
Tyrolean Termination Tool?

Nao Hirokawa and Aart Middeldorp

Institute of Computer Science
University of Innsbruck
6020 Innsbruck, Austria

{nao.hirokawa,aart.middeldorp}@uibk.ac.at

1 Introduction

This paper describes the Tyrolean Termination Tool (TTT in the sequel), the
successor of the Tsukuba Termination Tool [12]. We describe the differences
between the two and explain the new features, some of which are not (yet) avail-
able in any other termination tool, in some detail. TTT is a tool for automatically
proving termination of rewrite systems based on the dependency pair method
of Arts and Giesl [3]. It produces high-quality output and has a convenient web
interface. The tool is available at

http://cl2-informatik.uibk.ac.at/ttt

TTT incorporates several new improvements to the dependency pair method. In
addition, it is now possible to run the tool in fully automatic mode on a collection

of rewrite systems. Moreover, besides ordinary (first-order) rewrite systems, the
tool accepts simply-typed applicative rewrite systems which are transformed into
ordinary rewrite systems by the recent method of Aoto and Yamada [2].

In the next section we describe the differences between the semi automatic
mode and the Tsukuba Termination Tool. Section 3 describes the fully automatic
mode. In Section 4 we show a termination proof of a simply-typed applicative
system obtained by TTT. In Section 5 we describe how to input a collection of
rewrite systems and how to interpret the resulting output. Some implementation
details are given in Section 6. The final section contains a short comparison with
other tools for automatically proving termination.

2 Semi Automatic Mode

Figure 1 shows the web interface.
This menu corresponds to the options that were available in the Tsukuba

Termination Tool. A first difference is that we now support the dependency pair
method for innermost termination [3]. A second difference is that dependency

�

A preliminary description of the Tyrolean Termination Tool appeared in the
proceedings of the 7th International Workshop on Termination, Technical Report
AIB-2004-07, RWTH Aachen, pages 249–268, 2004.



Fig. 1. A screen shot of the semi automatic mode of TTT.

pairs that are covered by the subterm criterion of Dershowitz [7] are excluded.
The other differences are described in the following paragraphs.

First of all, when approximating the (innermost) dependency graph the orig-
inal estimations of [3] are no longer available since the approximations described
in [15] generally produce smaller graphs while the computational overhead is
negligible.

Secondly, the user can no longer select the cycle analysis method (all cy-
cles separately, all strongly connected components separately, or the recursive
SCC algorithm of [15]). Extensive experiments reveal that the latter method
outperforms the other two, so this is now the only supported method in TTT.

Finally, the default method to search for appropriate argument filterings has
been changed from enumeration to the divide and conquer algorithm of [15].
By using dynamic programming techniques, the divide and conquer method
has been improved (cf. [15]) to the extent that for most examples it is more
efficient than the straightforward enumeration method. Still, there are TRSs
where enumeration is more effective, so the user has the option to change the
search strategy (by clicking the enumerate box).

2



New features include (1) a very useful criterion based on the subterm relation
to discard SCCs of the dependency graph without considering any rewrite rules
and (2) a very powerful modularity criterion for termination inspired by the
usable rules of [3] for innermost termination. These features are described in
detail in [13]. The first one is selected by clicking the subterm criterion box
and the second by clicking the usable rules box. In addition, linear polynomial
interpretations with coefficients from {−1, 0, 1} can be used as base order. In
[14] it is explained how polynomial interpretations with negative coefficients,
like x−1 for a unary function symbol or x−y for a binary function symbol, can
be effectively used in connection with the dependency pair method.

3 Fully Automatic Mode

In this mode TTT uses a simple strategy to (recursively) solve the ordering con-
straints for each SCC of the approximated dependency graph. The strategy is
based on the new features described in the previous section and uses LPO (both
with strict and quasi-precedence) with some argument filterings [15] and linear
polynomial interpretations with coefficients from {−1, 0, 1} as base orders.

