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Chapter 1

Introduction

Term rewriting is a simple and powerful computational model, which underlies
declarative programming and automated theorem proving. Termination ensures
that all computation paths end. This thesis is about automated termination
analysis for term rewriting. All techniques described in this thesis are imple-
mented in TTT, an automated termination prover for term rewrite systems, and
we provide ample experimental data.

The first section is intended to provide a brief and informal introduction to
term rewriting, termination, and the dependency pair method. For detailed sur-
veys of term rewriting we refer to [6] and [51]. An overview of the contributions
of this thesis is given in the second section.

1.1 Term Rewrite Systems and Termination

Term rewriting is a simple and powerful computational model. A term rewrite
system (TRS ) is defined as a directed equational system.

Example 1.1. Consider the term rewrite system R consisting of two rules

1: 0 + y → y 2: s(x) + y → s(x+ y)

The computation of the term s(s(0)) + s(0) is done by rewriting. For instance,
by instantiating x and y to s(0) in rule 2, the left-hand side is identical to our
term, and it can be rewritten to the instantiated right-hand side of the rule, i.e.,
s(s(0) + s(0)). Repeating such an operation, one obtains the following rewrite
sequence:

s(s(0)) + s(0)→R s(s(0) + s(0))→R s(s(0 + s(0)))→R s(s(s(0)))

The last term s(s(s(0))) cannot be rewritten any more, and such terms are called
normal forms of R. This TRS is terminating which means there are no infinite
rewrite sequences starting from any term.

The next example is a famous non-terminating TRS by Toyama [54], which
illustrates a tricky behavior of rewriting.

1



2 CHAPTER 1. INTRODUCTION

Example 1.2. Consider the TRS R1:

f(a, b, x)→ f(x, x, x)

and the TRS R2:

g(x, y)→ x g(x, y)→ y

Both TRSs are terminating, although a formal termination proof of the first
TRS is not entirely trivial. The union R1 ∪ R2 is not terminating because the
following infinite sequence exists:

f(a, b, g(a, b))

→R1
f(g(a, b), g(a, b), g(a, b))

→R2
f(a, g(a, b), g(a, b))

→R2
f(a, b, g(a, b))

→R1
· · ·

Term rewriting has a close relation with theorem proving and declarative
programs. In fact numerous interesting axioms and programs can be encoded
as term rewrite systems, either directly or via transformation techniques, and
termination is a desired property. Let’s take a look at a more practical example.

Example 1.3. Consider the following TRS R, which is an encoding of Eratos-
thenes’ sieve:

1: x− 0→ x 10: filter(x, nil)→ nil

2: s(x) − s(y)→ x− y 11: filter(x, y : ys)→ if filter(x | y, x, y : ys)

3 : 0 6 y → true 12: if filter(true, x, y : ys)→ filter(x, ys)

4 : s(x) 6 0→ false 13: if filter(false, x, y : ys)→ y : filter(x, ys)

5 : s(x) 6 s(y)→ x 6 y 14: sieve(nil)→ nil

6: if(true, x, y)→ x 15: sieve(x : xs)→ x : sieve(filter(x, xs))

7 : if(false, x, y)→ y

8: x | 0→ true

9: s(x) | s(y)→ if(x 6 y, s(x) | (y − x), false)

For example,

sieve(2 : 3 : 4 : 5 : 6 : nil) →R 2 : sieve(filter(2, 3 : 4 : 5 : 6 : nil))

→+
R 2 : sieve(3 : 5 : nil))

→R 2 : 3 : sieve(filter(3, 5 : nil))

→+
R 2 : 3 : sieve(5 : nil)

→R 2 : 3 : 5 : sieve(filter(5, nil))

→+
R 2 : 3 : 5 : sieve(nil)

→R 2 : 3 : 5 : nil

Here 2, 3, . . . denotes s(s(0)), s(s(s(0))), etc.
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Not surprisingly, arbitrary Turing machines can be simulated by some term
rewrite system. As a consequence, the termination property of TRSs is unde-
cidable in general ([35]). However, in order to prove termination automatically
many techniques have been developed.

The traditional method is to check compatibility of the rules with parame-
terized orderings like the Knuth-Bendix order [37], the multiset path order of
Dershowitz [12], the lexicography path order of Kamin and Lévy [36], and the
polynomial interpretation orders of Lankford [41]. One may conclude termina-
tion of a TRS if all its rewrite rules are oriented from left to right by one of
these orders. The automation of these techniques is addressed in a long list of
papers including Dick et al. [16], Ben Cherifa and Lescanne [9], Steinbach [49],
Giesl [20], Hong and Jakuš [34], and Contejean et al. [11].

Many recent techniques enhance this method by performing transformations
on TRSs. We mention here semantic labeling of Zantema [60], the freezing tech-
nique of Xi [58], the work of Borralleras et al. [8] on transforming the semantic
path order of Kamin and Lévy [36] into a monotonic version that is amenable to
automation, and the dependency pair method of Arts and Giesl [5]. The latter
method, implemented in several automatic termination provers (cf. Section 6.3),
is the starting point of this thesis.

Given a TRS, the method first extracts dependency pairs and constructs its
dependency graph. Intuitively, the former represents pairs of tuple of arguments
before and after recursive calls, and the latter approximates the recursive call
graph. A cycle in the graph represents a potential loop. In the dependency
pair method the possibility of the loop is canceled by finding a pair of orderings
& and > compatible with the TRS and the cycle respectively. The TRS is
terminating if all cycles are canceled,

Example 1.4. There are 12 dependency pairs for the TRS R in Example 1.3:

16: s(x)−♯ s(y)→ x−♯ y

17: s(x) 6♯ s(y)→ x 6♯ y

18: s(x) |
♯
s(y)→ if♯(x 6 y, s(x) | (y − x), false)

19 : s(x) |
♯
s(y)→ x 6♯ y

20: s(x) |
♯
s(y)→ s(x ) |

♯
(y − x)

21 : s(x) |♯ s(y)→ y −♯ x

22: filter♯(x, y : ys)→ if filter♯(x | y, x, y : ys)

23 : filter♯(x, y : ys)→ x |
♯
y

24: if filter♯(true, x, y : ys)→ filter♯(x, ys)

25 : if filter♯(false, x , y : ys)→ filter♯(x , ys)

26 : sieve♯(x : xs)→ sieve♯(filter(x, xs))

27 : sieve♯(x : xs)→ filter♯(x, xs)

The dependency graph
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contains 7 cycles: {16}, {17}, {20}, {22, 24}, {22, 25}, {22, 24, 25}, and {26}.
We claim that there is no infinite rewrite sequence corresponding to the cycle

C = {26}. This is shown as follows. By taking the polynomial interpretation
trueN = nilN = falseN = 0N = 1, −N(x, y) = x, sieve♯

N(x) = sieveN(x) = sN(x) =
x+1, |

N
(x, y) = 6N(x, y) = :N(x, y) = x+y+1, filterN(x, y) = y, ifN(x, y, z) = y+

z and if filterN(x, y, z) = z, the involved rules reduce to the following inequalities:

1 : x & x 9 : x+ y + 3 & x+ y + 3

2 : x+ 1 & x 10 : 1 & 1

3 : y + 2 & 1 11 : y + ys + 1 & y + ys + 1

4 : x+ 3 & 1 12 : y + ys + 1 & ys

5 : x+ y + 3 & x+ y + 1 13 : y + ys + 1 & y + ys + 1

6 : x+ y & x 14 : 2 & 1

7 : x+ y & y 15 : x+ xs + 2 & x+ xs + 2

8 : x + 2 & 1 26 : x+ xs + 2 > xs + 1

Similarly, one can find orderings for the remaining 6 cycles. Hence, termination
of R is established.

The complete termination proof, which is based on new results presented
in the thesis and generated by the automatic termination prover TTT, can be
found in Appendix A.

We conclude this introductory section with an encoding of Goldbach’s con-
jecture. This is one example of an interesting problem that can be reduced to a
termination problem. Goldbach’s conjecture state that all positive even integers
larger than 2 can be expressed as the sum of two primes.

Example 1.5. We add the following rules to the TRS in Example 1.3:

0 + y → y range(x) → range′(x, nil)

s(x) + y → s(x+ y) range′(0, ys) → ys

0 = 0 → true range′(s(0), ys) → ys

s(x) = 0 → false range′(s(s(x)), ys) → range′(s(x), s(s(x)) : ys)

0 = s(x) → false test(n, nil, ys) → false

s(x) = s(y) → x = y test(n, x : xs , ys) → test′(n, x, ys) ∨ test(n, xs , ys)

true ∨ x → true test′(n, x, nil) → false

false ∨ x → x test′(n, x, y : ys) → (n = x+ y) ∨ test′(n, x, ys)
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Here the term range(n) rewrites to the list 2 : . . . : n : nil, and test(n, x1 : · · · :
xm : nil, y1 : · · · : yn : nil) checks whether n = xi + yj for some i and j. Finally,
we add the following three rules:

goldbach(s(s(n))) → loop(s(s(n)), test(s(s(n)) + s(s(n)),

sieve(range(s(s(n)) + s(s(n)))),

sieve(range(s(s(n)) + s(s(n))))))

loop(s(s(n)), true) → goldbach(s(n))

loop(s(s(n)), false) → goldbach(s(s(n)))

Since sieve(range(n+ n)) generates all prime numbers less than or equal to 2n,
the normal form of test(n + n, sieve(range(n + n)), sieve(range(n + n))) is true

if 2n = p+ q for some prime numbers p and q, and false otherwise. Therefore,
goldbach(s(s(n))) terminates if and only if Goldbach’s conjecture holds for all
even numbers 4, 6, . . . , 2(n + 2). Hence, if our TRS is terminating then the
conjecture is true. How about the converse? TTT can find suitable orderings for
all cycles in the dependency graph, except for the one consisting of the following
two dependency pairs:

goldbach♯(s(s(n))) → loop♯(s(s(n)), test(s(s(n)) + s(s(n)),

sieve(range(s(s(n)) + s(s(n)))),

sieve(range(s(s(n)) + s(s(n))))))

loop♯(s(s(n)), false) → goldbach♯(s(s(n)))

This means that our TRS is terminating only if for no n there is an infinite
rewrite sequence starting from goldbach(s(s(n))). Hence, Goldbach’s conjecture
is false if our TRS is non-terminating.

Needless to say, proving or disproving termination of the preceding TRS
is beyond all existing (automated) termination techniques, including the ones
introduced in this thesis.

1.2 Overview and Results

The aim of this thesis is to develop automated termination techniques based on
the dependency pair method. New methods are intended to make termination
tools more powerful and more efficient. In automation we often face large
search spaces for parameters required by termination criteria and there is a
natural trade-off between power and efficiency. Therefore, developing efficient
search techniques are of particular interest. On the other hand, what if one
could reduce search spaces without (much) loss of power? Then, one achieves
an increase in both practical power and efficiency. For this purpose we go back
to the foundations of dependency pair method.

Overview. Starting from scratch, we give a systematic account of the method
in Chapter 3. Along the way we derive two new refinements—the subterm crite-
rion in Section 3.2 and the usable rule criterion for termination in Section 3.4—
that are very easy to implement, increase the termination proving power, give
rise to simpler termination proofs, and make the method much faster.
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Chapter 4 deals with three problems when automating the dependency pair
method. The first problem is the undecidability of dependency graphs. In
Section 4.1 we present various computable approximations of the dependency
graph including the new estimated∗ innermost dependency graph approximation.
When a given TRS is non-terminating, its dependency graph always contains
cycles. In order to prove termination the standard dependency pair method
requires to analyze all cycles. However, the number of cycles can be exponential
in the number of dependency pairs. That’s why one prefers to analyze all
strongly connected components (SCCs) instead of all cycles. However the latter
approach is much weaker than the former. This problem is fully settled by the
recursive SCC algorithm in Section 4.2.

The third problem is the search space of argument filterings. Typically, the
ordering constraints in the obtained groups must be simplified before traditional
simplification orders like the recursive path order or the Knuth-Bendix order are
applicable. Such simplifications are performed by so-called argument filterings.
It is fair to say that the dependency pair method derives much of its power from
the ability to use argument filterings to simplify constraints. The finiteness of
the argument filtering search space has been stressed in many papers on the
dependency pair method, but we do not hesitate to label the enormous size
of this search space as the main obstacle for the successful automation of the
dependency pair method when using strongly monotone simplification orders. In
Section 4.3 techniques for searching suitable argument filterings are described:
efficient heuristics and the divide and conquer technique.

In Chapter 5 we explain how to use polynomial interpretation orders with
negative coefficients to prove termination. In Section 5.1 we explain how to use
polynomial interpretations with negative constants (like x−1). We do the same
for polynomial interpretations with negative coefficients (like x − y and 1 − x)
in Section 5.2. The usable rule criterion of Section 3.4 is not directly applicable
in the latter case. We explain how to restore the criterion.

