) g(h(x))→ h(x)

There are two dependency pairs:

1: F(x, x)→ F(g(x), x) 2 : F(x, x)→ G(x)

Since F(g(h(x)), h(x)) i→ F(h(x), h(x)), IDG(R) contains arrows from 1 to
1 and 2. However, CAP−1

U(F(g(x),x))(F(x′, x′)) = CAP−1
{g(h(x))→h(x)}(F(x′, x′)) =

F(x′, x′) does not unify with F(g(x), x). Thus, by replacing REN(CAP−1
U(t)(u))

with CAP−1
U(t)(u) in the definition of EIDG∗(R), we would obtain a graph without

cycles and hence wrongly conclude innermost termination.

Note that in the above example i→ differs from (i←)−1. Replacing CAP−1 by
CAP−1

s (or CAP−1
v) in Definition 11 would make the approximation unsound.

Here CAP−1
s replaces all outermost subterms different from subterms of s with

a root symbol in D−1
R by distinct fresh variables.

Example 15 Consider the non-innermost terminating TRS R consisting of
the rules f(a)→ f(b) and b→ a. There is one dependency pair: F(a)→ F(b).
Because of F(b) i→ F(a), IDG(R) contains a cycle. This cycle would not be
detected if CAP−1 is replaced by CAP−1

s : REN(CAP−1
F(a)(F(a))) = F(a) does not

unify with F(b).

9

The following theorem summarizes the relationships between the various ap-
proximations. The only non-trivial inclusions are DG(R) ⊆ EDG∗(R) ([20])
and IDG(R) ⊆ EIDG∗(R) (Lemma 13).

Theorem 16 For any TRS R, the following inclusions hold:

DG(R) ⊆ EDG∗(R) ⊆ EDG(R)

⊆ ⊆ ⊆

IDG(R) ⊆ EIDG∗(R) ⊆ EIDG(R)

2

Unlike the inclusion EDG∗(R) ⊆ EDG(R), the inclusion EIDG∗(R) ⊆ EIDG(R)
need not become an equality for collapsing R, due to the use of usable rules
in the second part of Definition 11. This can be seen from Example 12.

4 Cycle Analysis

The use of Theorem 2 (5) for ensuring (innermost) termination requires that
all cycles have to be considered.

Example 17 Consider the TRS from [9] consisting of the two rules

f(s(x))→ f(s(x)) f(s(x))→ f(x)

There are two dependency pairs

1: F(s(x))→ F(s(x)) 2 : F(s(x))→ F(x)

and the dependency graph

1
��

oo // 2
��

has three cycles. The constraints (generated by Theorems 2 and 5) for cycles
{2} and {1, 2} are readily satisfied, but the constraints for cycle {1} cannot be
solved. Note that the TRS is not (innermost) terminating.

Unfortunately, the number of cycles can be very large, even if the number of
dependency pairs is small. In the worst case, there are 2n − 1 cycles for n
dependency pairs. This explains why in early implementations ([1,7]) of the
dependency pair method, strongly connected components rather than cycles
are computed. A strongly connected component (SCC) is a maximal (with
respect to the inclusion relation) cycle. Note that the number of SCCs for n

10

dependency pairs is at most n, since every dependency pair belongs to at most
one SCC.

The next two statements are immediate consequences of Theorems 2 and 5.

Corollary 18 A TRS R is terminating if and only if for every SCC S in
DG(R) there exist an argument filtering π and a reduction pair (&, >) such
that π(R) ⊆ & and π(S) ⊆ >. 2

We find it convenient to abbreviate the two conditions in Corollary 18 to
(&, >)π �∀ R,S. We write �∀ R,S if there exist an argument filtering π and
a reduction pair (&, >) such that (&, >)π �∀ R,S. The universal quantifier in
the notation indicates that all pairs in S should be strictly decreasing.

Corollary 19 A TRS R is innermost terminating if �∀ U(S),S for every
SCC S in IDG(R). 2

The difference with Theorems 2 and 5 is that all pairs in an SCC must be
strictly decreasing. This, however, makes the (innermost) termination criterion
of Corollary 18 (19) strictly weaker than the one of Theorem 2 (5), if we employ
reduction pairs based on (quasi-)simplification orders.

Example 20 Consider again the TRS of Example 4. The dependency graph
(which can be computed with the estimations mentioned in the preceding sec-
tion) contains one SCC: {2, 3}. The constraints generated by Corollary 18 can-
not be solved by a combination of an argument filtering π and a reduction pair
(&, >) based on a quasi-simplification order &. To see this, suppose that both
π(EVENODD(x, 0)) > π(EVENODD(x, s(0))) and π(EVENODD(s(x), s(0))) >
π(EVENODD(x, 0)). Since every quasi-simplification order satisfies s(0) & 0,
the first constraint requires π(s) = [], π(EVENODD) ∈ {[1, 2], [2], 2}, and 0 >
s. So the second constraint reduces to π(EVENODD(s, s)) > π(EVENODD(x, 0))
and this latter constraint can only be satisfied if π(EVENODD) ∈ {[2], 2} and
s > 0. This is clearly impossible.

Also the TRS of Example 6 cannot be proved (innermost) terminating if we
use a quasi-simplification order in combination with Corollary 18 (19); one
easily shows that there is no argument filtering π and reduction pair (&, >)
based on a quasi-simplification order & such that both π(QUOT(x, 0, s(z))) >
π(QUOT(x, z + s(0), s(z))) and π(QUOT(s(x), s(y), z)) > π(QUOT(x, y, z)).

In order to cope with this problem, we propose a new recursive approach to
compute and solve SCCs. More precisely, if S is the current SCC then we
first compute (see the next section) an argument filtering π and a reduction
pair (&, >) such that π(R) ⊆ &, π(S) ⊆ & ∪ >, and π(S) ∩> 6= ∅. Then we

11

compute the SCCs of the subgraph 3 of DG(R) induced by the pairs l → r of S
that are not strictly decreasing. These new SCCs are added to the list of SCCs
that have to be solved. It turns out that this new approach has the termination
proving power of Theorem 2 (5) and the efficiency of Corollary 18 (19). The
former is proved below and the latter is confirmed by extensive experiments
(see Section 6) and explained in the paragraph following Theorem 24.

Definition 21 Let R be a TRS and S a subset of the dependency pairs in
DP(R). We write � R,S if there exist an argument filtering π and a reduction
pair (&, >) such that (&, >)π �∃ R,S and � R,S ′ for all SCCs S ′ of the
subgraph of DG(R) induced by the pairs l → r ∈ S such that π(l) 6> π(r).

Theorem 22 Let R be a TRS. The following conditions are equivalent:

(1) � R,S for every SCC S in DG(R),
(2) �∃ R, C for every cycle C in DG(R).