After computing the SCCs of the approximated (innermost) dependency
graph, the strategy subjects each SCC to the following algorithm:

1. First we check whether the new subterm criterion is applicable.
2. If the subterm criterion was unsuccessful, we compute the usable rules.
3. The resulting (usable rules and dependency pairs) constraints are subjected

to the natural (see [14]) polynomial interpretation with coefficients from
{0, 1}.

4. If the constraints could not be solved in step 3, we employ the divide and

conquer algorithm for computing suitable argument filterings with respect
to the some heuristic [15] and LPO with strict precedence.

5. If the previous step was unsuccessful, we repeat step 3 with arbitrary poly-
nomial interpretations with coefficients from {0, 1}.

6. Next we repeat step 4 with the variant of LPO based on quasi-precedences

and a small increase in the search space for argument filterings (see below).
7. If the constraints could still not be solved, we try linear polynomial inter-

pretations with coefficients from {−1, 0, 1}.

If only part of an SCC could be handled, we subject the resulting new SCCs
recursively to the same algorithm.

If the current set of constraints can be solved in step 3 or 4, then they can
also be solved in step 5 or 6, respectively, but the reverse is not true. The sole
reason for adopting LPO and polynomial interpretations in alternating layers
is efficiency; the search space in steps 3 and 4 is significantly smaller than in
steps 5 and 6. The reason for putting the subterm criterion first is that with this
criterion many SCCs can be eliminated very quickly, cf. the third paragraph of
Section 6. The extension of the search space for argument filterings mentioned in
step 6 is obtained by also considering the full reverse argument filtering [n, . . . , 1]

3



Fig. 2. Output produced by TTT.

for every n-ary function symbol. The advantage of this extension is that there
is no need for a specialized version of LPO with right-to-left status.

The effectiveness of the automatic strategy can be seen from the data pre-
sented in Figure 2, which were obtained by running TTT in fully automatic mode
on the 89 terminating TRSs (66 in Section 3 and 23 in Section 4) of [4]. An ex-
planation of the data is given in Section 5.

Our automatic strategy differs from the “Meta-Combination Algorithm” de-
scribed in [11]; we avoid transforming SCC constraints using techniques like
narrowing and instantiation because they tend to complicate the produced ter-
mination proofs. Instead, we rely on techniques (subterm criterion and polyno-
mial interpretations with negative coefficients) that lead to termination proofs
that are (relatively) easy to understand.

4



4 Simply-Typed Applicative Rewrite Systems

Besides ordinary first-order TRSs, TTT accepts simply-typed applicative rewrite

systems (STARSs) [1]. Applicative terms are built from variables, constants,
and a single binary operator ·, called application. Constants and variables are
equipped with a simple type such that the rewrite rules typecheck. A typical
example is provided by the following rules for the map function

(map · f) · nil → nil

(map · f) · ((cons · x) · y) → (cons · (f · x)) · ((map · f) · y)

with the type declaration nil : α, cons : β → α → α, map : (β → β) → α → α,
f : β → β, x : β, and y : α. Here α is the list type and β the type of elements of
lists. STARSs are useful to model higher-order functions in a first-order setting.
As usual, the application operator · is suppressed in the notation and parentheses
are removed under the “association to the left” rule. The above rules then become

map f nil → nil

map f (cons x y) → cons (f x) (map f y)

This corresponds to the syntax of STARSs in TTT. The types of constants must
be declared by the keyword TYPES. The types of variables is automatically in-
ferred when typechecking the rules, which follow the RULES keyword. So the
above STARS would be inputted to TTT as

TYPES

nil : a ;

cons : b => (a => a) ;

map : (b => b) => a => a ;

RULES

map f nil -> nil ;

map f (cons x y) -> cons (f x) (map f y) ;

In order to prove termination of STARSs, TTT uses the two-phase transfor-
mation developed by Aoto and Yamada [2]. In the first phase all head variables
(e.g. f in f x) are removed by the head variable instantiation technique. The
soundness of this phase relies on the ground term existence condition, which ba-
sically states that all simple types are inhabited by at least one ground term.
Users need not be concerned about this technicality as TTT automatically adds
fresh constants of the appropriate types to the signature so that the ground term
existence condition is satisfied. (Moreover, the termination status of the original
STARS is not affected by adding fresh constants.) After the first phase an ordi-
nary TRS is obtained in which the application symbol is the only non-constant
symbol. Such TRSs are not easily proved terminating since the root symbol of
every term that has at least two symbols is the application symbol and thus
provides no information which could be put to good use. In the second phase