All techniques developed are implemented in a powerful termination tool
TTT, which is described in Chapter 6. In Section 6.2 we provide experimental
results for evaluating the usefulness of all methods described in earlier chapters.
Section 6.3 contains a brief comparison with other termination tools.

Contributions. Here we list the main contributions of the thesis.

• The subterm criterion (Section 3.2).

• The usable rule criterion for full termination (Section 3.4).

• The estimated∗ innermost dependency graph (Section 4.1).

• The recursive SCC algorithm (Section 4.2).

• Heuristics and the divide and conquer algorithm for finding suitable argu-
ment filterings (Section 4.3).

• Polynomial interpretations with negative coefficients and a corresponding
usable rule criterion (Chapter 5).

• The termination tool TTT (Section 6.1).



1.2. OVERVIEW AND RESULTS 7

Except for the usable rule criterion for polynomial interpretations with neg-
ative coefficients described in Section 5.2.1, all results have been published in
various papers ([30, 31, 32, 33]).
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Chapter 2

Preliminaries

Term rewrite systems are defined from two simple notions, terms and relations,
and termination is characterized by orders. After recalling these three notions in
Section 2.1, we introduce term rewrite systems and termination in Section 2.2.

In this thesis N stands for the set of all natural numbers {0, 1, 2, . . .} and Z

for the set of all integers {. . . ,−2,−1, 0, 1, 2, . . . , }.

2.1 Relations, Orders, and Terms

A (binary) relation → on a set A is a subset of A × A. We write a → b
instead of (a, b) ∈ →. For readability, we use the notational convention that the
mirror image ← of a binary relation symbol → stands for the inverse relation
{(b, a) | (a, b) ∈ →}.

Definition 2.1. Let →, →1 and →2 be relations on a set A. The composition
→1 · →2 of →1 and →2 is the following binary relation on A: {(x, z) ∈ A×A |
x→1 y and y →2 z for some y ∈ A}. Furthermore,

• the n-step relation →n is defined for all n ∈ N as follows:

→n =

{

{(x, x) | x ∈ A} if n = 0

→ · →n n > 0

• the reflexive closure →= of → is defined as →∪→0,

• the transitive closure →+ of → is defined as
⋃

n>0→
n,

• the reflexive and transitive closure →∗ of → is
⋃

n>0→
n.

Definition 2.2. A binary relation→ on A is well-founded if there is no infinite
sequence a1 → a2 → · · · of elements in A.

Definition 2.3. A relation is a strict order if it is irreflexive and transitive.
A relation is a preorder if it is reflexive and transitive. A relation is a partial
order if it is reflexive, transitive, and anti-symmetric.

Definition 2.4. Let > be a strict order on A.

9
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• > is a total order if a > b, b > a, or a = b holds for all a, b ∈ A.

• > is a well-founded order if it is well-founded.

• > is a well-order if it is total and well-founded.

In the following definitions we introduce terms.

Definition 2.5. A signature F is a set of function symbols, where every func-
tion symbol f is associated with a non-negative number n, the arity of f . We
write f (n) when we explicitly describe that the arity of f is n. Function symbols
of arity 0 are called constants.

Definition 2.6. Let F be a signature and V a set of countably infinite variables
with F ∩ V = ∅. The set T (F ,V) of all terms over F is the smallest set such
that

• if x ∈ V then x ∈ T (F ,V), and

• if f (n) ∈ F and t1, . . . , tn ∈ T (F ,V) then f(t1, . . . , tn) ∈ T (F ,V).

We sometimes write simply T for T (F ,V).

We use sans-serif font for representing concrete function symbols and italics
for variables. Binary function symbols are often written in infix notation.

In the following various basic operations on terms are defined.

Definition 2.7. Let t be a term. Var(t) denotes the set of variables occurring
in t, i.e.,

Var(t) =











{t} if t is a variable
n
⋃

i=0

Var(ti) if t = f(t1, . . . , tn)

Fun(t) denotes the set of function symbols occurring in t, i.e.,

Fun(t) =











∅ if t is a variable

{f} ∪

n
⋃

i=0

Fun(ti) if t = f(t1, . . . , tn)

The set Pos(t) of positions of t is defined as a set of finite sequences of non-
negative integers as follows:

Pos(t) =

{

{ǫ} if t is a variable

{ǫ} ∪ {iq | 1 6 i 6 n, p ∈ Pos(ti)} if t = f(t1, . . . , tn)

where ǫ denotes the empty string. The position ǫ is called the root position. The
root symbol root(t) of t is defined as follows:

root(t) =

{

t if t is a variable

f if t = f(t1, . . . , tn)



2.1. RELATIONS, ORDERS, AND TERMS 11

Definition 2.8. Let t be a term and p ∈ Pos(t). The subterm t|p of t at p is
defined as follows:

t|p =

{

t if p = ǫ

ti|q if p = iq and t = f(t1, . . . , tn)

t[s]p denotes the term that is obtained from t by replacing the subterm at p by
s, i.e.,

t[s]p =

{

s if p = ǫ

f(t1, . . . , ti[s]q, . . . , tn) if p = iq and t = f(t1, . . . , tn)

We say that s is a subterm of t (and t is a superterm of s) if there is a position
p ∈ Pos(t) such that s = t|p.

Definition 2.9. A term t is ground if Var(t) = ∅. A term t is linear if
{p ∈ Pos(t) | t|p = x} is a singleton set for all x ∈ Var(t). In other words, no
variable occurs more than once in t.

Definition 2.10. The superterm relation D is defined on terms as follows:
s D t if s is a superterm of t. Its strict part is denoted by ⊲.

Contexts and substitutions are underlying notions for rewriting terms.

Definition 2.11. Let F be a signature and let 2 be a special constant that is
called the hole. A context over F is a term C over F ⊎ {2(0)} such that C
contains exactly one hole 2. The application C[t] of a context C and a term t
is defined as follows:

C[t] =

{

t if C = 2

f(s1, . . . , C
′[t], . . . , sn) if C = f(s1, . . . , C

′, . . . , sn)

where C′ is a context. An n-hole content C is a term with n occurrences of
the hole. For an n-hole context C and terms t1, . . . , tn, we write C[t1, . . . , tn]
for the term that is obtained by replacing the holes in C from left to right by
t1, . . . , tn.

Definition 2.12. Let F be a signature and V a countably infinite set of variables
with F∩V = ∅. A substitution σ over T (F ,V) is a function from V to T (F ,V)
such that the domain dom(σ) of σ is finite, where

dom(σ) = {x ∈ V | σ(x) 6= x}

A substitution σ can be extended to a function σ̂ from T (F ,V) to T (F ,V) as
follows:

σ̂(t) =

{

σ(t) if t is a variable

f(σ̂(t1), . . . , σ̂(tn)) if t = f(t1, . . . , tn)

We simply write tσ for σ̂(t). The composition στ of two substations σ and τ is
defined as (στ)(x) = (xσ)τ .

Unifiers are substitutions that make two terms syntactically identical.
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Definition 2.13. A unifier µ of s and t is a substitution that sµ = tµ. A unifier
µ of s and t is called a most general unifier (mgu) if for every unifier µ′ of s
and t there is some substitution σ such that µσ = µ′. We say that s and t are
unifiable if there exists a unifier of s and t.

It is well-known that unifiable terms admit an mgu. Moreover, an almost-
linear1 time algorithm is known for computing mgu (cf. [6]).

2.2 Term Rewrite Systems and Termination

First we consider relations on terms.

Definition 2.14. Let → be a relation on terms. The relation is closed under
contexts if C[s] → C[t] holds for all terms s and t with s → t and all contexts
C. The relation is closed under substitutions if sσ → tσ holds for all terms s
and t with s→ t and every substitutions σ.

Definition 2.15. A relation on terms is a rewrite relation if it is closed under
contexts and substitutions. A strict order on terms is a rewrite order if it
is closed under contexts and substitutions. A well-founded rewrite order is a
reduction order.

Next we define term rewrite systems and term rewriting.

Definition 2.16. A pair (l, r) of terms is a rewrite rule if l is not a variable
and Var(l) ⊇ Var(r). We write l → r instead of (l, r). A term rewrite system
(TRS) is a set of rewrite rules. The rewrite relation→R of a TRS R is defined
on terms as the smallest rewrite relation that contains R. A symbol f is a
defined symbol of R if f = root(l) for some l → r ∈ R.

Remark that s →R t if and only if there exist a rewrite rule l → r ∈ R, a
context C, and a substitution σ such that t = C[lσ] and u = C[rσ].

Definition 2.17. Let R be a TRS. A (possibly infinite) sequence of terms such
that t1 →R t2 →R · · · is called a rewrite sequence of R. A term t is a normal
form of R if there is no term u such that t→R u. We write s→!

R t if s→∗
R t

and t is a normal form.

Definition 2.18. A TRS R is terminating if →R is well-founded.

Next we introduce the notion of innermost rewriting.

Definition 2.19. The innermost rewrite relation i→R of a TRS R is defined
on terms as follows: t i→R u if and only if there exist a rewrite rule l→ r ∈ R,
a context C, and a substitution σ such that t = C[lσ], u = C[rσ], and all proper
subterms of lσ are normal forms of R.

Remark that i→R is a subset of→R. Note that i→R is not a rewrite relation
in the sense of Definition 2.15 as it is not closed under substitutions.

Definition 2.20. A TRS R is innermost terminating if i→R is well-founded.

1Almost-linear means O(nG(n)), where G(n) is an extremely slowly growing function with
the following properties: G(1) = 0 and G(2m) = G(m) + 1 for all m > 0.
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Termination implies innermost termination but not vice-versa. However, for
some class of TRSs innermost termination implies termination.

Definition 2.21. Let l→ r and l′ → r′ be rewrite rules with Var(l)∩Var(l′) =
∅. We say that l → r is overlapping with l′ → r′ if there exists a position
p ∈ Pos(l) such that

• l|p is not a variable,

• p 6= ǫ if l→ r and l′ → r′ are renamings of the same rewrite rules, and

• l|p and l′ are unifiable.

A TRS R is non-overlapping if there are no rewrite rules l → r and l′ → r′ in
R such that l→ r is overlapping with l′ → r′ where the variables of l′ → r′ are
possibly renamed in order to satisfy the condition Var(l) ∩ Var(l′) = ∅.

Theorem 2.22 ([28]). If a TRS R is non-overlapping and innermost termi-
nating then R is terminating.

The next definition introduces syntactical properties.

Definition 2.23. A rewrite rule l→ r is collapsing if r is a variable. A rewrite
rule l → r is duplicating if some variable occurs more often in r than in l. A
TRS is called collapsing (duplicating) if it contains a collapsing (duplicating)
rewrite rule.

The following theorem provides an early characterization of termination.

Theorem 2.24. A TRS R over a finite signature is terminating if and only if
there exists a reduction order > such that R ⊆ >.

We introduce classes of reduction orders: multiset path orders, lexicographic
path orders, Knuth-Bendix orders. These are instances of simplification orders,
and parameterized by a (strict) precedence, which is a strict order on the un-
derlying signature.

Definition 2.25. A rewrite order > is a simplification order if ⊲ ⊆ >. A
rewrite preorder & is a quasi-simplification order if D ⊆ &.

Obviously, the reflexive closure of a simplification order is a quasi-simplification
order.

Theorem 2.26 ([12]). Let F be a finite signature and V a countably infinite
set of variables. Every simplification order on T (F ,V) is a reduction order.

We introduce the multiset path order based on strict precedence. As under-
lying notions of it multisets are used.

Definition 2.27. Let A be a set. A multiset M on A is a function from A to
N. The set of all finite multisets on A is denoted by M(A). Let a1, . . . , an be
elements in A. We write {{a1, . . . , an}} for the multiset M defined as follows:
M(a) is the size of the set {i | 1 6 i 6 n, ai = a}. Let M and N be multisets
on A. We define the following operations:

• x ∈M if M(x) > 0,
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• M ⊆ N if M(x) 6 N(x) for all x ∈ A,

• M ∪N for the function x 7→M(x) +N(x), and

• M \N for the function x 7→ max{0,M(x)−N(x)}

Definition 2.28. Let > be an order on a set A. The multiset extension >mul

of > is defined on M(A) as follows: M >mul N if and only if there exist
X,Y ∈ M(A) such that {{}} 6= X ⊆M , N = (M \X)∪Y , and for every y ∈ Y
there exists an x ∈ X such that x > y.

Definition 2.29. Let > be a strict precedence. The multiset path order (MPO)
>mpo is defined on terms as follows: s >mpo t if and only if s is of the form
f(s1, . . . , sm) and one of the following statements holds:

• si >
=
mpo t for some i ∈ {1, . . . ,m}, or

• t is of the form g(t1, . . . , tn), s >mpo ti for all 1 6 i 6 n, and

– f > g, or

– f = g and {{s1, . . . , sm}} >
mul
mpo {{t1, . . . , tm}}.