PROOF. First suppose � R,S for every SCC S in DG(R) and let C be a
cycle in DG(R). We show that �∃ R, C. Let S be the SCC that contains C. We
use induction on the size of S. We have � R,S by assumption. So there exist
an argument filtering π and a reduction pair (&, >) such that (&, >)π �∃ R,S
and � R,S ′ for all SCCs S ′ of the subgraph of DG(R) induced by the pairs
l → r ∈ S such that π(l) 6> π(r). Let us denote the set of these pairs by S̄.
If π(C) ∩ > 6= ∅ then (&, >)π �∃ R, C. Otherwise, all pairs in C belong to
S̄ and thus C is a cycle in the subgraph of DG(R) induced by S̄. Hence C is
contained in an SCC S ′ of this subgraph. We have � R,S ′ by assumption.
Since |S ′| < |S| we can apply the induction hypothesis to obtain the desired
�∃ R, C.

Next we suppose that �∃ R, C for every cycle C in DG(R). Let S be an SCC in
DG(R). We have to show that � R,S. We use induction on the size of S. Since
S is also a cycle, (&, >)π �∃ R,S for some argument filtering π and reduction
pair (&, >). Let S̄ = {l → r ∈ S | π(l) 6> π(r)}. Since π(S) ∩ > 6= ∅,
S̄ is a proper subset of S. Hence every SCC S ′ in the subgraph of DG(R)
induced by S̄ is smaller than S, and thus � R,S ′ by the induction hypothesis.
Consequently, � R,S. 2

The above proof provides quite a bit more information than the statement of
Theorem 22 suggests. As a matter of fact, both conditions are equivalent to
termination of R, and also equivalent to the criterion “�∀ R,S for every SCC
S in DG(R)” of Corollary 18. However, from the proof of Theorem 22 we learn
that a termination proof based on “� R,S for every SCC S in DG(R)” can

3 In other words, we restrict DG(R) to the nodes in {l → r ∈ S | π(l) 6> π(r)}.

12

be directly transformed into a termination proof based on “�∃ R, C for every
cycle C in DG(R)” and vice-versa; there is no need to search for new argument
filterings and reduction pairs. This is not true for the criterion of Corollary 18.

Theorem 22 and the discussion following it easily generalize to the innermost
case.

Definition 23 Let R be a TRS and S a subset of the dependency pairs in
DP(R). We write �i U(S),S if there exist an argument filtering π and a
reduction pair (&, >) such that (&, >)π �∃ U(S),S and �i U(S ′),S ′ for all
SCCs S ′ of the subgraph of IDG(R) induced by the pairs l → r ∈ S such that
π(l) 6> π(r).

Theorem 24 Let R be a TRS. The following conditions are equivalent:

(1) �i U(S),S for every SCC S in IDG(R),
(2) �∃ U(C), C for every cycle C in IDG(R).

2

A dependency graph with n dependency pairs has at most n SCCs. So the
number of groups of ordering constraints that need to be solved in order to
ensure (innermost) termination according to Corollary 18 (19) is bounded by
n. We already remarked that the number of cycles and hence the number of
groups generated by the cycle approach of Theorem 2 (5) is at most 2n − 1.
Example 25 below shows that this upper bound cannot be improved. It is easy
to see that the new approach of Theorem 22 (24) generates at most n groups.
This explains why the efficiency of the new approach is comparable to the SCC
approach and better than the cycle approach. It also explains why (human
or machine) verification of the (innermost) termination proof generated by
the new algorithm involves (much) less work than the one generated by the
approach based on Theorem 2 (5).

Example 25 As an extreme example, consider the TRS R (Example 11 in
[8]) consisting of the rules

D(t)→ 1 D(x + y)→ D(x) + D(y)

D(c)→ 0 D(x× y)→ (y × D(x)) + (x× D(y))

D(−x)→ −D(x) D(x− y)→ D(x)− D(y)

D(lnx)→ D(x)/x D(x/y)→ (D(x)/y)− ((x× D(y))/y2)

D(xy)→ ((y × xy−1)× D(x)) + ((xy × ln x)× D(y))

The only defined symbol, D, occurs 12 times in the right-hand sides of the
rules, so there are 12 dependency pairs. All these dependency pairs have a
right-hand side D](t) with t a variable. It follows that the dependency graph
is a complete graph. Consequently, there are 212 − 1 = 4095 cycles but just 1

13

SCC. Since R is compatible with LPO, all groups of ordering constraints are
easily solved.

To conclude this section, we can safely state that every implementation of the
dependency pair method should use our new algorithm for cycle analysis.

5 Argument Filterings

The search for a suitable argument filtering that enables the simplified con-
straints to be solved by a reduction pair based on a strongly monotone sim-
plification order is the main bottleneck of the dependency pair method. The
standard approach is to enumerate all possible argument filterings until one
is encountered that enables the resulting constraints to be solved. However,
since a single function symbol of arity n already gives rise to 2n + n differ-
ent argument filterings, enumeration is impractical except for small examples.
In this section we present two new ideas to reduce the number of computed
argument filterings.

5.1 Heuristics

We propose two simple heuristics that significantly reduce the number of ar-
gument filterings:

• In the some heuristic we consider for an n-ary function symbol f only the
‘full’ argument filtering π(f) = [1, . . . , n] and the n ‘collapsing’ argument
filterings π(f) = i for i = 1, . . . , n.
• In the some more heuristic we consider additionally the argument filtering

π(f) = [] (when n > 0).

Clearly, an n-ary function symbol admits n+1 argument filterings in the some
heuristic and n + 2 (1 if n = 0) in the some more heuristic. The following
example shows that even if the total number of function symbols is relatively
small, the savings made by these heuristics is significant.

Example 26 Consider the following TRS (from [3]), encoding the quicksort

14

algorithm:

1: high(n, nil)→ nil 9: ifHigh(false, n,m : x)→ m : high(n, x)

2 : high(n,m : x)→ ifHigh(m ≤ n, n,m :x) 10: ifHigh(true, n,m : x)→ high(n, x)

3 : low(n, nil)→ nil 11: ifLow(false, n,m : x)→ low(n, x)

4 : low(n,m : x)→ ifLow(m ≤ n, n,m :x) 12: ifLow(true, n,m : x)→ m : low(n, x)

5 : nil++ y → y 13: 0 ≤ y → true

6: (n : x)++ y → n : (x++ y) 14: s(x) ≤ 0→ false

7: qsort(nil)→ nil 15: s(x) ≤ s(y)→ x ≤ y

8: qsort(n : x)→ qsort(low(n, x))++(n : qsort(high(n, x)))

There are 2 function symbols of arity 3, 5 function symbols of arity 2, 2
function symbols of arity 1, and 2 function symbols of arity 0, resulting in
(23 + 3)2 × (22 + 2)5 × (21 + 1)2 × (20 + 0)2 = 8468064 argument filterings
for just the rule constraints. The some more heuristic produces only 230400
possible argument filterings and the some heuristic reduces this number further
to 15552.

One can imagine several other heuristics, like computing all argument filter-
ings for function symbols of arity n 6 2 but only some for function symbols
of higher arity. Needless to say, adopting any of these heuristics reduces the
class of TRSs that can be proved (innermost) terminating automatically. Nev-
ertheless, the experiments reported in Section 6 reveal that the two heuristics
described above are surprisingly effective. The reason is that termination is
often caused by a decrease in one argument of a recursive call, which can
be captured by a suitable ‘collapsing’ argument filtering. Moreover, the new
recursive algorithm for cycle analysis described in Section 4 supports the situ-
ation where different recursive calls of the same function depend on a decrease
of different arguments.