5



applicative terms are transformed into ordinary terms by the translation to func-

tional form technique. This technique removes all occurrences of the application
symbol. We refer to [2] for a complete description of the transformation. We
contend ourselves with showing the Postscript output (in Figure 3) produced
by TTT on the following variation of combinatory logic (inspired by a recent
question posted on the TYPES Forum by Jeremy Dawson):

TYPES

I : o => o ;

W : (o => o => o) => o => o ;

S : (o => o => o) => (o => o) => o => o ;

RULES

I x -> x ;

W f x -> f x x ;

S x y z -> x z (y z) ;

Note that the types are crucial for termination; the untyped version admits the
cyclic rewrite step W W W → W W W.

5 A Collection of Rewrite Systems as Input

Single TRSs (or STARSs) are inputted by typing (the type declarations and)
the rules into the upper left text area or by uploading a file via the browse
button. Besides the original TTT syntax (which is obtained by clicking the TRS
link), TTT supports the official format1 of the Termination Problems Data Base.
The user can also upload a zip archive. All files ending in .trs are extracted
from the archive and the termination prover runs on each of these files in turn.
The results are collected and presented in two tables. The first table lists for
each TRS the execution time in seconds together with the status: bold green

indicates success, red italics indicates failure, and gray indicates timeout. By
clicking green (red) entries the user can view the termination proof (attempt)
in HTML or high-quality Postscript format. The second table gives the number
of successes and failures, both with the average time spent on each TRS, the
number of timeouts, and the total number of TRSs extracted from the zip archive
together with the total execution time. Figure 2 shows the two tables for the 89
terminating TRSs in Sections 3 and 4 of [4]. Here we used TTT’s fully automatic
mode with a timeout of 1 second (for each TRS). The experiment was performed
on a PC equipped with a 2.20 GHz Mobile Intel Pentium 4 Processor - M and
512 MB of memory, using native-compiled code for Linux/Fedora.

1 http://www.lri.fr/~marche/wst2004-competition/format.html

6



Termination Proof Scripta

Consider the simply-typed applicative TRS

I x → x

W f x → f x x

S x y z → x z (y z)

over the signature I : o ⇒ o, W : (o ⇒ o ⇒ o) ⇒ o ⇒ o, and S : (o ⇒ o ⇒ o) ⇒
(o ⇒ o) ⇒ o ⇒ o. In order to satisfy the ground term existence condition we extend
the signature by c : o ⇒ o ⇒ o and c

′ : o. Instantiating all head variables yields the
following rules:

I x → x

W c x → c x x

S c I z → c z (I z)

S c (W w) z → c z (W w z)

S c (S w v) z → c z (S w v z)

S c (c w) z → c z (c w z)

By transforming terms into functional form the TRS

1 : I1(x) → x

2 : W2(c, x) → c2(x, x)

3 : S3(c, I, z) → c2(z, I1(z))

4 : S3(c, W1(w), z) → c2(z, W2(w, z))

5 : S3(c, S2(w, v), z) → c2(z, S3(w, v, z))

6 : S3(c, c1(w), z) → c2(z, c2(w, z))

is obtained. There are 3 dependency pairs:

7 : S
]
3
(c, I, z) → I

]
1
(z)

8 : S
]
3
(c, W1(w), z) → W

]
2
(w, z)

9 : S
]
3
(c, S2(w, v), z) → S

]
3
(w, v, z)

The approximated dependency graph contains one SCC: {9}.

– Consider the SCC {9}. By taking the simple projection π with π(S]
3
) = 2, the

dependency pair simplifies to

9 : S2(w, v) → v

and is compatible with the proper subterm relation.

a Tyrolean Termination Tool (0.03 seconds) — November 18, 2004

Fig. 3. Example output.