Here >=
mpo denotes the reflexive closure of >mpo.

Theorem 2.30 ([36, 37]). Let F be a finite signature, V a countably infinite
set of variables, and > a precedence on F . Then >mpo is a simplification order
on T (F ,V).

By modifying the multiset comparison in the definition of MPO, lexico-
graphic path orders are obtained.

Definition 2.31. Let > be a strict precedence. The lexicographic path order
(LPO) >lpo is defined on terms as follows: s >lpo t if and only if s is of the
form f(s1, . . . , sm) and one of the following statements holds:

• si >
=
lpo t for some i ∈ {1, . . . ,m},

• t is of the form g(t1, . . . , tn), s >lpo ti for all i ∈ {1, . . . , n}, and

– f > g, or

– f = g, and there exists j ∈ {1, . . . , n} such that s1 = t1, . . . , sj−1 =
tj−1, and sj >lpo tj.

Theorem 2.32 ([36, 37]). Let F be a finite signature, V a countably infinite
set of variables, and > a precedence on F . Then >lpo is a simplification order
on T (F ,V).

Knuth-Bendix orders are based on precedence and a weight function.

Definition 2.33. Let F be a finite signature, V a countably infinite set of
variables, and > a precedence on F . A weight function w = (w,w0) is a pair
consisting of a function w : F → N and a positive integer w0 such that w(c) > w0

for all constants c, and f is the greatest element in F with respect to > for all
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unary function symbols f with w(f) = 0. Let w be a weight function. We define
the extended weight function ŵ : T (F ,V)→ N as follows:

ŵ(t) =

{

w0 if x ∈ V

w(f) + ŵ(t1) + · · ·+ ŵ(tn) if t = f(t1, . . . , tn)

The Knuth-Bendix order (KBO) >kbo induced by a precedence > and a weight
function w is defined on T (F ,V) as follows: s >kbo t if and only if s is of the
form f(s1, . . . , sm), the rewrite rule s → t is non-duplicating, and one of the
following statements holds:

• ŵ(s) > ŵ(t),

• ŵ(s) = ŵ(t), t is of the form g(s1, . . . , sn), and f > g,

• ŵ(s) = ŵ(t), and there exist a unary function symbol f , a variable x, and
an integer k > 0 such that s = fk(x) and t = x,

• t is of the form f(t1, . . . , tm) and there exists j ∈ {1, . . . , n} such that
s1 = t1, . . . , sj−1 = tj−1, and sj >kbo tj.

Theorem 2.34 ([37]). Let F be a finite signature, V a countably infinite set
of variables, > a precedence on F , and w be a weight function. Then >kbo is a
simplification order on T (F ,V).

In the literatures one also finds weight functions with positive real numbers.
However, Korovin and Voronkov [40] showed that this does not add any power
to KBO, i.e., for every finite TRS compatible with KBO based on a weight
function on real numbers, one can effectively construct a weight function on
natural numbers.

Here we give examples. The rewrite rule f(x) → g(x, x) is oriented by both
MPO and LPO with precedence f > g. But there is no weight function and
precedence for KBO that orients this rule. In general any instance of KBO
cannot orient duplicating rules. The TRS consisting of two rules f(f(x)) →
g(f(x)) and g(g(x))→ f(x) is oriented by KBO based on empty precedence and
the weight function with w0 = 1, w(g) = 2 and w(f) = 3. But neither MPO nor
LPO can orient it.

A preorder on a signature is called a quasi-precedence. It is well-known that
the preceding orders can be strengthened by adopting quasi-precedences.

Definition 2.35. Let & be a quasi-precedence. We write ≈ for & ∩ ., and >
for & \.. Moreover, we extend the binary relation ≈ to terms as follows: s ≈ t
if one of the following condition holds:

• s and t are the same variable, or

• s is of form f(s1, . . . , sm), t is of g(t1, . . . , tn) such that f ≈ g, m = n,
and s1 ≈ t1, . . . , sm ≈ tm.

Here we only introduce quasi-precedence version of lexicographic path orders.

Definition 2.36. Let & be a quasi-precedence. The lexicographic path orders
>lpo and &lpo with quasi-precedence & are defined on terms as follows: s &lpo t
if and only if s >lpo t or s ≈lpo t, and s >lpo t if and only if s is of the form
f(s1, . . . , sm) and one of the following statements holds:
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• si &lpo t for some i ∈ {1, . . . ,m},

• t is of the form g(t1, . . . , tn), s &lpo ti for all i ∈ {1, . . . , n}, and

– f > g, or

– f ≈ g, and there exists j ∈ {1, . . . , n} such that s1 ≈lpo t1, . . . , sj−1 ≈lpo

tj−1, and sj >lpo tj.

– f ≈ g, n > m, and s1 ≈lpo t1, . . . , sm ≈ tm.

Theorem 2.37. Let F be a finite signature, V a countably infinite set of
variables, & a quasi-precedence on F . Then >lpo is a simplification order on
T (F ,V).

For example, the TRS consisting of the rules f(f(x)) → g(x) and g(g(x))→
f(x) is oriented by LPO with quasi-precedence f ≈ g, but cannot be oriented by
any LPO based on a strict precedence.

Polynomial interpretation orders are based on the concept of algebra.

Definition 2.38. Let F be a signature and V a set of variables. An F-algebra
A is a pair consisting of a set A, called the carrier, and a family of functions
{fA}f∈F , called interpretations. Here fA is a function from An to A where
n is the arity of f . Let A = (A, {fA}f∈F) be an F-algebra. An assignment
for A is a function from V to A. The evaluation [α]A(t) of a term t under an
assignment α is inductively defined as follows:

[α]A(t) =

{

α(t) if t ∈ V

fA([α]A(t1), . . . , [α]A(tn)) if t = f(t1, . . . , tn)

Let > be an order on A. The relations >A and >A are defined on terms as
follows:

• s =A t if [α]A(s) = [α]A(t) for all assignments α : V → A,

• s >A t if [α]A(s) > [α]A(t) for all assignments α : V → A,

• s >A t if [α]A(s) > [α]A(t) for all assignments α : V → A.

Here > is the reflexive closure of >. A function φ from An to A is said to be
weakly monotone with respect to > if φ(a1, . . . , an) > φ(b1, . . . , bn) whenever
ai > bi for all 1 6 i 6 n. We call φ strictly monotone with respect to > if for
every a1, . . . , an, b ∈ A and 1 6 i 6 n,

φ(a1, . . . , ai, . . . , an) > φ(a1, . . . , b, . . . , an)

whenever ai > b. A pair (A, >) is a weakly monotone algebra if fA is weakly
monotone with respect to > for all function symbols f ∈ F . Furthermore, (A, >)
is a well-founded algebra if > is a well-founded order on A,

Theorem 2.39 ([41, 59]). Let (A, >) be a well-founded strictly monotone
algebra. Then >A is a simplification order.
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Consider the TRS R of Example 1.1 and the following interpretations over
the natural numbers:

+N(x, y) = 2x+ y sN(x) = x+ 1 0N = 1

In order to show 0 + y >A y it is sufficient to show

[α]A(0 + y) = α(y) + 2 > α(y) = [α]A(y)

[α]A(s(x) + y) = 2α(x) + α(y) + 2 > 2α(x) + α(y) + 1 = [α]A(s(x+ y))

for all assignments α : V → N. Indeed, these inequalities hold and there-
fore R is terminating. When automating this method, polynomials are often
used. For polynomials P and Q over polynomial variables x1, . . . , xn, we write
P (x1, . . . , xn) > Q(x1, . . . , xn) if P (a1, . . . , an) > Q(a1, . . . , an) holds for all
a1, . . . , an ∈ N. The above inequalities are rephrased as the following polyno-
mial inequalities:

y + 2 > y

2x+ y + 2 > 2x+ y + 1

In order to check whether the inequality P > Q hold, it is sufficient to test the
positiveness of P −Q. Clearly, (y+2)−y = 1 and (2x+y+2)− (2x+y+1) = 1
are positive.

Techniques for finding appropriate polynomials as well as approximating (in
general undecidable) polynomial inequalities P > 0 are described in several
papers (e.g. [9, 11, 20, 34, 49]).
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Chapter 3

Dependency Pair Method

In this chapter we present two new termination criteria that are based on the
dependency pair method of Arts and Giesl [4]: the subterm criterion in Sec-
tion 3.2 and the usable rule criterion in Section 3.4. We first recall the basics of
the dependency pair method in Section 3.1.

3.1 Dependency Pairs

We use the following TRS from Dershowitz [13] to illustrate the developments
in Sections 3.1–3.4:

1 : ¬¬x→ x 4: x ∧ (y ∨ z)→ (x ∧ y) ∨ (x ∧ z)

2 : ¬(x ∨ y)→ ¬x ∧ ¬y 5: (y ∨ z) ∧ x→ (x ∧ y) ∨ (x ∧ z)

3 : ¬(x ∧ y)→ ¬x ∨ ¬y

Termination of this TRS is easily shown by the multiset path order. This, how-
ever, does not mean that automatic termination tools easily find a termination
proof.1

Let us start with some easy observations. If a TRS R is not terminating
then there must be a minimal non-terminating term, minimal in the sense that
all its proper subterms are terminating. Let us denote the set of all minimal
non-terminating terms by T∞.

Lemma 3.1. For every term t ∈ T∞ there exists a rewrite rule l → r, a
substitution σ, and a non-variable subterm u of r such that t

>ǫ
−−→∗ lσ

ǫ
−→ rσ D uσ

and uσ ∈ T∞.

Proof. Let A be an infinite rewrite sequence starting at t. Since all proper sub-
terms of t are terminating, A must contain a root rewrite step. By considering
the first root rewrite step in A it follows that there exist a rewrite rule l→ r and
a substitution σ such that A starts with t

>ǫ
−−→∗ lσ

ǫ
−→ rσ. Write l = f(l1, . . . , ln).

Since the rewrite steps in t →∗ lσ take place below the root, t = f(t1, . . . , tn)
and ti →

∗ liσ for all 1 6 i 6 n. By assumption the arguments t1, . . . , tn of t are
terminating. Hence so are the terms l1σ, . . . , lnσ. It follows that σ(x) is termi-
nating for every x ∈ Var(r) ⊆ Var(l). As rσ is non-terminating it has a subterm

1See the comments in Section 6.3.

19
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t′ ∈ T∞. Because non-terminating terms cannot occur in the substitution part,
there must be a non-variable subterm u of r such that t′ = uσ.

Observe that the term lσ in Lemma 3.1 belongs to T∞ as well. Further
note that uσ cannot be a proper subterm of lσ (since all arguments of lσ are
terminating).

Corollary 3.2. Every term in T∞ has a defined root symbol.

If we were to define a new TRS S consisting of all rewrite rules l → u for
which there exist a rewrite rule l → r ∈ R and a subterm u of r with defined
function symbol, then the sequence in the conclusion of Lemma 3.1 is of the
form

>ǫ
−−→∗

R ·
ǫ
−→S . The idea is now to get rid of the position constraints by

marking the root symbols of the terms in the rewrite rules of S.

Definition 3.3. Let R be a TRS over a signature F . Let F ♯ denote the union of
F and {f ♯ | f is a defined symbol of R} where f ♯ is a fresh function symbol with
the same arity as f . We sometimes write F instead of f ♯. We call these new
symbols dependency pair symbols . Given a term t = f(t1, . . . , tn) ∈ T (F ,V)
with f a defined symbol, we write t♯ for the term f ♯(t1, . . . , tn). If l → r ∈ R
and u is a subterm of r with defined root symbol such that u is not a proper
subterm of l then the rewrite rule l♯ → u♯ is called a dependency pair of R.
The set of all dependency pairs of R is denoted by DP(R).

The idea of excluding dependency pairs l♯ → u♯ where u is a proper subterm
of l is due to Dershowitz [14]. Although dependency pair symbols are defined
symbols of DP(R), they are not defined symbols of the original TRS R. In the
following, defined symbols always refer to the original TRS R.

Example 3.4. The example at the beginning of this section admits the following
nine dependency pairs:

6: ¬♯(x ∨ y)→ ¬x ∧♯ ¬y

7: ¬♯(x ∨ y)→ ¬♯x 11: x ∧♯ (y ∨ z)→ x ∧♯ y

8: ¬♯(x ∨ y)→ ¬♯y 12: x ∧♯ (y ∨ z)→ x ∧♯ z

9: ¬♯(x ∧ y)→ ¬♯x 13: (y ∨ z) ∧♯ x→ x ∧♯ y

10: ¬♯(x ∧ y)→ ¬♯y 14: (y ∨ z) ∧♯ x→ x ∧♯ z

Lemma 3.5. For every term s ∈ T∞ there exist terms t, u ∈ T∞ such that
s♯ →∗

R t♯ →DP(R) u
♯.