5.2 Divide and Conquer

In this subsection we propose a new divide and conquer approach for finding
all suitable argument filterings while avoiding enumeration. In the following
we develop this approach in a stepwise fashion.

The first observation is that argument filterings should be computed for terms
rather than for function symbols. Consider e.g. the term t = f(g(h(x)), y).
There are 6× 3× 3 = 54 possible argument filterings for the function symbols
f, g, and h. Many of these argument filterings contain redundant information.
For instance, if π(f) = [2] then it does not matter how π(g) and π(h) are
defined since g and h no longer appear in π(t) = f(y); likewise for π(f) = 2
or π(f) = []. If π(f) ∈ {[1, 2], [1], 1} and π(g) = [] then the value of π(h) is
irrelevant. It follows that there are only 24 ‘minimal’ argument filterings for t.

15

The following definitions explains how these minimal argument filterings can
be computed.

Definition 27 Let F be a signature. We consider partial argument filterings
that need not be defined for all function symbols in F . The completely undefined
argument filtering will be denoted by ε. Let π be a (partial) argument filtering
and t a term in T (F ,V). The domain dom(π) is the set of function symbols on
which π is defined. We define outer(t, π) as the subset of F consisting of those
function symbols in t where the computation of π(t) gets stuck: outer(t, π) = ∅

when t ∈ V and if t = f(t1, . . . , tn) then outer(t, π) = outer(ti, π) when π(f) =
i, outer(t, π) =

⋃m
j=1 outer(tij , π) when π(f) = [i1, . . . , im], and outer(ti, π) =

{f} when π(f) is undefined. Let π and π′ be argument filterings. We say that π′

is an extension of π and write π ⊆ π′ if dom(π) ⊆ dom(π′) and π(f) = π′(f)
for all f ∈ dom(π). Finally, if G ⊆ F then AF(G) denotes the set of all
argument filterings whose domain coincides with G.

The next definition introduces a set AF(t, π) of argument filterings that extend
π and permit the term t to be completely evaluated.

Definition 28 Let F be a signature, t ∈ T (F ,V), and π an argument filter-
ing. We define a set AF(t, π) of argument filterings as follows: AF(t, π) = {π}
if outer(t, π) = ∅ and AF(t, π) =

⋃
{AF(t, π′) | π′ ∈ AF(outer(t, π)) × π} if

outer(t, π) 6= ∅. Here AF(outer(t, π)) returns the set of all argument filterings
whose domain coincide with outer(t, π) and AF(outer(t, π)) × π extends each
of these argument filterings with π.

Note that the recursion in the definition of AF(t, π) terminates since its second
argument enables more and more of t to be evaluated, until π(t) can be com-
pletely computed, i.e., until outer(t, π) = ∅. Next we present an equivalent
non-recursive definition of AF(t, π).

Definition 29 For a term t and an argument filtering π we denote by AF′(t, π)
the set of minimal extensions π′ of π such that outer(t, π′) = ∅. Minimality
here means that if outer(t, π′′) = ∅ and π ⊆ π′′ ⊆ π′ then π′′ = π′.

Lemma 30 For all terms t and argument filterings π, AF(t, π) = AF′(t, π).

PROOF. We use induction on n = |Fun(t)\dom(π)|. If n = 0 then Fun(t)\
dom(π) = ∅ and thus outer(t, π) = ∅. Hence AF(t, π) = {π} = AF′(t, π).
Suppose n > 0. We have AF(t, π) =

⋃
{AF(t, π′) | π′ ∈ AF(outer(t, π)) × π}.

For every π′ ∈ AF(outer(t, π))×π, |Fun(t)\dom(π′)| < n and thus AF(t, π′) =
AF′(t, π′) by the induction hypothesis. So it remains to show that

AF′(t, π) =
⋃
{AF′(t, π′) | π′ ∈ AF(outer(t, π))× π}.

16

First suppose that π′′ ∈ AF′(t, π). So π ⊆ π′′ and outer(t, π′′) = ∅. Hence
there exists an argument filtering π′ ∈ AF(outer(t, π))× π such that π′ ⊆ π′′.
To conclude that π′′ ∈ AF′(t, π′) we have to show that π′′ = π̄ whenever
π′ ⊆ π̄ ⊆ π′′ and outer(t, π̄) = ∅. Clearly π ⊆ π̄ ⊆ π′′ for any such π̄ and thus
π′′ = π̄ by the assumption π′′ ∈ AF′(t, π).

Next suppose that π′′ ∈ AF′(t, π′) for some π′ ∈ AF(outer(t, π)) × π. We
have outer(t, π′′) = ∅, π ⊆ π′ ⊆ π′′, and dom(π′) = dom(π) ∪ outer(t, π). To
conclude that π′′ ∈ AF′(t, π) it remains to show that π′′ = π̄ whenever π ⊆ π̄ ⊆
π′′ and outer(t, π̄) = ∅. Any such π̄ satisfies dom(π) ∪ outer(t, π) ⊆ dom(π̄)
and hence, as π̄ ⊆ π′′ and π′ ⊆ π′′, π̄ and π′ agree on the function symbols
in outer(t, π). Consequently, π′ ⊆ π̄ and thus π′′ = π̄ by the assumption
π′′ ∈ AF′(t, π′). 2

Since a term t can be completely evaluated by an argument filtering π if
and only if outer(t, π) = ∅, the next result is an immediate consequence of
Lemma 30.

Corollary 31 AF(t, ε) is the set of all minimal argument filterings π such
that π(t) can be completely evaluated. 2

We now explain how to compute the set of minimal argument filterings for a
set of terms.

Definition 32 Let T be a set of terms. We denote by AF(T) the set of all
minimal argument filterings that completely evaluate each term in T . In par-
ticular, we define AF(∅) = {ε}.

Definition 33 Two argument filterings π1 and π2 are said to be compatible
if they agree on the function symbols on which both are defined, in which case
their union π1∪π2 is defined in the obvious way. If A1 and A2 are sets of argu-
ment filterings then A1⊗A2 = {π1∪π2 | π1 ∈ A1 and π2 ∈ A2 are compatible}.

Note that {ε} is the identity of the merge operation ⊗. The following lemma
expresses the fact that merging preserves the minimality property.

Lemma 34 If T1, T2 are sets of terms then AF(T1 ∪ T2) = AF(T1)⊗ AF(T2).

PROOF. First we show that AF(T1∪T2) ⊆ AF(T1)⊗AF(T2). Let π ∈ AF(T1∪
T2). Let π1 and π2 be the minimum restrictions of π that completely evaluate
every term in T1 and T2, respectively. We have π1 ∈ AF(T1) and π2 ∈ AF(T2)
by definition. Since π1 and π2 are compatible, π1∪π2 ∈ AF(T1)⊗AF(T2). Since
π1∪π2 completely evaluates every term in T1∪T2, we obtain π = π1∪π2 from
the minimality of π.