7



6 Some Implementation Details

The web interface of TTT is written in Ruby2 and the termination prover under-
lying TTT is written in Objective Caml (OCaml),3 using the third-party libraries4

findlib, extlib, and pcre-ocaml. We plan to make the OCaml source code
available in the near future.

The termination prover consists of about 13,000 lines of OCaml code. About
20% is used for the manipulation of terms and rules. Another 15% is devoted
to graph manipulations. This part of the code is not only used to compute
dependency graph approximations, but also for precedences in KBO and LPO,
and for the dependency relation which is used to compute the usable rules. The
various termination methods that are provided by TTT account for less than
10% each. Most of the remaining code deals with I/O: parsing the input and
producing HTML and Postscript output. For the official Termination Problems
Data Base format we use parsers written in OCaml by Claude Marché. A rich
OCaml library for the manipulation of terms (or rose trees) and graphs would
have made our task much easier!

It is interesting to note that two of the original techniques that make TTT

fast, the recursive SCC algorithm and the subterm criterion, account for just
13 and 20 lines, respectively. Especially the latter should be the method of
first choice in any termination prover. To wit, of the 628 (full) termination
problems for pure first-order term and string rewrite systems in the Termination
Problems Data Base, 215 are proved terminating by the subterm criterion; the
total time to check the whole collection is a mere 32 seconds (on the architecture
mentioned in the previous section). Several of these 215 rewrite systems cannot
be proved terminating by the latest release of CiME [5]. (See the next section
for a comparison between TTT and other termination provers.)

Concerning the implementation of simply-typed applicative rewrite systems,
we use the Damas-Milner type reconstruction algorithm (see e.g. [17]) to infer
the types of variables.

We conclude this section with some remarks on the implementation of base
orders in TTT. The implementation of LPO follows [12] but we first check whether
the current pair of terms can be oriented by the embedding order in every recur-
sive call to LPO. This improves the efficiency by about 20%. The implementation
of KBO is based on [16]. We use the “method for complete description” [8] to
compute a suitable weight function. The implementation of polynomial interpre-
tations with coefficients from {0, 1} is based on [6, Figure 1] together with the
simplification rules described in Section 4.4.1 of the same paper. The current
implementation of polynomial interpretations with coefficients from {−1, 0, 1}
in TTT is rather naive. We anticipate that the recent techniques of [6] can be
extended to handle negative coefficients.

2 http://www.ruby-lang.org/
3 http://www.ocaml.org/
4 http://caml.inria.fr/humps/

8



7 Comparison

Needless to say, TTT is not the only available tool for proving termination of
rewrite systems. In this final section we compare our tool with the other systems
that participated in the TRS category5 of the termination competition that was
organized as part of the 7th International Workshop on Termination.6

– We start our discussion with CiME [5], the very first tool for automatically
proving termination of rewrite systems that is still available. CiME is a tool
with powerful techniques for finding termination proofs based on polyno-
mial interpretations in connection with the dependency pair method. Since
CiME does not support (yet) the most recent insights in the dependency
pair method, it is less powerful than AProVE (described below) or TTT. In
contrast to TTT, CiME can handle rewrite systems with AC operators. As a
matter of fact, termination is only a side-issue in CiME. Its main strength
lies in completing equational theories modulo theories like AC and C.

– CARIBOO [9] is a tool specializing in termination proofs for a particular
evaluation strategy, like innermost evaluation or the strategies used in OBJ-
like languages. The underlying proof method is based on an inductive process
akin to narrowing, but its termination proving power comes from CiME,
which is used as an external solver. TTT supports innermost termination,
but no other strategies.

– Matchbox [19] is a tool that is entirely based on methods from formal lan-
guage theory. These methods are especially useful for proving termination
of string rewrite systems. Matchbox tries to establish termination or non-
termination by using recent results on match-bounded rewriting [10]. Match-

box is not intended as a general-purpose termination prover (as its author
writes in [19]).