Proof. Immediate from Lemma 3.1, Corollary 3.2, and the preceding definition.

Definition 3.6. For any subset T ⊆ T consisting of terms with a defined root
symbol, we denote the set {t♯ | t ∈ T } by T ♯.

An immediate consequence of the previous lemma is that for every non-
terminating TRS R there exists an infinite rewrite sequence of the form

t1 →
∗
R t2 →DP(R) t3 →

∗
R t4 →DP(R) · · ·



3.1. DEPENDENCY PAIRS 21

with ti ∈ T
♯
∞ for all i > 1. Hence, to prove termination of a TRSR it is sufficient

to show that R ∪ DP(R) does not admit such infinite sequences. For finite R,
every such sequence contains a tail in which all applied dependency pairs are
used infinitely many times. The set of those dependency pairs forms a cycle in
the dependency graph.2 From now on, we assume that all TRSs are finite.

As a side remark, note that all terms in T ♯
∞ are terminating with respect to

R but admit an infinite rewrite sequence with respect to R∪ DP(R).

Definition 3.7. The nodes of the dependency graph DG(R) are the dependency
pairs of R and there is an arrow from s→ t to u→ v if and only if there exist
substitutions σ and τ such that tσ →∗

R uτ . A cycle is a nonempty subset C
of dependency pairs of DP(R) if for every two (not necessarily distinct) pairs
s→ t and u→ v in C there exists a nonempty path in C from s→ t to u→ v.

Definition 3.8. Let C ⊆ DP(R). An infinite rewrite sequence in R ∪ C of the
form

t1 →
∗
R t2 →C t3 →

∗
R t4 →C · · ·

with t1 ∈ T
♯
∞ is called C-minimal if all rules in C are applied infinitely often.

Hence proving termination boils down to proving the absence of C-minimal
rewrite sequences, for any cycle C in the dependency graph DG(R).

Example 3.9. Our leading example has the following dependency graph:

7 oo //OO�� __ ��????????????? ����
8OO�� ##HHHHHH



11 oo //OO�� __ ��?????????????��
12OO�� 



6

;;vvvvvv ##HHHHHH !!
==9 oo //�� ??������������� JJJJ 10

;;vvvvvvTT 13 oo //�� ??�������������JJ 14TT
It contains 30 cycles: all nonempty subsets of {7, 8, 9, 10} and {11, 12, 13, 14}.

Although the dependency graph is not computable in general, sound approx-
imations exist that can be computed efficiently (see Section 4.1). Soundness here
means that every cycle in the real dependency graph is a cycle in the approxi-
mated graph. For the example TRS all known approximations compute the real
dependency graph.

How about innermost termination? If s
ǫ
−→ t is an innermost rewrite step

then all subterms of s are normal forms. In other words s♯ is normal form. This
yields the next definition.

Definition 3.10. Let C ⊆ DP(R). An infinite rewrite sequence in R∪C of the
form

t1
i→!
R t2 →C t3

i→!
R t4 →C · · ·

with t1 ∈ T∞ is called a C-minimal innermost rewrite sequence if all rules in C
are applied infinitely often.

2But not every cycle in the dependency graph can be obtained in this way.
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We have the following characterization of innermost termination: A TRS
R is innermost terminating if and only if there is no C-minimal innermost
rewrite sequences, for any cycle C in the innermost dependency graph of R.
The innermost dependency graph of the introductory example is the same as
the dependency graph illustrated in Example 3.9.

Definition 3.11. The nodes of the innermost dependency graph IDG(R) are
the dependency pairs of R and there is an arrow from s → t to u → v if and
only if there exist substitutions σ and τ such that sσ and uτ are normal forms,
and tσ i→∗

R uτ .

In the remainder of the thesis we introduce methods which prove the absence
of C-minimal rewrite sequences. Since C-minimal innermost rewrite sequences
are C-minimal rewrite sequences and IDG(R) is a subgraph of DG(R), these
methods are also applicable for proving the absence of C-minimal innermost
rewrite sequences.

3.2 Subterm Criterion

We now present a new criterion which permits us to ignore certain cycles of the
dependency graph.

Definition 3.12. Let R be a TRS and C ⊆ DP(R) such that every dependency
pair symbol in C has positive arity. A simple projection for C is a mapping π
that assigns to every n-ary dependency pair symbol f ♯ in C an argument position
i ∈ {1, . . . , n}. The mapping that assigns to every term f ♯(t1, . . . , tn) ∈ T ♯ with
f ♯ a dependency pair symbol in C its argument at position π(f ♯) is also denoted
by π.

Theorem 3.13. Let R be a TRS and let C be a cycle in DG(R). If there exists
a simple projection π for C such that π(C) ⊆ D and π(C) ∩ ⊲ 6= ∅ then there
are no C-minimal rewrite sequences.

Before presenting the proof, let us make some clarifying remarks about the
notation. If R is a set of rewrite rules and O is a relation on terms then the
expression π(R) denotes the set {π(l)→ π(r) | l→ r ∈ R}, the inclusion R ⊆ O
abbreviates “(l, r) ∈ O for all l → r ∈ R”, and the inequality R ∩ O 6= ∅

abbreviates “(l, r) ∈ R for at least one l → r ∈ O”. So the conditions state
that after applying the simple projection π, every rule in C is turned into an
identity or a rule whose right-hand side is a proper subterm of the left-hand
side. Moreover, the latter case applies at least once.

Proof. Suppose to the contrary that there exists a C-minimal rewrite sequence:

t1 →
∗
R u1 →C t2 →

∗
R u2 →C t3 →

∗
R · · · (3.1)

All terms in this sequence have a dependency pair symbol in C as root symbol.
We apply the simple projection π to (3.1). Let i > 1.

• First consider the dependency pair step ui →C ti+1. There exist a depen-
dency pair l → r ∈ C and a substitution σ such that ui = lσ and ti+1 = rσ.
We have π(ui) = π(l)σ and π(ti+1) = π(r)σ. We have π(l) D π(r) by as-
sumption. So π(l) = π(r) or π(l) ⊲ π(r). In the former case we trivially
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have π(ui) = π(ti+1). In the latter case the closure under substitutions of
⊲ yields π(ui) ⊲ π(ti+1). Because of the assumption π(C) ∩ ⊲ 6= ∅, the
latter holds for infinitely many i.

• Next consider the rewrite sequence ti →
∗
R ui. All steps in this sequence

take place below the root and thus we obtain the (possibly shorter) se-
quence π(ti)→

∗
R π(ui).

So by applying the simple projection π, sequence (3.1) is transformed into an
infinite →R ∪⊲ sequence containing infinitely many ⊲ steps, starting from the
term π(t1). Since the relation ⊲ is well-founded, the infinite sequence must
also contain infinitely many →R steps. By making repeated use of the well-
known relational inclusion ⊲ · →R ⊆ →R · ⊲ (⊲ commutes over →R in the
terminology of [7]), we obtain an infinite →R sequence starting from π(t1). In
other words, the term π(t1) is non-terminating with respect to R. Let t1 =
f ♯(s1, . . . , sn). Because t1 ∈ T

♯
∞, f(s1, . . . , sn) is a minimal non-terminating

term. Consequently, its argument π(t1) = sπ(f♯) is terminating with respect to
R, providing the desired contradiction.

The remarkable thing about the above theorem is that it permits us to
discard cycles of the dependency graph without considering any rewrite rules.
This is extremely useful. Moreover, the criterion is very simple to check.

Example 3.14. The subterm criterion can handle 18 of the 30 cycles in the
dependency graph of our leading example.

• Consider the cycle C = {7, 8, 9, 10} and all its subcycles. The only depen-
dency pair symbol in C is ¬♯. Since ¬♯ is a unary function symbol, there
is just one simple projection for C: π(¬♯) = 1. By applying π to C, we
obtain

7: x ∨ y → x 9: x ∧ y → x

8: x ∨ y → y 10: x ∧ y → y

We clearly have π(C) ⊆ ⊲. Hence we can handle C and all its subcycles.

• The cycle C = {11, 12} and all its subcycles are handled by the simple
projection π(∧♯) = 2:

11, 12: y ∨ z → x

The only cycles that are not handled by the criterion of Theorem 3.13 are the
ones that involve 13 or 14; applying the simple projection π(∧♯) = 1 produces

13, 14: y ∨ z → x

whereas π(∧♯) = 2 gives

13: x→ y 14: x→ z

None of these rules are compatible with D.
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The final two examples illustrate termination proofs by the subterm crite-
rion. The last example furthermore shows that the subterm criterion is capable
of proving the termination of TRSs that were considered to be challenging in
the termination literature (cf. the remarks in [26, Example 9]).

Example 3.15. Consider the following TRS from [13]:

1: sort([ ])→ [ ]

2 : sort(x : y)→ insert(x, sort(y))

3 : insert(x, [ ])→ x : [ ]

4 : insert(x, v : w)→ choose(x, v : w, x, v)

5 : choose(x, v : w, y, 0)→ x : (v : w)

6 : choose(x, v : w, 0, s(z))→ v : insert(x,w)

7 : choose(x, v : w, s(y), s(z))→ choose(x, v : w, y, z)

There are 5 dependency pairs:

8: sort♯(x : y)→ insert♯(x, sort(y))

9 : sort♯(x : y)→ sort♯(y)

10 : insert♯(x, v : w)→ choose♯(x, v : w, x, v)

11 : choose♯(x, v : w, 0, s(z))→ insert♯(x,w)

12 : choose♯(x, v : w, s(y), s(z))→ choose♯(x, v : w, y, z)

The dependency graph

9 //��
8 // 10 oo // $$

11 12oo 


contains 4 cycles: {9}, {10, 11}, {12}, and {10, 11, 12}.

• The cycle {9} is handled by the simple projection π(sort♯) = 1:

9: x : y → y

• The cycles {10, 11} and {10, 11, 12} are handled by the simple projection
π(insert♯) = π(choose♯) = 2:

10, 12: v : w → v : w 11: v : w → w

• The cycle {12} is handled by the simple projection π(choose♯) = 3:

12: s(y)→ y

Hence the TRS is terminating.

Example 3.16. Consider the following TRS from [50]:

1: intlist([ ])→ [ ]

2 : intlist(x : y)→ s(x) : intlist(y)

3 : int(0, 0)→ 0 : [ ]

4 : int(0, s(y))→ 0 : int(s(0), s(y))

5 : int(s(x), 0)→ [ ]

6 : int(s(x), s(y))→ intlist(int(x, y))



3.3. REDUCTION TRIPLES AND ARGUMENT FILTERINGS 25

There are 4 dependency pairs:

7: intlist♯(x : y)→ intlist♯(y)

8 : int♯(0, s(y))→ int♯(s(0), s(y))

9 : int♯(s(x), s(y))→ intlist♯(int(x, y))

10 : int♯(s(x), s(y))→ int♯(x, y)

The dependency graph

8 oo // $$
10 //II 9 // 7II

contains 3 cycles: {7}, {8, 10}, and {10}.

• The cycle {7} is handled by the simple projection π(intlist♯) = 1:

7: x : y → y

• The cycles {8, 10} and {10} are handled by the simple projection π(int♯) =
2:

8: s(y)→ s(y) 10 : s(y)→ y

Hence the TRS is terminating.

An empirical evaluation of the subterm criterion can be found in Section 6.2.

3.3 Reduction Triples and Argument Filterings

What to do with cycles C of the dependency graph that cannot be handled by
the criterion of the preceding section? In the dependency pair approach one uses
a pair of orderings (&, >) that satisfy the properties stated below such that (1)
all rules in R are oriented by &, (2) all rules in C are oriented by &∪>, and (3)
at least one rule in C is oriented by >. In order to anticipate the developments
in Chapter 5 we use triples instead of pairs of orderings to generalize the relation
& ∪> in (2).

Definition 3.17. A reduction triple (&,>, >) consists of three relations that are
closed under substitutions such that & and > are preorders, & is closed under
contexts, > is a well-founded order, and the following compatibility condition
holds: both & ·> ⊆ > and > ·> ⊆ > or both > ·& ⊆ > and > ·> ⊆ >. We say
that (&, >) is a reduction pair if (&,& ∪>,>) is a reduction triple.

Since we do not demand that > is the strict part of the preorders & or >,
the identities & · > = > and > · > = > need not hold.

A typical example of a reduction triple is a combination of a reduction order
and its reflexive closure, like (>=

kbo, >
=
kbo, >kbo) (corresponding to the reduction

pair (>=
kbo, >kbo)). Both >=

kbo and >kbo are closed under contexts and the
identity >=

kbo · >kbo = >kbo holds. For LPO based on a quasi-precedence & the
triple (&lpo,&lpo, >lpo) is stronger than (>=

lpo, >
=
lpo, >lpo).