17

Next we show that AF(T1)⊗ AF(T2) ⊆ AF(T1 ∪ T2). Let π ∈ AF(T1)⊗ AF(T2).
So there exist compatible π1 ∈ AF(T1) and π2 ∈ AF(T2) such that π = π1 ∪π2.
Since π completely evaluates every term in T1 ∪ T2, there must be a π′ ∈
AF(T1 ∪ T2) such that π′ ⊆ π. Because π′ completely evaluates every term in
T1 and T2, the minimality of π1 and π2 yields π1 ⊆ π′ and π2 ⊆ π′. Hence
π = π1 ∪ π2 ⊆ π′ and thus π = π′. 2

The combination of Corollary 31 and Lemma 34 yields that AF(T) can be
computed as

⊗
{AF(t, ε) | t ∈ T }.

Definition 28 (for π = ε) is easily extended to rewrite rules.

Definition 35 For a rewrite rule l → r we define AF(l → r) = AF({l, r})
and AFvc(l → r) = {π ∈ AF(l → r) | Var(π(r)) ⊆ Var(π(l))}.

The reason for excluding, in the definition of AFvc(l → r), argument filterings
π from AF(l → r) that violate the variable condition Var(π(r)) ⊆ Var(π(l)) is
simply that no simplification order > satisfies π(l) & π(r) if some variable in
π(r) does not also occur in π(l). If we know in advance which base order will
be used to satisfy the simplified constraints, then we can do even better. In
the following definition we illustrate this for LPO with strict precedence.

Definition 36 Let l → r be a rewrite rule. We define AFlpo(l → r) = {π ∈
AF(l → r) | π(l) �=

lpo π(r) for some precedence �}.

The next example shows the effectiveness of (restricted) partial argument fil-
terings.

Example 37 Table 1 shows for each rule l → r the number of argument
filterings in AF(Fun(l → r)), AF(l→ r), AFvc(l → r), and AFlpo(l→ r).

The idea is now to (1) compute all argument filterings for each constraint
separately and (2) subsequently merge them to obtain the argument filterings
of the full set of constraints.

Definition 38 We define AF(R) =
⊗
{AF(l → r) | l → r ∈ R} for a set

of rewrite rules R. Furthermore, if A is a set of argument filterings then
Alpo(R) = {π ∈ A | π(R) ⊆ �=

lpo for some precedence �}.

From the previous lemma we obtain the following equality:

AF(R1 ∪R2)lpo(R1∪R2) = (AF(R1)lpo(R1) ⊗ AF(R2)lpo(R2))lpo(R1∪R2)

The divide and conquer approach is based on the observation that the right-
hand side can be computed faster than a direct computation of the left-hand
side. By using the equality repeatedly, R is eventually divided into sets of

18

Table 1
Divide and conquer: quicksort (I).

l→ r AF(Fun(l→ r)) AF(l→ r) AFvc(l → r) AFlpo(l → r)

1 6 6 6 5

2 2376 981 327 281

3 6 6 6 5

4 2376 981 327 281

5 6 6 3 3

6 36 36 27 23

7 3 3 3 3

8 3888 513 282 151

9 396 231 108 96

10 396 216 102 97

11 396 216 102 97

12 396 231 108 96

13 6 6 6 5

14 18 12 12 11

15 18 16 11 11

single rules, but the form is not unique. For example, if 1, 2, and 3 are rewrite
rules then AF({1, 2, 3})lpo({1,2,3}) can be divided in three different ways:

((AF({1})lpo({1}) ⊗ AF({2})lpo({2}))lpo({1,2}))⊗ AF({3})lpo({3}))lpo({1,2,3})

((AF({1})lpo({1}) ⊗ AF({3})lpo({3}))lpo({1,3}))⊗ AF({2})lpo({2}))lpo({1,2,3})

((AF({2})lpo({2}) ⊗ AF({3})lpo({3}))lpo({2,3}))⊗ AF({1})lpo({1}))lpo({1,2,3})

We illustrate the divide and conquer approach on the TRS of Example 26.
Here we use the merge order corresponding to the numbering of the rewrite
rules.

Example 39 Table 2 shows the cumulative effect of the merge operation. For
instance, merging the 5 argument filterings for rule 1 with the 281 for rule 2
produces 279 argument filterings for the combination of rules 1 and 2. From
the last entry in the table we see that only 40 out of 8468064 argument filterings
enable the rule constraints to be solved by LPO with strict precedence.

19

Table 2
Divide and conquer: quicksort (II).

h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

all 5 279 1395 11579 34737 17368 52104 9637 5135 530 65 49 25 50 40

some
more

3 49 147 581 1162 681 2043 333 75 57 11 10 12 24 16

some 2 25 50 161 322 186 372 78 20 20 3 3 6 9 9

Table 3
Divide and conquer: quicksort (III).

h 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14

all 5 165 104 10 50 218 44 28 84 45 25 50 150 120 40

some
more

3 28 20 4 12 23 7 6 12 12 9 18 54 36 16

some 2 10 7 2 4 6 2 2 4 8 6 9 18 18 9

The divide and conquer approach can easily be combined with the heuristics
of the previous subsection, just replace AF(outer(t, π)) in Definition 28 by
AFh(outer(t, π)) where h is the heuristic. With respect to Example 39, the
some more heuristic would produce 16 and the some heuristic just 9 suitable
argument filterings. This can be inferred from Table 2.

An additional advantage of the divide and conquer approach is that the argu-
ment filterings for the rewrite rule constraints, which in the case of termination
are part of every group of ordering constraints, need to be computed only once.

5.3 Dynamic Programming

The effectiveness of the divide and conquer approach depends very much on
the merge order. Table 3 shows a different merge order for the rules of the
quicksort example. Although the final outcome is the same, the intermediate
results differ greatly.

In order to determine a good merge order, we use a dynamic programming
technique.

Definition 40 Let R be a set of rules over a signature F . We put root(R) =
{root(l), root(r) | l→ r ∈ R} ∩ F .

The key observation is that when merging two sets of argument filterings A1

for R1 and A2 for R2, the size of A1 ⊗ A2 often decreases when root(R1) =

20

root(R2). In general, the size of A1⊗A2 increases with the size of root(R1∪R2).
An argument filtering in A1 cannot be combined with an argument filtering
in A2 if the compatibility condition in the definition of the merge operation
(Definition 33) is not satisfied or if the orientability condition of the employed
base order is not satisfied (cf. Definition 38). Obviously, the first possibility
is more likely to happen if the domains of the two argument filterings have
a large intersection. For the second condition, function symbols that appear
at the root of terms in R1 ∪ R2 have a larger impact than function symbols
that appear only below the root since the latter might disappear. Based on
these observations, we now explain in some detail how the divide and conquer
approach is implemented in our termination prover.