– AProVE is the most powerful tool. Besides ordinary TRSs, it can handle logic
programs, conditional rewrite systems, context-sensitive rewrite systems, and
it supports rewriting modulo AC. Version 1.0 of AProVE is described in [11].
Of all existing tools, AProVE supports the most base orders and even of-
fers several different algorithms implementing these. It incorporates virtually
all recent refinements of the dependency pair method. AProVE has several
methods that are not available in any other tool. We mention here the size-
change principle [18], transformations for dependency pairs like narrowing
and instantiation, and a modular refinement where the set of usable rules is
determined after a suitable argument filtering has been computed. Despite
all this, last year’s termination competition version of AProVE, which further
includes the methods derived from match-bounded rewriting, could handle
only a few more systems than TTT.

We conclude the paper by listing what we believe to be the main attractions of
TTT (in no particular order):

5 http://www.lri.fr/~marche/wst2004-competition/webform.cgi?command=trs
6 http://www-i2.informatik.rwth-aachen.de/WST04/

9



– TTT comes equipped with a very user-friendly web interface,
– TTT produces readable and beautifully typeset proofs,
– TTT is a very fast termination tool,
– TTT is a very powerful tool based on relatively few techniques.

References

1. T. Aoto and T. Yamada. Termination of simply typed term rewriting by translation
and labelling. In Proc. 14th RTA, volume 2706 of LNCS, pages 380–394, 2003.

2. T. Aoto and T. Yamada. Termination of simply-typed applicative term rewriting
systems. In Proc. 2nd HOR, Technical Report AIB-2004-03, RWTH Aachen, pages
61–65, 2004.

3. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 236:133–178, 2000.
4. T. Arts and J. Giesl. A collection of examples for termination of term rewriting

using dependency pairs. Technical Report AIB-2001-09, RWTH Aachen, 2001.
5. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME version 2, 2000.

Available at http://cime.lri.fr/.
6. E. Contejean, C. Marché, A.-P. Tomás, and X. Urbain. Mechanically proving

termination using polynomial interpretations. Research Report 1382, LRI, 2004.
7. N. Dershowitz. Termination by abstraction. In Proc. 20th ICLP, volume 3132 of

LNCS, pages 1–18, 2004.
8. J. Dick, J. Kalmus, and U. Martin. Automating the Knuth-Bendix ordering. Acta

Infomatica, 28:95–119, 1990.
9. O. Fissore, I. Gnaedig, and H. Kirchner. CARIBOO: An induction based proof

tool for termination with strategies. In Proc. 4th PPDP, pages 62–73. ACM Press,
2002.

10. Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Match-bounded string
rewriting. Applicable Algebra in Engineering, Communication and Computing,
15:149–171, 2004.

11. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination
proofs with AProVE. In Proc. 15th RTA, volume 3091 of LNCS, pages 210–220,
2004.

12. N. Hirokawa and A. Middeldorp. Tsukuba termination tool. In Proc. 14th RTA,
volume 2706 of LNCS, pages 311–320, 2003.

13. N. Hirokawa and A. Middeldorp. Dependency pairs revisited. In Proc. 15th RTA,
volume 3091 of LNCS, pages 249–268, 2004.

14. N. Hirokawa and A. Middeldorp. Polynomial interpretations with negative coeffi-
cients. In Proc. 7th AISC, volume 3249 of LNAI, pages 185–198, 2004.

15. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-

formation and Computation, 2005. To appear. A preliminary version appeared in
Proc. 19th CADE, volume 2741 of LNAI, pages 32–46, 2003.

16. K. Korovin and A. Voronkov. Orienting rewrite rules with the Knuth-Bendix order.
Information and Computation, 183:165–186, 2003.

17. B.C. Pierce. Types and Programming Languages. MIT Press, 2002.
18. R. Thiemann and J. Giesl. Size-change termination for term rewriting. In Proc.

14th RTA, volume 2706 of LNCS, pages 264–278, 2003.
19. J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In Proc. 15th

RTA, volume 3091 of LNCS, pages 85–94, 2004.

10