26 CHAPTER 3. DEPENDENCY PAIR METHOD

Reduction triples based on weakly monotone algebras cover polynomial inter-
pretations. Every algebra weakly monotone algebra (A, >) with > well-founded
gives rise to a reduction triple (>A,>A, >A). In general, the relation >A is not
closed under contexts, >A is not a partial order, and >A is not the strict part
of >A. Compatibility holds because of the identity > ·> = > (on A).

In order for reduction triples like (>=
lpo, >

=
lpo, >lpo) whose second and third

components are closed under contexts to benefit from the fact that closure
under contexts is not required, the conditions (1), (2), and (3) mentioned at the
beginning of this section may be simplified by deleting certain (arguments of)
function symbols occurring in R and C before testing orientability.

Definition 3.18. An argument filtering for a signature F is a mapping π
that assigns to every n-ary function symbol f ∈ F an argument position i ∈
{1, . . . , n} or a (possibly empty) list [i1, . . . , im] of argument positions with 1 6

i1 < · · · < im 6 n. The signature Fπ consists of all function symbols f such that
π(f) is some list [i1, . . . , im], where in Fπ the arity of f is m. Every argument
filtering π induces a mapping from T (F ,V) to T (Fπ,V), also denoted by π:

π(t) =











t if t is a variable

π(ti) if t = f(t1, . . . , tn) and π(f) = i

f(π(ti1 ), . . . , π(tim
)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im]

Note that the simple projections of the preceding section can be viewed as
special argument filterings.

Example 3.19. Applying the argument filtering π with π(∧) = π(∨) = [ ] and
π(¬) = [1] to the rewrite rules of our leading example results in the following
simplified rules:

1: ¬¬x→ x 3: ¬(∧)→ ∨

2: ¬(∨)→ ∧ 4, 5: ∧ → ∨

These rules are oriented from left to right by the lexicographic path order with
precedence ¬ > ∧ > ∨ (which does not imply termination of the original TRS).

We are now ready to state and prove the standard dependency pair approach
to the treatment of cycles in the dependency graph.

Theorem 3.20 ([22]). Let R be a TRS and let C be a cycle in DG(R). If
there exist an argument filtering π and a reduction triple (&,>, >) such that
π(R) ⊆ &, π(C) ⊆ >, and π(C) ∩ > 6= ∅ then there are no C-minimal rewrite
sequences.

Proof. Suppose to the contrary that there exists a C-minimal rewrite sequence:

t1 →
∗
R u1 →C t2 →

∗
R u2 →C t3 →

∗
R · · · (3.2)

We show that after applying the argument filtering π we obtain an infinite
descending sequence with respect to the well-founded order >. Let i > 1.

• First consider the dependency pair step ui →C ti+1. Since ui ∈ T
♯, the

step takes place at the root positions and thus there exist a dependency
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pair l → r ∈ C and a substitution σ such that ui = lσ and ti+1 = rσ.
Define the substitution σπ as the composition of σ and π, i.e., σπ(x) =
π(σ(x)) for every variable x. A straightforward induction proof reveals
that π(tσ) = π(t)σπ for every term t. Hence π(ui) = π(l)σπ and π(ti+1) =
π(r)σπ . From the assumption π(C) ⊆ > we infer π(l) > π(r). Since > is
closed under substitutions, we have π(ui) > π(ti+1). As in the proof of
Theorem 3.13, π(ui) > π(ti+1) holds for infinitely many i because of the
assumption π(C) ∩> 6= ∅.

• Next consider the rewrite sequence ti →
∗
R ui. Using the assumption

π(R) ⊆ &, we obtain π(ti) &∗ π(ui) and thus π(ti) & π(ui) as in the
preceding case.

So (3.2) is transformed into an infinite descending sequence consisting of &,
>, and > steps, where there are an infinite number of the latter. Using the
compatibility condition we obtain an infinite descending sequence with respect
to >, providing the desired contradiction.

The converse of Theorem 3.20 also holds. In fact, if there is no C-minimal
rewrite sequence of R, the triple (&,>, >) = (→∗

R,→
∗
C ,→

+
C ) is a reduction

triple, and clearly satisfies π(R) ⊆ &, π(C) ⊆ >, and π(C) ∩> 6= ∅. Here, π is
the trivial argument filtering.

Example 3.21. The argument filtering of Example 3.19 cannot be used to han-
dle the cycle {11, 12, 13, 14} in our leading example. This can be seen as follows.
Because π(∨) = [ ], irrespective of the choice of π(∧♯), variables y and z will no
longer appear in the left-hand sides of the simplified dependency pairs. Hence
they cannot appear in the right-hand sides, and this is only possible if we take
1, [1], or [ ] for π(∧♯). The first two choices transform dependency pairs 13 and
14 into rules in which the variable x appears on the right-hand side but not on
the left-hand side, whereas the third choice turns all dependency pairs into the
identity ∧♯ = ∧♯.

Since the original TRS is compatible with the multiset path order, it is no
surprise that the constraints of Theorem 3.20 for all cycles are satisfied by the
full argument filtering π (that maps every n-ary function symbol to [1, . . . , n])
and the reduction triple (>=

mpo, >
=
mpo, >mpo) with the precedence ¬ > ∧ > ∨.

However, it can be shown that there is no argument filtering π such that the
resulting constraints are satisfied by a polynomial interpretation or the lexico-
graphic path order.

Observe that the proof of Theorem 3.20 does not use the fact that C-minimal
rewrite sequences start from terms in T ♯

∞. In the next section we show that
by restoring the use of minimality, we can get rid of some of the constraints
originating from R.

We conclude this section with the remark that minimal innermost rewrite
sequences cannot be characterized by reduction triples. As we mentioned in the
last paragraph of Section 3.1, the following corollary for innermost rewriting is
derived from Theorem 3.20.

Corollary 3.22. Let R be a TRS and let C be a cycle in IDG(R). If there exist
an argument filtering π and a reduction triple (&,>, >) such that π(R) ⊆ &,
π(C) ⊆ >, and π(C) ∩ > 6= ∅ then there are no C-minimal innermost rewrite
sequences.
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Arts and Giesl [5] showed that the converse of Corollary 3.22 does not hold.
The reason is that although we handle innermost steps in C-minimal innermost
rewrite sequence with a rewrite preorder &, which is closed under substitutions,
i→∗
R is not.

Example 3.23 ([5]). Consider the TRS

1: f(s(x))→ f(g(h(x))) 3 : g(h(x))→ g(x)

2 : h(0)→ a 4: g(s(x))→ s(x)

5 : g(0)→ s(0)

IDG(R) contains two cycles: {f♯(s(x)) → f♯(g(h(x)))} and {g♯(h(x)) → g♯(x)}.
For both cycles C there is no C-minimal innermost rewrite sequence, and there-
fore the TRS is innermost terminating. The constraints of Corollary 3.22 for
the first cycle contains

π(g(h(x))) & π(g(x)) π(f♯(s(x))) > π(f♯(g(h(x))))

π(g(0)) & π(s(0))

If an argument filtering π and a reduction triple (&,>, >) satisfy them, we have
the infinite sequence

π(f♯(s(0))) > π(f♯(g(h(0)))) & π(f♯(g(0))) & π(f♯(s(0))) > · · ·

which contradicts the well-foundedness of >. Note that the corresponding se-
quence

f♯(s(0))→C f♯(g(h(0)))→R f♯(g(0))→R f♯(s(0))→C · · ·

is a C-minimal rewrite sequence (but not a C-minimal innermost rewrite se-
quence).

3.4 Usable Rules

We show that the concept of usable rules which was introduced in [4] to opti-
mize the dependency pair method for innermost termination, can also be used
for termination. The resulting termination criterion is stronger than previous
results in this area ([26, 55]). We start by recalling the definition of usable rules.

Definition 3.24. We write f �d g if there exists a rewrite rule l → r ∈ R
such that f = root(l) and g is a defined function symbol in Fun(r). For a
set G of defined function symbols we denote by R↾G the set of rewrite rules
l → r ∈ R with root(l) ∈ G. The set U(t) of usable rules of a term t is defined
as R↾{g | f �

∗
d g for some f ∈ Fun(t)}. Finally, if C is a set of dependency

pairs then

U(C) =
⋃

l→ r ∈ C

U(r)

Example 3.25. None of the dependency pairs that appear in an cycle in our
leading example have defined symbols in their right-hand sides, so for all cycles
the set of usable rules is empty. The same is true for the TRSs of Examples 3.15
and 3.16.
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Arts and Giesl [5] showed that when proving innermost termination we may
replace π(R) ⊆ & by π(U(C)) in Theorem 3.20. After reproducing this result,
we show that a similar result holds for full termination under an additional
condition.

The next lemma states an easy connection between usable rules and defined
symbols of the other rules.

Lemma 3.26. Let R be a TRS over a signature F and let C ⊆ DP(R). Fur-
thermore, let G be the set of defined symbols of R \ U(C).

1. R = U(C) ∪ (R↾G).

2. If l → r ∈ U(C) then r contains no G-symbols.

Proof. The first statement is obvious. For the second statement we reason as
follows. Suppose to the contrary that r contains a function symbol g ∈ G. We
have l → r ∈ U(t) for some s → t ∈ C. So there exists a function symbol
f ∈ Fun(t) such that f �

∗
d root(l). We have root(l) �d g by the definition of

�d and hence also f �
∗
d g. Therefore R↾{g} ⊆ U(t) ⊆ U(C). So g is a defined

symbol of a rule in U(C). This contradicts the assumption that g ∈ G.

The next lemma states a key property for characterizing C-minimal inner-
most rewrite sequences.

Lemma 3.27. Let R be a TRS over a signature F and let C ⊆ DP(R). Fur-
thermore, let G be the set of defined symbols of R \ U(C). If t i→∗

R u and t|p is
a normal form for all p ∈ PosG(t) then t→∗

U(C) u.

Proof. We prove the following claim: If t i→R u and t|p is a normal form
for all p ∈ PosG(t) then t i→U(C) u and u|p is a normal form for all p ∈
PosG(u). The result then follows by induction. There exist a rewrite rule
l → r ∈ R, a substitution σ, and a context C such that t = C[t1, . . . , lσ, . . . , tn],
u = C[t1, . . . , rσ, . . . , tn], and C contains no symbol in G. By the assumption,
root(l) 6∈ G and therefore l → r ∈ U(C), so we have t→U(C) u. We show that u|p
is a normal form for all p ∈ PosG(u). Let p ∈ PosG(u). Clearly, u|p is a subterm
of either ti or rσ. In the former case u|p = t|p holds, so u|p is a normal form.
In the latter case r contains no G-symbol by the second part of Lemma 3.26.
Therefore, u|p is a subterm in the image of σ, and thus a normal form.

We are ready to prove the innermost version of the usable rule criterion.

Theorem 3.28 ([5, 22]). Let R be a TRS and let C be a cycle in IDG(R). If
there exist an argument filtering π and a reduction triple (&,>, >) such that
π(U(C)) ⊆ &, π(C) ⊆ >, and π(C) ∩ > 6= ∅ then there are no C-minimal
innermost rewrite sequences.

Proof. Consider a C-minimal innermost rewrite sequence

t1
i→!
R u1 →C t2

i→!
R u2 →C · · ·

Let G be the set of defined symbols of R\U(C). We claim that ti+1|p is a normal
form for all p ∈ PosG(ti+1). Then, Lemma 3.27 is applicable to ti+1

i→∗
R ui+1

and we obtain ti+1 →
∗
U(C) ui+1 and thus also

t2 →
∗
U(C) u2 →C t3 →

∗
U(C) u3 →C · · ·
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Because of the assumptions of this theorem, we can simply reuse the proof
of Theorem 3.20 (where U(C) takes the place of R) and obtain the desired
contradiction with the well-foundedness of >. The claim is proved as follows.
Fix i and let p ∈ PosG(ti+1). There exist a dependency pair l → r ∈ C and a
substitution σ such that ui = lσ and ti+1 = rσ. According to the second part of
Lemma 3.26, r contains no G-symbols, and therefore rσ|p is a subterm of σ(x)
for some x ∈ Var(r). Since ui = lσ is a normal form and Var(r) ⊆ Var(l), σ(x)
is a normal form. Hence, ti+1|p = rσ|p is a normal form.

Example 3.23 shows that the converse of Theorem 3.28 does not hold; note
that g(h(x))→ g(x) and g(0)→ s(0) belong to U({f♯(s(x))→ f♯(g(h(x)))}).

The case of termination is more difficult. Indeed, we cannot prove the sound-
ness without imposing a further condition.

Example 3.29. Consider the non-terminating TRS R = R1 ∪ R2 of Exam-
ple 1.2. The dependency graph DG(R) contains one cycle C = {f♯(a, b, x) →
f♯(x, x, x)}. because of the following C-minimal rewrite sequence:

f♯(g(a, b), g(a, b), g(a, b))→2
R f♯(a, b, g(a, b))

→C f♯(g(a, b), g(a, b), g(a, b))

→2
R · · ·

Let (&,>, >) = (→∗
C ,→

∗
C ,→

+
C ). Since the TRS C is terminating, (&,>, >) is a

reduction triple. It is easy to verify U(C) = ∅ ⊆ & ∪> and C ⊆ >.