Suppose we want to compute AF(R)lpo(R). We create a table A consisting of
pairs of sets of rewrite rules R′ ⊆ R and the corresponding sets of partial
argument filterings AF(R′)lpo(R′). The table is initialized as follows:

A(∅) = AF(∅) A({l → r}) = AF({l → r})lpo({l→r})

for all l → r ∈ R. Let us write maxA(R) for the set of maximal subsets
S ⊆ R such that A(S) is defined. So initially maxA(R) consists of the set
of all singleton subsets of R. As long as maxA(R) contains at least two sets,
we choose two distinct sets R1 and R2 from maxA(R) such that the size of
root(R1 ∪ R2) is minimal and we add the following entry to the table:

A(R1 ∪ R2) = (A(R1)⊗ A(R2))lpo(R1∪R2)

This process terminates if maxA(R) equals {R}, which means that A(R) =
AF(R)lpo(R) has been computed.

Example 41 For the fifteen rewrite rules of the TRS R of Example 26, after
initializing the table, it turns out that |root({14, 15})| = |{≤, false}| = 2 is
minimal, so we add

A({14, 15}) = (A(14)⊗ A(15))lpo({14,15})

to the table. Next the pair of {2} and {10} is selected. Continuing in this
fashion, the data in Table 4 is computed (left to right, top to bottom).

When using the condition “� R,S for every SCC S in DG(R)” of Theorem 22
for proving termination, for the first SCC S we compute A(R ∪ S) by first
computing A(S) and, if this set is non-empty, then computing A(R) before
merging these two sets to get A(R ∪ S) = (A(R) ⊗ A(S))lpo(R∪S). The ob-
vious reason is that the result of the computation of A(R) can be reused in
combination with other SCCs, including newly generated ones.

In the case of innermost termination, different SCCs (may) have different
usable rules and some rewrite rules may not be usable at all. So it does not

21

Table 4
Divide and conquer: quicksort (IV).

R′

|A(R′)|

|root(R′)|

∅

1

–

{1}

5

–

{2}

281

–

{3}

5

–

{4}

281

–

{5}

3

–

{6}

23

–

{7}

3

–

{8}

151

–

{9}

96

–

{10}

97

–

R′

|A(R′)|

|root(R′)|

{11}

97

–

{12}

96

–

{13}

5

–

{14}

11

–

{15}

11

–

{14, 15}

10

2

{2, 10}

15

2

{4, 11}

15

2

R′

|A(R′)|

|root(R′)|

{5, 8}

83

2

{3, 7}

15

3

{13, 14, 15}

8

3

{2, 9, 10}

11

3

{4, 11, 12}

11

3

{5, 6, 8}

54

3

R′

|A(R′)|

|root(R′)|

{1, 3, 7}

75

4

{2, 4, 9, 10, 11, 12}

35

6

{5, 6, 8, 13, 14, 15}

432

6

R′

|A(R′)|

|root(R′)|

{1, 2, 3, 4, 7, 9, 10, 11, 12}

84

7

R

40

11

make sense to compute A(R). Rather, we compute A(R′) for suitable subsets
of R on demand. This is illustrated in the following example.

Example 42 Consider the TRSR of Example 6. The EIDG or EIDG∗ approxi-
mated innermost dependency graph contains two SCCs: S1 = {6}, S2 = {8, 9}.

• For SCC S1, we have to prove “�i U(S1),S1”. Since U(S1) = ∅ and S1 has
just one element, initializing the table A will produce the answer:

A(∅) = AF(∅) A({6}) = AF({6})lpo({6})

Since A({6}) contains a suitable argument filtering, we are done.
• Next we consider the constraints for SCC S2. We have U(S2) = {1, 2}, so

we add the following entries to our table:

A({1}) = AF({1})lpo({1}) A({8}) = AF({8})lpo({8})

A({2}) = AF({2})lpo({2}) A({9}) = AF({9})lpo({9})

We want to compute A(U(S2) ∪ S2) by merging A(U(S2)) and A(S2) since
it is more likely that the two partial results can be reused than some mix-

22

ture of elements of both A(U(S2)) and A(S2). So we compute A({1, 2}) and
A({8, 9}):

A({1, 2}) = (A({1})⊗ A({2}))lpo({1,2})

A({8, 9}) = (A({8})⊗ A({9}))lpo({8,9})

and then we compute A({1, 2, 8, 9}) by merging the results:

A({1, 2, 8, 9}) = (A({1, 2})⊗ A({8, 9}))lpo({1,2,8,9})

In A({1, 2, 8, 9}) we find an argument filtering that makes rule 9 strictly
decreasing (cf. the last item in Example 6). By construction of A, all (other)
rules are weakly decreasing, so SCC S2 gives rise to the new SCC S3 = {8}.

• We have U(S3) = {1, 2}, so we have to compute A({1, 2, 8}). An obvious
search through the table reveals that maxA({1, 2, 8}) = {{1, 2}, {8}}. So the
computation of A({1, 2, 8}) involves just one merge operation:

A({1, 2, 8}) = (A({1, 2})⊗ A({8}))lpo({1,2,8})

Since A({1, 2, 8}) contains a suitable argument filtering (i.e., an argument
filtering that makes rule 8 strictly decreasing), the constraints for SCC S3

are solved, i.e., we have �i U(S3),S3 and thus also �i U(S2),S2.

Hence R is innermost terminating. The following table summarizes the divide
and conquer process:

R′
∅ {6} {1} {2} {8} {9} {1, 2} {8, 9} {1, 2, 8, 9} {1, 2, 8}

|A(R′)| 1 9 3 14 36 19 6 28 35 46

We conclude this section by mentioning a different approach to search for
suitable argument filterings. In [12] one always starts with the dependency
pairs. Given an SCC S, a single argument filtering π is selected that makes
one pair in S strictly decreasing and all other pairs weakly decreasing. This
argument filtering is then extended to handle the rule constraints in a step-
wise fashion. A depth-first search algorithm is used to explore the search space.
The advantage of this approach is that the computationally expensive merge
operation is avoided. We see two disadvantages. First of all, a wrong choice in
the selection of the dependency pair that must be strictly decreasing causes
backtracking. Secondly, if there is no solution the whole search space must be
explored before this is detected whereas in the divide and conquer approach
the search is terminated as soon as an empty set of argument filterings is
produced.

23

6 Experiments

Our ideas have been implemented in the termination prover TTT, which is
described in [14] and available at

http://colo2-c703.uibk.ac.at/

We tested examples from three different sources:

• all 109 examples (66 in Section 3 and 43 in Section 4) from Arts and Giesl [3],
• all 23 examples from Dershowitz [8],
• all 122 examples from Steinbach and Kühler [23, Sections 3 and 4].

Seven of these examples appear in more than one collection, so the total
number is 247.

Of these 247 examples, 241 are innermost terminating (Examples 2.5, 4.6,
4.34, 4.40, 4.49, and 4.54 from [23] are not) and 221 are terminating. All
experiments were performed on a PC equipped with a 2.20 GHz Mobile Intel
Pentium 4 Processor - M and 512 MB of memory.