Note that the C-minimal rewrite sequence in the preceding example is not a
C-minimal innermost rewrite sequence.

The following definition is the key to our result. It is a variation of a similar
definition in Urbain [55], which in turn is based on a definition of Gramlich [27].

Definition 3.30. Let R be a TRS over a signature F and let G ⊆ F . The
interpretation IG is a mapping from terminating terms in T (F ♯,V) to terms in
T (F ♯∪{nil, cons},V), where nil and cons are fresh function symbols, inductively
defined as follows:

IG(t) =











t if t is a variable

f(IG(t1), . . . , IG(tn)) if t = f(t1, . . . , tn) and f /∈ G

cons(f(IG(t1), . . . , IG(tn)), t′) if t = f(t1, . . . , tn) and f ∈ G

where in the last clause t′ denotes the term order({IG(u) | t→R u}) with

order(T ) =

{

nil if T = ∅

cons(t, order(T \ {t})) if t is the minimum element of T

Here we assume an arbitrary but fixed total order on T (F ♯ ∪ {nil, cons},V).

Because we deal with finite TRSs, the relation is →R is finitely branching
and hence the set {u | t →R u} of one-step reducts of t is finite. Moreover,
every term in this set is terminating. The well-definedness of IG now follows by
a straightforward induction argument. The difference with Urbain’s definition is
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that we insert f(IG(t1), . . . , IG(tn)) in the list t′ when f ∈ G. This modification
is crucial for obtaining Theorem 3.36 below.

In the following CE denotes the TRS consisting of the two projection rules

cons(x, y)→ x

cons(x, y)→ y

These rules are used to extract elements from the lists constructed by the inter-
pretation IG . To improve readability, we abbreviate cons(t1, . . . cons(tn, nil) . . . )
to [t1, . . . , tn] in the next example.

Example 3.31. Consider the non-terminating TRS R consisting of the follow-
ing three rewrite rules:

1: x+ 0→ x 2: x× 0→ 0 3: x× s(y)→ (x+ 0)× s(y)

There are two dependency pairs:

4: x×♯ s(y)→ (x + 0)×♯ s(y) 5 : x×♯ s(y)→ x+♯ 0

The dependency graph

4 //++
5

contains 1 cycle: C = {4}. The following is a C-minimal rewrite sequence:

((0 + 0)× 0)×♯ s(0)→C (((0 + 0)× 0) + 0)×♯ s(0)

→R ((0 + 0)× 0)×♯ s(0)

→R 0×♯ s(0)

→C (0 + 0)×♯ s(0)

→R 0×♯ s(0)

→C · · ·

We have U(C) = {1}. Let G be the set of defined symbols of R \ U(C), i.e.,
G = {×}. Applying the definition of IG yields

IG(0× 0) = cons(IG(0)× IG(0), order({IG(0)}))

= cons(0× 0, order({0}))

= cons(0× 0, cons(0, nil))

= [0× 0, 0]

and

IG((0 + 0)× 0) = cons(IG(0 + 0)× IG(0), order({IG(0× 0), IG(0)}))

= cons((0 + 0)× 0, order({[0× 0, 0], 0}))

= [(0 + 0)× 0, 0, [0× 0, 0]]

if we assume that 0 is smaller than [0× 0, 0] in the given total order. Now, by
applying IG to all terms in the above C-minimal rewrite sequence, we obtain the
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following infinite rewrite sequence in U(C) ∪ C ∪ CE :

[(0 + 0)× 0, 0, [0× 0, 0]]×♯ s(0)→C ([(0 + 0)× 0, 0, [0× 0, 0]] + 0)×♯ s(0)

→U(C) [(0 + 0)× 0, 0, [0× 0, 0]]×♯ s(0)

→+
CE

0×♯ s(0)

→C (0 + 0)×♯ s(0)

→U(C) 0×♯ s(0)

→C · · ·

We start with some preliminary results. The first one addresses the behavior
of IG on instantiated terms. The second states that IG preserves any top part
without G-symbols.

Definition 3.32. If σ is a substitution that assigns to every variable in its
domain a terminating term then we denote the substitution that assigns to every
variable x the term IG(σ(x)) by σIG .

Lemma 3.33. Let R be a TRS over a signature F and let G ⊆ F . Let t be a
term and σ a substitution. If tσ is terminating then IG(tσ) →∗

CE
tσIG and, if t

does not contain G-symbols, IG(tσ) = tσIG .

Proof. We use induction on t. If t is a variable then IG(tσ) = IG(σ(t)) = tσIG .
Let t = f(t1, . . . , tn). We distinguish two cases.

• If f /∈ G then IG(tσ) = f(IG(t1σ), . . . , IG(tnσ)). The induction hypothesis
yields IG(tiσ)→∗

CE
tiσIG for 1 6 i 6 n and thus

IG(tσ)→∗
CE
f(t1σIG , . . . , tnσIG ) = tσIG

If there are no G-symbols in t1, . . . , tn then we obtain IG(tiσ) = tiσIG for
all 1 6 i 6 n from the induction hypothesis and thus IG(tσ) = tσIG .

• If f ∈ G then

IG(tσ) = cons(f(IG(t1σ), . . . , IG(tnσ)), t′)→CE
f(IG(t1σ), . . . , IG(tnσ))

for some term t′. We obtain f(IG(t1σ), . . . , IG(tnσ)) →∗
CE

tσIG as in the
preceding case and thus IG(tσ)→∗

CE
tσIG as desired.

The preceding lemma is not true for Urbain’s interpretation function.

Lemma 3.34. Let R be a TRS over a signature F and let G ⊆ F . If
t = C[t1, . . . , tn] is terminating and the context C contains no G-symbols then
IG(t) = C[IG(t1), . . . , IG(tn)].

Proof. Let t′ be the term C[x1, . . . , xn] where x1, . . . , xn are fresh variables. We
have t = t′σ for the substitution σ = {xi 7→ ti | 1 6 i 6 n}. The preceding
lemma yields IG(t) = t′σIG . Clearly t′σIG = C[IG(t1), . . . , IG(tn)].

The following lemma is the key result for the new termination criterion. It
states that rewrite steps in R are transformed by IG into rewrite sequences in
U(C) ∪ CE , provided G is the set of defined symbols of R \ U(C).
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Lemma 3.35. Let R be a TRS over a signature F and let C ⊆ DP(R). Fur-
thermore, let G be the set of defined symbols of R \ U(C). If terms s and t are
terminating and s→R t then IG(s)→+

U(C)∪CE
IG(t).

Proof. Let p be the position of the rewrite step s →R t. We distinguish two
cases.

• First suppose that there is a function symbol from G at a position
q 6 p. In this case we may write s = C[s1, . . . , si, . . . , sn] and t =
C[s1, . . . , ti, . . . , sn] with si →R ti, where root(si) ∈ G and the context
C contains no G-symbols. We have IG(si)→CE

order({IG(u) | si →R u}).
Since si →R ti, we can extract IG(ti) from the term order({IG(u) |
si →R u}) by appropriate CE steps, so IG(si)→

+
CE
IG(ti). We now obtain

IG(s)→+
CE
IG(t) from Lemma 3.34.

• In the other case s = C[s1, . . . , si, . . . , sn] and t = C[s1, . . . , ti, . . . , sn]
with si

ǫ
−→R ti, where root(si) /∈ G and the context C contains no G-

symbols. Since root(si) /∈ G the applied rewrite rule l → r in the step
si

ǫ
−→R ti must come from U(C) according to part 1 of Lemma 3.26. Let σ

be the substitution with Dom(σ) ⊆ Var(l) such that si = lσ and ti = rσ.
According to part 2 of Lemma 3.26, r contains no G-symbols and thus
we obtain IG(si) →

∗
CE
lσIG and IG(ti) = rσIG from Lemma 3.33. Clearly

lσIG →U(C) rσIG and thus IG(si)→
+
U(C)∪CE

IG(ti). Lemma 3.34 now yields

the desired IG(s)→+
U(C)∪CE

IG(t).

After these preparations, the main result3 of this section is now easily proved.

Theorem 3.36. Let R be a TRS and let C be a cycle in DG(R). If there exist an
argument filtering π and a reduction triple (&,>, >) such that π(U(C)∪CE ) ⊆ &,
π(C) ⊆ >, and π(C) ∩> 6= ∅ then there are no C-minimal rewrite sequences.

Proof. Suppose to the contrary that there exists a C-minimal rewrite sequence:

t1 →
∗
R u1 →C t2 →

∗
R u2 →C t3 →

∗
R · · · (3.3)

Let G be the set of defined symbols of R \ U(C). We show that after applying
the interpretation IG we obtain an infinite rewrite sequence in U(C) ∪ CE ∪ C in
which every rule of C is used infinitely often. Since all terms in (3.3) belong to
T ♯
∞, they are terminating with respect to R and hence we can indeed apply the

interpretation IG . Let i > 1.

• First consider the dependency pair step ui →C ti+1. There exist a de-
pendency pair l → r ∈ C and a substitution σ such that ui = lσ and
ti+1 = rσ. We may assume that Dom(σ) ⊆ Var(l). Since ui ∈ T

♯
∞,

σ(x) is terminating for every variable x ∈ Var(l). Hence the substitu-
tion σIG is well-defined. Since r lacks G-symbols by Lemma 3.26, we
have IG(rσ) = rσIG by Lemma 3.33. Furthermore, IG(lσ) →∗

CE
lσIG by

Lemma 3.33. Hence

IG(ui)→
∗
CE
lσIG →C rσIG = IG(ti+1)

3This result has been independently obtained by Thiemann et al. [53].
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• Next consider the rewrite sequence ti →
∗
R ui. Because all terms in this

sequence are terminating, we obtain IG(ti) →
∗
U(C)∪CE

IG(ui) by repeated
applications of Lemma 3.35.

Next we apply the argument filtering π to all terms in the resulting infinite
rewrite sequence in U(C) ∪ CE ∪ C. Because of the assumptions of this theorem,
we can simply reuse the proof of Theorem 3.20 (where U(C)∪CE takes the place
of R) and obtain the desired contradiction with the well-foundedness of >.

Example 3.37. Let us take a final look at the cycle {11, 12, 13, 14} in our
leading example. There are no usable rules. By taking the linear polynomial
interpretation ∧♯

N(x, y) = x+y and ∨N(x, y) = x+y+1 the involved dependency
pairs reduce the following inequalities:

11, 13: x+ y + z + 1 > x+ y

12, 14: x+ y + z + 1 > x+ z

Hence there are no C-minimal rewrite sequences for any nonempty subset C ⊆
{11, 12, 13, 14} and we conclude that the TRS is terminating.

Since U(C) in general is a proper subset of R, the condition π(U(C)) ⊆ &
is easier to satisfy than the condition π(R) ⊆ & of Theorem 3.20 and Corol-
lary 3.22. Therefore, Theorem 3.28 is a better criterion for innermost termi-
nation, also because IDG(R) is a subgraph of DG(R). What about the addi-
tional condition π(CE) ⊆ & of Theorem 3.36? By choosing π(cons) = [1, 2] the
condition reduces to cons(x, y) & x and cons(x, y) & y. Almost all reduction
triples (pairs) that are used in termination tools can be extended to satisfy this
condition. For reduction triples that are based on simplification orders, like
(>=

lpo, >
=
lpo, >lpo), this is clear. A sufficient condition that makes the semantic

construction described in Section 3.3 for generating reduction triples work is
that each pair of elements of the carrier has a least upper bound. For interpre-
tations in the set N of natural numbers equipped with the standard order this
is obviously satisfied. The necessity of the least upper bound condition follows
by considering the term algebra associated with the TRS R1 of Example 1.2
equipped with the well-founded order→+. In Chapter 5 we introduce reduction
triples based on polynomial interpretations with negative coefficients that are
not compatible with CE .

As a matter of fact, due to the condition π(CE) ⊆ &, Theorem 3.36 provides
only a sufficient condition for the absence of C-minimal rewrite sequences. This
is in contrast to Theorem 3.20, which provides a sufficient and necessary condi-
tion for termination. The reason is that termination of a TRS R is equivalent
to the termination of R∪DP(R), a result due to [4] (see [47] for a simple proof
based on type introduction). A concrete example of a terminating TRS that
cannot be proved terminating by the criterion of Theorem 3.36 is presented
below.