6.1 Dependency Graph

Our first experiment concerns the new estimations of the (innermost) depen-
dency graph mentioned in Section 3. Table 5 lists the 13 examples where the
estimations differ. Only for Example 4.50 in [23] (which happens to be the rule
of Toyama that we encountered in Example 10) does the estimation influence
the ability to prove termination automatically, although termination is proved
faster with the EDG∗ approximation—the overhead of using EDG∗ instead of
EDG is negligible. This can be seen from Table 6, where we show the effect of
both estimations in combination with the new algorithm for cycle analysis. In
these and all subsequent experiments, LPO with strict precedence is used as
base order. (The ideas described in Section 5 were not used for Table 6.) The
numbers denote execution time in seconds. Italics indicate that termination
could not be proved within the given time, while fully exploring the search
space implied by the options.

6.2 Cycle Analysis

Tables 7, 8, and 9 show the effect of the three approaches to cycle analysis
in combination with the heuristics for reducing the number of argument fil-

24

Table 5
Dependency graph estimation (I).

EDG | EDG∗ EIDG | EIDG∗

TRS DPs arrows SCCs cycles arrows SCCs cycles

[3]:3.23 2 4 2 1 1 3 1 4 2 1 1 3 1

[3]:3.44 4 4 0 2 0 2 0 4 0 2 0 2 0

[3]:3.45 4 5 3 3 2 3 2 5 3 3 2 3 2

[3]:4.20a 3 3 1 2 1 2 1 2 0 1 0 1 0

[3]:4.20b 4 7 5 2 1 4 3 5 3 2 1 2 1

[3]:4.21 6 12 8 2 2 6 4 6 2 2 0 2 0

[3]:4.37b 4 6 3 3 2 3 2 2 2 2 2 2 2

[23]:2.8 8 24 24 3 3 7 7 19 18 3 3 3 3

[23]:2.51 3 8 7 1 1 6 5 8 7 1 1 6 5

[23]:2.52 9 36 35 4 4 17 16 36 35 4 4 17 16

[23]:4.31 3 4 4 2 2 2 2 4 2 2 1 2 1

[23]:4.50 1 1 0 1 0 1 0 0 0 0 0 0 0

[23]:4.59 6 12 4 3 2 5 2 12 4 3 2 5 2

terings. In all experiments we used E(I)DG
∗ to approximate the (innermost)

dependency graph and enumeration to search for suitable argument filterings.

From the data in Tables 7, 8, and 9 one might get the impression that the
advantage of the new recursive SCC method for cycle analysis is not that
significant. This is simply due to the fact that the (innermost) dependency
graphs of most of the TRSs in [3,8,23] contain relatively few cycles. We refer
to the appendix for a larger example where the use of the recursive SCC
algorithm is crucial for obtaining a termination proof within a reasonable
amount of time.

6.3 Divide and Conquer

Tables 10 and 11 compare enumeration (E) with the divide and conquer ap-
proach to find appropriate argument filterings, where we consider both the
naive (linear) method described in Section 5.2 (DC) as well as the more in-
volved dynamic programming method described in Section 5.3 (DP), in com-
bination with the heuristics of Section 5.1. We used a timeout of 60 seconds.

25

Table 6
Dependency graph estimation (II).

innermost
termination termination

TRS EDG EDG∗ EIDG EIDG∗

[3]:3.23 0.00 0.01 0.01 0.01

[3]:3.44 0.01 0.00 0.00 0.00

[3]:3.45 0.02 0.01 0.00 0.01

[3]:4.20a 0.00 0.00 0.02 0.01

[3]:4.20b 0.01 0.01 0.00 0.00

[3]:4.21 0.01 0.01 0.01 0.01

[3]:4.37b 0.00 0.00 0.02 0.00

[23]:2.8 0.02 0.01 0.02 0.02

[23]:2.51 0.00 0.00 0.01 0.02

[23]:2.52 0.04 0.02 0.05 0.08

[23]:4.31 0.09 0.09 0.01 0.01

[23]:4.50 0.01 0.01 0.01 0.01

[23]:4.59 2.20 1.64 0.09 0.01

Example 4 0.01 0.01 0.01 0.01

Example 6 0.02 0.02 0.01 0.01

Example 25 6.97 6.92 1.57 1.64

Example 26 3683.49 3683.59 1.92 1.91

total time 3692.90 3692.35 3.76 3.76

Comparing the E and DP columns, the effectiveness of the divide and con-
quer approach of Section 5.3 is clear, especially if one keeps in mind that all
possible partial argument filterings that solve the constraints are computed.
In contrast, enumeration terminates as soon as the first successful argument
filtering is generated. So the average time in case of failure is probably more
significant (since it implies that the search space is fully explored), but then
the advantage of the divide and conquer approach over enumeration is even
more pronounced. Another interesting conclusion that can be drawn from the
two tables is that the some more heuristic is surprisingly powerful. Moreover,
if termination cannot be proved within 1 second then it is unlikely that a
termination proof (with respect to the same parameters) will be produced at

26

Table 7
Cycle analysis: some argument filterings.

innermost
termination termination

cycle SCC new cycle SCC new

success 129 117 129 168 152 168

average time 0.27 0.01 0.10 0.03 0.02 0.01

failure 118 130 118 79 95 79

average time 0.18 0.61 0.20 0.12 0.05 0.09

timeout 0 0 0 0 0 0

total time 56.20 80.08 35.55 13.63 6.66 9.33

Table 8
Cycle analysis: some more argument filterings.

innermost
termination termination

cycle SCC new cycle SCC new

success 138 125 138 173 157 173

average time 0.53 0.01 0.20 0.03 0.01 0.02

failure 107 118 107 73 90 73

average time 0.99 0.60 1.09 0.22 0.11 0.25

timeout 2 4 2 1 0 1

total time 299.29 311.85 264.02 80.78 12.32 81.55

all.

In the final table of this paper we present the individual timings for those
examples in the collection of Arts and Giesl [3] for which the computation of
at least one of the E and DP data in Table 10 exceeds 5 seconds, together
with [8, Example 11] (the differentiation TRS of Example 25) and [23, Exam-
ples 2.29 and 4.29]. The reason for including the latter is that these are the
only examples (of the 247 tested) where enumeration outperforms the divide
and conquer approach. This is because the TRSs that can be proved termi-
nating by LPO (and so without using dependency pairs) and the number of
argument filterings for which the dependency pair constraints can be solved
is staggering.