Example 3.38. Consider the terminating TRS R consisting of the following
two rewrite rules:

1: f(s(a), s(b), x)→ f(x, x, x)

2 : g(f(s(x), s(y), z))→ g(f(x, y, z))
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There are three dependency pairs:

3: f♯(s(a), s(b), x)→ f♯(x, x, x)

4 : g♯(f(s(x), s(y), z))→ g♯(f(x, y, z))

5 : g♯(f(s(x), s(y), z))→ f♯(x, y, z)

The dependency graph

3 5oo 4
��oo

contains 1 cycle: C = {4}. The only simple projection for g♯ transforms 4 into

4: f(s(x), s(y), z)→ f(x, y, z)

and f(x, y, z) is not a proper subterm of f(s(x), s(y), z). We have U(C) = {1}.
We claim that the conditions π(U(C) ∪ CE) ⊆ &, π(C) ⊆ >, and π(C) ∩ > 6= ∅

are not satisfied for any argument filtering π and reduction triple (&,>, >).
The reason is simply that the term t = g♯(f(u, u, u)) with u = s(cons(s(a), s(b)))
admits the following cyclic reduction in U(C) ∪ CE ∪ C:

t→C g♯(f(cons(s(a), s(b)), cons(s(a), s(b)), u))

→CE
g♯(f(s(a), cons(s(a), s(b)), u))

→CE
g♯(f(s(a), s(b), u))

→U(C) t

Combining the usable rule and subterm criteria, we arrive at the following
result.

Corollary 3.39. A TRS R is terminating if for every cycle C in DG(R) one
of the following two conditions holds:

• there exists a simple projection π for C such that π(C) ⊆ D and π(C)∩⊲ 6=
∅,

• there exist an argument filtering π and a reduction triple (&,>, >) such
that π(U(C) ∪ CE) ⊆ &, π(C) ⊆ >, and π(C) ∩> 6= ∅.

For completeness sake, we state the corresponding result for innermost ter-
mination.

Corollary 3.40. A TRS R is innermost terminating if for every cycle C in
IDG(R) one of the following two conditions holds:

• there exists a simple projection π for C such that π(C) ⊆ D and π(C)∩⊲ 6=
∅,

• there exist an argument filtering π and a reduction triple (&,>, >) such
that π(U(C)) ⊆ &, π(C) ⊆ >, and π(C) ∩> 6= ∅.

Apart from the innermost dependency graph, which is a subgraph of the
dependency graph, the difference with Corollary 3.39 is that CE-compatibility
(i.e., π(CE) ⊆ &) is not required.
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The final result of this section gives two sufficient conditions that allow
us to ignore CE for cycles C in Theorem 3.36. This may be useful for the
polynomial interpretations with negative coefficients of Chapter 5 which give
rise to reduction triples that do not satisfy π(CE) ⊆ &.

Lemma 3.41. Let R be a TRS and let C be a cycle in DG(R) such that U(C)∪C
is non-duplicating or C contains a right-ground rule. If there exist an argument
filtering π and a reduction triple (&,>, >) such that π(U(C)) ⊆ &, π(C) ⊆ >,
and π(C) ∩> 6= ∅ then there are no C-minimal rewrite sequences.

Proof. If there are C-minimal rewrite sequences then we obtain an infinite
rewrite sequence

t1 →
∗
U(C)∪CE

→ t2 →C t3 →
∗
U(C)∪CE

→ t4 →C · · ·

as in the proof of Theorem 3.36. If U(C)∪C∪CE is non-duplicating then, because
the rules in U(C) ∪ C do not introduce cons symbols, there can be only finitely
many CE-steps in this sequence. The same holds if C contains a right-ground
rule because after applying this rule there are no cons symbols left. So there is
an index n such that

tn →
∗
U(C) tn+1 →C tn+2 →

∗
U(C) tn+3 →C · · · ,

contradicting the assumptions.



Chapter 4

Automating the

Dependency Pair Method

When automating the methods in Chapter 3 several obstacles arise:

1. How to estimate uncomputable (innermost) dependency graphs?

2. How to handle the large (exponentially many in the worst case) number
of cycles in the (innermost) dependency graphs?

3. How to find a suitable argument filtering from an exponential number of
possible candidates.

In order to address the first problem we recall existing computable approxi-
mations and derive a new estimation of the innermost dependency graph in
Section 4.1. The second problem is settled by the recursive SCC algorithm
in Section 4.2. In Section 4.3 we present heuristics and a divide and conquer
approach to reduce the search space of the third problem.

4.1 Dependency Graph Approximations

The (innermost) dependency graph cannot be computed in general because
it is undecidable whether there exist substitutions σ and τ such that tσ →∗

R

uτ (tσ i→∗
R uτ). In order to mechanize the (innermost) termination criterion

of Corollary 3.39 (3.40) one has to approximate the (innermost) dependency
graph. It is easy to see that we are allowed to use any supergraph of DG(G)
(IDG(G)). The challenge is to develop an approximation that yields a small
supergraph of the (innermost) dependency graph. After introducing known
(innermost) dependency graph approximations, we present a new approximation
of the innermost dependency graph.

Arts and Giesl [4] proposed simple approximations based on syntactic unifi-
cation.

Definition 4.1. Let R be a TRS. The nodes of the estimated dependency graph
EDG(R) are the dependency pairs of R and there is an arrow from s → t to
u → v if and only if REN(CAP(t)) and u are unifiable. Here CAP replaces all

37
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outermost subterms with a defined root symbol by distinct fresh variables and
REN replaces all occurrences of variables by distinct fresh variables.

Definition 4.2. Let R be a TRS. The nodes of the estimated innermost depen-
dency graph EIDG(R) are the dependency pairs of R and there is an arrow from
s→ t to u→ v if and only if CAPs(t) and u are unifiable with mgu σ such that
sσ and uσ are in normal form. Here CAPs(t) replaces all outermost subterms
of t different from all subterms of s with a defined root symbol by distinct fresh
variables.

Middeldorp [45] showed that better approximations of the dependency graph
are obtained by adopting tree automata techniques. These techniques are how-
ever computationally expensive. In [46] Middeldorp showed that the approxi-
mation of Definition 4.1 can be improved by symmetry considerations without
incurring the overhead of tree automata techniques.

Definition 4.3. Let R be a TRS over a signature F . The result of replacing
all outermost subterms of a term t with a root symbol in D−1

S by distinct fresh
variables is denoted by CAP−1

S (t). Here D−1
S = {root(r) | l → r ∈ S} if S is non-

collapsing and D−1
S = F otherwise. The nodes of the estimated∗ dependency

graph EDG∗(R) are the dependency pairs of R and there is an arrow from s→
t to u → v if and only if both REN(CAP(t)) and u are unifiable, and t and
REN(CAP−1

R (u)) are unifiable.

A comparison between the new estimation and the tree automata based
approximations described in [45] can be found in [46]. From the latter paper
we recall the identity EDG(R) = EDG∗(R) for collapsing R. This explains why
for most examples the new estimation does not improve upon the one of Arts
of Giesl. However, when the two approximations do differ, the difference can be
substantial.

Example 4.4. Using the new estimation, automatically proving termination
of notorious TRSs like the famous rule f(a, b, x) → f(x, x, x) of Toyama (cf.
Example 1.2) becomes trivial, as in this case the estimated∗ dependency graph
coincides with the real dependency graph, and the latter is empty since no in-
stance of f♯(x, x, x) rewrites to an instance of f♯(a, b, x). On the other hand, the
estimated dependency graph contains a cycle and the constraints resulting from
Corollary 3.39 cannot be solved by any quasi-simplification order.

Next we introduce a new estimation of the innermost dependency graph.

Definition 4.5. Let R be a TRS. The nodes of the estimated∗ innermost de-
pendency graph EIDG∗(R) are the dependency pairs of R and there is an arrow
from s→ t to u→ v if and only if both CAPs(t) and u are unifiable with mgu σ
such that sσ and uσ are normal forms, and t and REN(CAP−1

U(t)(u)) are unifiable
with mgu τ such that sτ is a normal form.

The following example shows that the new estimation is strictly more pow-
erful than the one of Arts and Giesl if one uses reduction pairs based on quasi-
simplification orders.

Example 4.6. Consider the non-terminating TRS R consisting of the rules

h(f(a, b, x))→ h(f(x, x, x)) g(x, y)→ x

f(x, x, x)→ c g(x, y)→ y
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There are two dependency pairs:

1: h♯(f(a, b, x))→ h♯(f(x, x, x)) 2 : h♯(f(a, b, x))→ f♯(x, x, x)

Because there are no terms s and t such that h♯(f(s, s, s)) i→∗ h♯(f(a, b, t)), the
innermost dependency graph IDG(R) contains no arrows. Hence R is innermost
terminating. We have U(h♯(f(x, x, x))) = {f(x, x, x)→ c} and thus h♯(f(x, x, x))
and

REN(CAP−1
U(h♯(f(x,x,x)))(h

♯(f(a, b, x′)))) = REN(h♯(f(a, b, x′))) = h♯(f(a, b, x′′))

are not unifiable. Hence EIDG∗(R) coincides with IDG(R). The estimated
innermost dependency graph EIDG(R) contains arrows from 1 to 1 and 2 as
CAPh♯(f(a,b,x))(h

♯(f(x, x, x))) = h♯(y) unifies with h♯(f(a, b, x′)). However, the
constraints for the resulting cycle {1} cannot be solved by any combination of an
argument filtering π and a reduction pair (&, >) based on a quasi-simplification
order &. Suppose to the contrary that π(h♯(f(a, b, x))) > π(h♯(f(x, x, x))) and
π(f(x, x, x)) & π(c). The first condition can only be satisfied if π(h♯) ∈ {1, [1]}
and π(f) ∈ {[1, 3], [2, 3], [1, 2, 3]}. Let t = f(a, a, b). Because & is a quasi-
simplification order, π(t) & a and π(t) & b. We obtain π(h♯(f(a, b, t))) >
π(h♯(f(t, t, t))) as > is closed under substitutions. Closure under contexts of
& yields π(h♯(f(t, t, t))) & π(h♯(f(a, b, t))). Hence

π(h♯(f(a, b, t))) > π(h♯(f(a, b, t)))

by the compatibility of > and &, contradicting the well-foundedness of >.

The following lemma states the soundness of the new approximation.

Lemma 4.7. For a TRS R, IDG(R) ⊆ EIDG∗(R).

Proof. Suppose there is an arrow from s→ t to u→ v in IDG(R). So there ex-
ists a substitution σ such that tσ i→∗

R uσ and sσ and uσ are normal forms. The
first condition of the definition of EIDG∗ holds because IDG(R) ⊆ EIDG(R).
We claim that tσ = REN(CAP−1

U(t)(u))µ for some substitution µ. Since t and

REN(CAP−1
U(t)(u)) do not share variables, the substitution τ = σ ⊎ µ is well-

defined and clearly a unifier of t and REN(CAP−1
U(t)(u)). Hence these two terms

admit an mgu τ ′ which subsumes τ . We have sτ = sσ. The latter term is a nor-
mal form by assumption and hence so is sτ ′. Consequently, the second condition
of the definition of EIDG∗ holds as well. We prove the claim by induction on u.
If u is a variable or root(u) ∈ D−1

U(t) then REN(CAP−1
U(t)(u)) is a fresh variable,

say x, and we can take µ = {x 7→ tσ}. If u = f(u1, . . . , un) with f /∈ D−1
U(t) then

REN(CAP−1
U(t)(u)) = f(REN(CAP−1

U(t)(u1)), . . . ,REN(CAP−1
U(t)(un))). Because sσ

is a normal form and Var(t) ⊆ Var(s), tσ →∗
R uσ if and only if tσ →∗

U(t) uσ.
The latter is equivalent to uσ →∗

U(t)−1 tσ. We distinguish two cases. If t is a
variable then tσ is a subterm of sσ and thus a normal form. Hence tσ = uσ
and since uσ is an instance of REN(CAP−1

U(t)(u)), we are done. Otherwise, since

root(u) = f /∈ D−1
U(t), tσ must be of the form f(t1σ, . . . , tnσ) and we have

uiσ →
∗
U(t)−1 tiσ for each i ∈ {1, . . . , n}. The induction hypothesis yields for

each i a substitution µi such that tiσ = REN(CAP−1
U(t)(ui))µi. Since different

REN(CAP−1
U(t)(ui)) do not share variables, the substitution µ = µ1 ⊎ · · · ⊎ µn is

well-defined and clearly satisfies tσ = REN(CAP−1
U(t)(u))µ.
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The next example shows that we cannot omit REN from REN(CAP−1
U(t)(u))

without violating the soundness condition IDG(R) ⊆ EIDG∗(R) of Lemma 4.7,
which is essential for inferring innermost termination.