27

Table 9
Cycle analysis: all argument filterings.

innermost
termination termination

cycle SCC new cycle SCC new

success 137 135 138 175 170 176

average time 0.91 0.85 0.85 0.06 0.05 0.05

failure 102 105 102 68 74 68

average time 0.79 0.73 0.77 0.10 0.13 0.13

timeout 8 7 7 4 3 3

total time 685.26 611.42 615.70 256.80 199.06 198.14

Table 10
Divide and conquer: termination.

some some more all

E DC DP E DC DP E DC DP

success 129 128 129 138 138 138 138 128 137

average time 0.10 0.05 0.07 0.20 0.81 0.22 0.85 0.88 0.33

success in 1s 127 127 128 137 126 136 127 119 130

failure 118 118 118 107 107 108 102 103 106

average time 0.20 0.11 0.01 1.09 0.32 0.03 0.77 0.76 0.39

timeout 0 1 0 2 2 1 7 16 4

total time 35.55 78.43 10.52 264.02 265.92 93.26 615.70 1257.75 326.22

7 Conclusion

We conclude by stating that the techniques presented in this paper are very
useful for obtaining termination proofs of TRSs efficiently and automatically.
Nevertheless, as can be inferred from Tables 10 and 11, there are numerous
(innermost) terminating TRSs that cannot be handled by using only our tech-
niques. Taking a different base order (LPO with quasi-precedence, polynomial
interpretations, Knuth-Bendix order) will cover some of these. Dependency
pair transformations [9,12] like narrowing and instantiation or taking poly-
nomial interpretations with negative coefficients [16] (which do not produce

28

Table 11
Divide and conquer: innermost termination.

some some more all

E DC DP E DC DP E DC DP

success 168 168 168 173 173 173 176 172 177

average time 0.01 0.02 0.02 0.02 0.04 0.02 0.05 0.41 0.10

success in 1s 168 168 168 173 172 173 173 165 175

failure 79 79 79 73 73 73 74 67 66

average time 0.09 0.08 0.04 0.25 0.44 0.05 0.13 1.87 0.34

timeout 0 0 0 1 1 0 3 8 0

total time 9.33 9.12 5.55 81.55 99.14 6.38 198.14 732.36 41.91

quasi-simplification orders) as base order cover many more. Furthermore, re-
cent modular refinements [15,24,26] have a very positive effect on the termi-
nation proving power as well as the efficiency of the dependency pair method.
Since termination is an undecidable property, it goes without saying that there
always remain terminating TRSs that are beyond the scope of any automat-
able method for proving termination. As a particular challenge we mention
Example 33 in [8] which encodes the battle of Hydra and Hercules.

Acknowledgements

The suggestions by the referees helped to improve the paper.

References

[1] T. Arts. System description: The dependency pair method. In Proceedings of

the 11th International Conference on Rewriting Techniques and Applications,
volume 1833 of Lecture Notes in Computer Science, pages 261–264, 2000.

[2] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236:133–178, 2000.

[3] T. Arts and J. Giesl. A collection of examples for termination of term rewriting
using dependency pairs. Technical Report AIB-2001-09, RWTH Aachen, 2001.

[4] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

29

Table 12
Divide and conquer: individual TRSs.

some some more all

TRS E DP E DP E DP

[3]:3.5b 0.09 0.02 0.44 0.05 8.11 0.67

[3]:3.5c 0.13 0.03 0.92 0.11 59.04 2.59

[3]:3.6c 0.08 0.01 0.32 0.08 7.89 1.92

[3]:3.8c 0.07 0.02 0.44 0.55 9.99 7.58

[3]:3.10 11.86 0.04 326.81 0.10 43537.44 0.80

[3]:3.11 2.31 0.08 23.32 0.12 3683.59 0.87

[3]:3.13 6.07 0.12 44.69 0.19 24292.03 451.25

[3]:3.53a 1.22 0.02 32.38 0.16 893.74 5.11

[3]:3.55 8.56 0.17 120.91 0.63 54020.70 7.97

[3]:3.57 0.39 0.04 9.73 0.41 39.30 4.12

[3]:4.30c 0.07 0.01 0.34 0.03 7.36 0.14

[3]:4.35 0.62 0.12 6.75 0.30 383.37 4.20

[3]:4.36 1.49 0.05 19.45 0.57 1161.64 21.02

[8]:11 0.01 0.30 0.01 19.77 7.04 134.92

[23]:2.29 0.01 0.42 0.02 3.94 4.38 61.14

[23]:4.28 0.17 6.13 0.16 80.23 0.17 1080.96

[5] F. Bellegarde and P. Lescanne. Termination by completion. Applicable Algebra

in Engineering, Communication and Computing, 1:79–96, 1990.

[6] C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic path
orderings. In Proceedings of the 17th International Conference on Automated

Deduction, volume 1831 of Lecture Notes in Artificial Intelligence, pages 346–
364, 2000.

[7] E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME version 2, 2000.
Available at http://cime.lri.fr/.

[8] N. Dershowitz. 33 Examples of termination. In French Spring School of

Theoretical Computer Science, volume 909 of Lecture Notes in Computer

Science, pages 16–26, 1995.

[9] J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs.
Applicable Algebra in Engineering, Communication and Computing, 12(1,2):39–
72, 2001.

30

[10] J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting
using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

[11] J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive
rewrite systems. Journal of Functional Programming, 14:329–427, 2004.

[12] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Improving dependency
pairs. In Proceedings of the 10th International Conference on Logic for

Programming, Artificial Intelligence and Reasoning, volume 2850 of Lecture

Notes in Artificial Intelligence, pages 165–179, 2003.

[13] B. Gramlich. Abstract relations between restricted termination and confluence
properties of rewrite systems. Fundamenta Informaticae, 24:3–23, 1995.

[14] N. Hirokawa and A. Middeldorp. Tsukuba termination tool. In Proceedings of

the 14th International Conference on Rewriting Techniques and Applications,
volume 2706 of Lecture Notes in Computer Science, pages 311–320, 2003.

[15] N. Hirokawa and A. Middeldorp. Dependency pairs revisited. In Proceedings of

the 16th International Conference on Rewriting Techniques and Applications,
volume 3091 of Lecture Notes in Computer Science, pages 249–268, 2004.

[16] N. Hirokawa and A. Middeldorp. Polynomial interpretations with negative
coefficients. In Proceedings of the 7th International Conference on Artificial

Intelligence and Symbolic Computation, Lecture Notes in Artificial Intelligence,
2004. To appear.

[17] S. Kamin and J.J. Lévy. Two generalizations of the recursive path ordering.
Unpublished manuscript, University of Illinois, 1980.

[18] S. Lucas. Context-sensitive rewriting strategies. Information and Computation,
178(1):294–343, 2002.

[19] A. Middeldorp. Approximating dependency graphs using tree automata
techniques. In Proceedings of the International Joint Conference on Automated

Reasoning, volume 2083 of Lecture Notes in Artificial Intelligence, pages 593–
610, 2001.

[20] A. Middeldorp. Approximations for strategies and termination. In Proceedings

of the 2nd International Workshop on Reduction Strategies in Rewriting and

Programming, volume 70(6) of Electronic Notes in Theoretical Computer

Science, 2002.

[21] E. Ohlebusch. Hierarchical termination revisited. Information Processing

Letters, 84(4):207–214, 2002.

[22] J. Steinbach. Automatic termination proofs with transformation orderings. In
Proceedings of the 6th International Conference on Rewriting Techniques and

Applications, volume 914 of Lecture Notes in Computer Science, pages 11–25,
1995.

[23] J. Steinbach and U. Kühler. Check your ordering – termination proofs and open
problems. Technical Report SR-90-25, Universität Kaiserslautern, 1990.

31

[24] R. Thiemann, J. Giesl, and P. Schneider-Kamp. Improved modular termination
proofs using dependency pairs. In Proceedings of the 2nd International Joint

Conference on Automated Reasoning, volume 3097 of Lecture Notes in Artificial

Intelligence, pages 75–90, 2004.

[25] Y. Toyama. Counterexamples to the termination for the direct sum of term
rewriting systems. Information Processing Letters, 25:141–143, 1987.

[26] X. Urbain. Modular & incremental automated termination proofs. Journal of

Automated Reasoning, 2004. To appear.

A A Larger Example

We conclude this paper with a relatively small TRS that contains very many
cycles. The TRS is obtained by applying the first transformation of Giesl
and Middeldorp [11, Definition 12] to a context-sensitive rewrite system that
approximates the infinite sequence 1

1
, 1

4
, 1

9
, . . . , 1

n2 whose partial sums converge

to π2

6
(Lucas [18, Example 2]). In the termination proof we use LPO with quasi-

precedence and linear polynomial interpretations with coefficients in {0, 1} as
base orders. With respect to the former, we use the some heuristic described in
Section 5.1 and the divide and conquer technique with dynamic programming
described in Section 5.3.

Example 43 Consider the following TRS R:

1: termsa(x)→ recip(sqra(m(x))) : terms(s(x))

2 : sqra(0)→ 0

3: sqra(s(x))→ s(sqra(m(x)) +a dbla(m(x)))

4 : dbla(0)→ 0

5: dbla(s(x))→ s(s(dbla(m(x))))

6 : 0 +a y → m(y)

7 : s(x) +a y → s(m(x) +a m(y))

8 : firsta(0, z)→ nil

9: firsta(s(x), y : z)→ m(y) : first(x, z)

10 : halfa(0)→ 0

11: halfa(s(0))→ 0

12: halfa(s(s(x)))→ s(halfa(m(x)))

13 : halfa(dbl(x))→ m(x)

14 : m(terms(x))→ termsa(m(x)) 25 : termsa(x)→ terms(x)

15 : m(sqr(x))→ sqra(m(x)) 26 : sqra(x)→ sqr(x)

16 : m(x + y)→ m(x) +a m(y) 27 : x +a y → x + y

17: m(dbl(x))→ dbla(m(x)) 28 : dbla(x)→ dbl(x)

32

18: m(first(x, y))→ firsta(m(x), m(y)) 29 : firsta(x, y)→ first(x, y)

19 : m(half(x))→ halfa(m(x)) 30 : halfa(x)→ half(x)

20 : m(x : y)→ m(x) : y

21: m(recip(x))→ recip(m(x))

22 : m(s(x))→ s(m(x))

23 : m(0)→ 0

24: m(nil)→ nil

There are 33 dependency pairs:

31: TERMSa(x)→ SQRa(m(x))

32 : TERMSa(x)→ M(x)

33 : SQRa(s(x))→ sqra(m(x)) +]
a dbla(m(x))

34 : SQRa(s(x))→ SQRa(m(x))

35 : SQRa(s(x))→ M(x)

36 : SQRa(s(x))→ DBLa(m(x))

37 : DBLa(s(x))→ DBLa(m(x))

38 : DBLa(s(x))→ M(x)

39 : 0 +]
a y → M(y)

40 : s(x) +]
a y → m(x) +] m(y)

41 : s(x) +]
a y → M(x)

42 : s(x) +]
a y → M(y)

43 : FIRSTa(s(x), y : z)→ M(y)

44 : HALFa(s(s(x)))→ HALFa(m(x))

45 : HALFa(s(s(x)))→ M(x)

46 : HALFa(dbl(x))→ M(x)

47 : M(terms(x))→ TERMSa(m(x))

48 : M(terms(x))→ M(x)

49 : M(sqr(x))→ SQRa(m(x))

50 : M(sqr(x))→ M(x)

51 : M(x + y)→ m(x) +]
a m(y)

52 : M(x + y)→ M(x)

53 : M(x + y)→ M(y)

54 : M(dbl(x))→ DBLa(m(x))

55 : M(dbl(x))→ M(x)

56 : M(first(x, y))→ FIRSTa(m(x), m(y))

57 : M(first(x, y))→ M(x)

58 : M(first(x, y))→ M(y)

59 : M(half(x))→ HALFa(m(x))

60 : M(half(x))→ M(x)

33

61: M(x : y)→ M(x)

62 : M(recip(x))→ M(x)

63 : M(s(x))→ M(x)

The dependency graph contains a single SCC that consists of all dependency
pairs. By taking the argument filtering π with π(DBLa) = π(HALFa) = π(M) =
π(halfa) = π(:) = π(half) = π(m) = π(recip) = 1 and π(FIRSTa) = 2 to-
gether with LPO with quasi-precedence 0 � nil, termsa ≈ terms � TERMSa �
SQRa ≈ sqra ≈ sqr � + ≈ +a � +]

a, sqr � dbl ≈ dbla � s, + � s, and
firsta ≈ first, all rewrite rules are (weakly) decreasing, the dependency pairs
in {31– 42, 44– 48, 50– 58, 63} are strictly decreasing and the remaining depen-
dency pairs 43, 49, and 59– 62 are weakly decreasing.

• The dependency graph restricted to these dependency pairs contains one
SCC: {60, 61, 62}. By taking the argument filtering π with π(m) = π(dbla) =
π(sqra) = π(termsa) = π(:) = π(dbl) = π(M) = π(recip) = π(s) = π(sqr) =
π(terms) = 1 and π(+a) = π(+) = 2 together with LPO with precedence 0 �
nil, firsta ≈ first, and halfa ≈ half, all rewrite rules are (weakly) decreasing,
dependency pair 60 is strictly decreasing, and the remaining dependency
pairs 61 and 62 are weakly decreasing.

· There is one new SCC: {61, 62}. By taking the argument filtering π with
π(m) = π(dbla) = π(halfa) = π(sqra) = π(:) = π(dbl) = π(half) = π(M) =
π(s) = π(sqr) = 1 and π(+]

a) = π(+) = 2 together with LPO with prece-
dence 0 � nil, terms � recip, firsta ≈ first, and termsa ≈ terms, all rewrite
rules are (weakly) decreasing, dependency pair 62 is strictly decreasing,
and dependency pairs 61 is weakly decreasing.

There is one new SCC: {61}. By taking the polynomial interpreta-
tion [0] = [sqra](x) = [nil] = [s](x) = [sqr](x) = 0, [termsa](x) =
[terms](x) = 1, [dbla](x) = [halfa](x) = [dbl](x) = [half](x) = [M](x) =
[recip](x) = x, [m](x) = [:](x, y) = x+1, and [+a](x, y) = [firsta](x, y) =
[+](x, y) = [first](x, y) = y, all rewrite rules are weakly decreasing and
dependency pair 61 is strictly decreasing. Hence � R, {61}.

We obtain � R, {61, 62}.

We obtain � R, {60, 61, 62}.

Finally, � R, DP(R). Hence the termination of R is proved. The proof took
133.10 seconds. Using either LPO with quasi-precedence or linear polynomial
interpretations with coefficients in {0, 1} as base order will fail. The point we
want to stress, however, is that computing all cycles is doomed to fail. The
dependency graph contains at least 11,004,672 cycles but 24 hours of CPU
time was insufficient to compute the exact number.

34