Example 4.8. Consider the TRS R consisting of the rules

f(x, x)→ f(g(x), x) g(h(x))→ h(x)

There are two dependency pairs:

1: f♯(x, x)→ f♯(g(x), x) 2 : f♯(x, x)→ g♯(x)

Since f♯(g(h(x)), h(x)) i→ f♯(h(x), h(x)), IDG(R) contains arrows from 1 to 1
and 2. However, CAP−1

U(f♯(g(x),x))(f
♯(x′, x′)) = CAP−1

{g(h(x))→h(x)}(f
♯(x′, x′)) =

f♯(x′, x′) does not unify with f♯(g(x), x). Thus, by replacing REN(CAP−1
U(t)(u))

with CAP−1
U(t)(u) in the definition of EIDG∗(R), we would obtain graph without

cycles and hence wrongly conclude innermost termination.

Note that in the above example i→ differs from ( i←)−1. Replacing CAP−1 by
CAP−1

s (or CAP−1
v ) in Definition 4.5 would make the approximation unsound.

Here CAP−1
s replaces all outermost subterms different from subterms of s with

a root symbol in D−1
R by distinct fresh variables.

Example 4.9. Consider the non-innermost terminating TRS R consisting of
the rules f(a) → f(b) and b → a. There is one dependency pair: f♯(a) → f♯(b).
Because of f♯(b) i→ f♯(a), IDG(R) contains a cycle. This cycle would not be
detected if CAP−1 is replaced by CAP−1

s : REN(CAP−1
f♯(a)(f

♯(a))) = f♯(a) does not

unify with f♯(b).

The following theorem summarizes the relationships between the various
approximations. The only non-trivial inclusions are DG(R) ⊆ EDG∗(R) ([46])
and IDG(R) ⊆ EIDG∗(R) (Lemma 4.7).

Theorem 4.10. For any TRS R, the following inclusions hold:

DG(R) ⊆ EDG∗(R) ⊆ EDG(R)

⊆ ⊆ ⊆

IDG(R) ⊆ EIDG∗(R) ⊆ EIDG(R)

2

Unlike the inclusion EDG∗(R) ⊆ EDG(R), the inclusion EIDG∗(R) ⊆
EIDG(R) need not become an equality for collapsing R, due to the use of usable
rules in the second part of Definition 4.5. This can be seen from Example 4.6.

We conclude this section by showing that for every finite graph G there is
a terminating TRS such that its dependency graph is isomorphic to G. This
implies that the dependency graph may form a large clique or even a complete
graph. We discuss the implications in the next section.

Definition 4.11. Let G = ({1, . . . , n}, E) be a finite graph. The TRS RG is
the set of rewrite rules {li → ri | 1 6 i 6 n} with

li = f(x1, . . . , xi−1, a, xi+1, . . . , xn, s(y))

ri = f(ri1, . . . , rin, y)
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where

rij =

{

a if (i, j) ∈ E

b if (i, j) 6∈ E

Lemma 4.12. Let G = ({1, . . . , n}, E) be a finite graph.

1. DG(RG), EDG(RG), EDG∗(RG), IDG(RG), EIDG(RG), and EIDG∗(RG)
are identical and isomorphic to G.

2. RG is terminating.

Proof. We have DP(RG) = {l♯i → r♯
i | 1 6 i 6 n}.

1. Suppose (i, j) ∈ E. By taking the substitutions σ = {y 7→ s(y)} and

τ = {xk 7→ rik | k ∈ {1, . . . , n} \ {j}}, we have r♯
iσ = l♯jτ and the terms

l♯iσ and l♯jτ are normal forms. Therefore, IDG(RG) contains the arrow

from l♯i → r♯
i to l♯j → r♯

j . Suppose (i, j) 6∈ E. REN(r♯
i ) and l♯j are not

unifiable because their i-th arguments are b and a. Therefore, EDG(RG)

does not contain the arrow from l♯i → r♯
i to l♯j → r♯

j . By Theorem 4.10 we
obtain the desired result.

2. By taking the simple projection π(f♯) = n + 1, all dependency pairs are
simplified to s(y) → y. Therefore, the subterm criterion (Theorem 3.13)
applies and hence RG is terminating.

4.2 Cycle Analysis

The use of Corollary 3.39 (3.40) for ensuring (innermost) termination requires
that all cycles have to be considered.

Example 4.13. Consider the TRS from [21] consisting of the two rules

f(s(x))→ f(s(x)) f(s(x))→ f(x)

There are two dependency pairs

1: f♯(s(x))→ f♯(s(x)) 2 : f♯(s(x))→ f♯(x)

and the dependency graph

1
�� oo // 2

��
has three cycles. The cycles {2} and {1, 2} are readily handled by the subterm
criterion, but the constraints for cycle {1} cannot be solved. Note that the TRS
is not (innermost) terminating.

Unfortunately, the number of cycles can be very large, even if the number
of dependency pairs is small. In the worst case, there are 2n − 1 cycles for n
dependency pairs. This explains why in early implementations ([3, 10]) of the
dependency pair method, strongly connected components rather than cycles are
computed. A strongly connected component (SCC) is a maximal (with respect



42 CHAPTER 4. AUTOMATING THE DEPENDENCY PAIR METHOD

to the inclusion relation) cycle. Note that the number of SCCs for n dependency
pairs is at most n, since every dependency pair belongs to at most one SCC.

We introduce convenient notations to abstract from the combination of con-
ditions in Theorems 3.13, 3.20 and 3.36.

Definition 4.14. Let R be a TRS, C a subset of DP(R), and D a subset of C.
We write � (C,D) if one of the following statements holds:

• there exists a simple projection π such that π(C) ⊆ D, and π(D) ⊆ ⊲,

• there exist an argument filtering π and a reduction triple (&,>, >) such
that π(R) ⊆ &, π(C) ⊆ D, and π(D) ⊆ >,

• there exist an argument filtering π and a reduction triple (&,>, >) such
that π(U(C) ∪ CE) ⊆ &, π(C) ⊆ >, and π(D) ⊆ >.

Moreover, we write �∃ C if there exists a non-empty subset D of C such that
� (C,D), and we write �∀ C if � (C, C).

In the notation the existential quantifier indicates that some pair in C should
be strictly decreasing, and the universal quantifier indicates that all pairs in C
should be strictly decreasing. The next two statements are immediate conse-
quences of Theorems 3.13, 3.20, and 3.36.

Corollary 4.15. A TRS R is terminating if �∃ C for every cycle C in DG(R).

Corollary 4.16. A TRS R is terminating if �∀ S for every SCC S in DG(R).

The difference with Corollary 4.16 is that all pairs in an SCC must be strictly
decreasing. This, however, makes the termination criterion of Corollary 4.15
strictly weaker than the one of Theorem 4.16, if we employ reduction triples
based on simplification orders.

Example 4.17. Consider the following TRS (from [5]):

evenodd(x, 0)→ not(evenodd(x, s(0))) not(true)→ false

evenodd(0, s(0))→ false not(false)→ true

evenodd(s(x), s(0))→ evenodd(x, 0)

There are three dependency pairs:

1: evenodd♯(x, 0)→ NOT(evenodd(x, s(0)))

2 : evenodd♯(x, 0)→ evenodd♯(x, s(0))

3 : evenodd♯(s(x), s(0))→ evenodd♯(x, 0)

The dependency graph

1 3oo oo // 2

contains one cycle: {2, 3}. The subterm criterion handles the cycle by taking
the simple projection π with π(evenodd♯) = 1.
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However, if one uses Corollary 4.15 the cycle (SCC) cannot be solved by
the subterm criterion. Even a combination of an argument filtering π and a
reduction triple (&,>, >) based on a quasi-simplification order & fails. To see
this, suppose that both

π(evenodd♯(x, 0)) > π(evenodd♯(x, s(0)))

and
π(evenodd♯(s(x), s(0))) > π(evenodd♯(x, 0))

Since every quasi-simplification order satisfies s(0) & 0, the first constraint re-
quires π(s) = [ ], π(evenodd♯) ∈ {[1, 2], [2], 2}, and 0 > s. So the second con-
straint reduces to

π(evenodd♯(s, s)) > π(evenodd♯(x, 0))

and this latter constraint can only be satisfied if π(evenodd♯) ∈ {[2], 2} and s > 0.
This is clearly impossible.

In order to cope with this problem, we propose a new recursive SCC algo-
rithm to compute and solve SCCs. More precisely, if S is the current SCC then
we first use a method in Definition 4.14 to show � (S,D) for some non-empty
subset D of S. Then we compute the SCCs of the subgraph of DG(R) induced
by S \D. These new SCCs are added to the list of SCCs that have to be solved.
It turns out that this new approach has the termination proving power of Corol-
lary 4.16 and the efficiency of Corollary 4.15. The former is proved below and
the latter is confirmed by extensive experiments (see Section 6.2) and explained
in the paragraph following Theorem 4.22.

In order to ensure that ignored subcycles are actually harmless, the individ-
ual theorems used in the algorithm must satisfy the following subcycle condition.
Fortunately, all methods introduced in this thesis satisfy it.

Lemma 4.18. Let R be a TRS, S a subset of the dependency pairs, and C and
D subsets of S. If � (S,D) then � (C, C ∩ D).

Proof. Suppose � (S,D). Based on the definition we perform case analysis.

• Suppose that there exists a simple projection π such that π(S) ⊆ D and
π(D) ⊆ ⊲. Since C ⊆ S, we have π(C) ⊆ π(S) and π(C ∩ D) ⊆ π(D).
Therefore, π(C) ⊆ D and π(C ∩D) ⊆ ⊲ hold. Hence, the first condition of
� holds.

• Suppose that there exist an argument filtering π and a reduction triple
(&,>, >) such that π(R) ⊆ &, π(S) ⊆ >, and π(D) ⊆ >. We obtain
π(C) ⊆ > and π(C ∩ D) ⊆ > as in the previous case. Hence, the second
condition of � holds.

• Suppose that there exist an argument filtering π and a reduction triple
(&,>, >) such that π(U(S) ∪ CE) ⊆ &, π(S) ⊆ >, and π(D) ⊆ ⊲. From
C ⊆ S we obtain U(C) ⊆ U(S), so π(U(C) ∪ CE) ⊆ π(U(S) ∪ CE) ⊆ &

holds. We obtain π(C) ⊆ > and π(C ∩D) ⊆ > as before. Hence, the third
condition of � holds.
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Now we are ready to prove the correctness of the recursive SCC algorithm.

Definition 4.19. Let R be a TRS and S a subset of the dependency pairs in
DP(R). We write � S if there exists a non-empty subset D of S such that
� (S,D) and � S′ for all SCCs S′ of the subgraph of DG(R) induced by S \ D.

Theorem 4.20. Let R be a TRS. The following conditions are equivalent:

1. � S for every SCC S in DG(R),

2. �∃ C for every cycle C in DG(R).

Proof. First suppose � S for every SCC S in DG(R) and let C be a cycle in
DG(R). We show that �∃ C. Let S be the SCC that contains C. We use
induction on the size of S. We have � S by assumption. There exists a non-
empty subset D of S such that � S′ for all SCCs S′ of the subgraph of DG(R)
induced by S\D. Since C and D are subsets of S, Lemma 4.18 yields � (C, C∩D).
If C ∩ D 6= ∅ then �∃ C. Otherwise, all pairs in C belong to S \ D and thus C
is a cycle in the subgraph of DG(R) induced by S \ D. Hence C is contained in
an SCC S′ of this subgraph. We have � S′ by assumption. Since |S′| < |S| we
can apply the induction hypothesis to obtain the desired �∃ C.

Next we suppose that �∃ C for every cycle C in DG(R). Let S be an SCC in
DG(R). We have to show that � S. We use induction on the size of S. Since
S is also a cycle, �∃ S, i.e., there exists a non-empty subset D of S such that
� (S,D). S \ D is a proper subset of S, and therefore every SCC S ′ in the
subgraph of DG(R) induced by S \ D is smaller than S, and thus � S ′ by the
induction hypothesis. Consequently, � S.

The above proof provides quite a bit more information than the statement
of Theorem 4.20 suggests. As a matter of fact, both conditions are equivalent
to termination of R, and also equivalent to the criterion “�∀ S for every SCC
S in DG(R)” of Corollary 4.15. However, from the proof of Theorem 4.20 we
learn that a termination proof based on “� S for every SCC S in DG(R)” can be
directly transformed into a termination proof based on “�∃ C for every cycle C
in DG(R)” and vice-versa; there is no need to search for new argument filterings
and reduction pairs. This is not true for the criterion of Corollary 4.15.

Theorem 4.20 and the discussion following it easily generalize to the inner-
most case.

Definition 4.21. Let R be a TRS, C a subset of DP(R), and D a subset of C.
We write �i (C,D) if one of the following statements holds:

• there exists a simple projection π such that π(C) ⊆ D, and π(D) ⊆ ⊲.

• there exist an argument filtering π and a reduction triple (&,>, >) such
that π(U(C)) ⊆ &, π(C) ⊆ >, and π(D) ⊆ >.

We write �i S if there exists a non-empty subset D of S such that � S,D and
�i S

′ for all SCCs S′ of the subgraph of IDG(R) induced by S \ D. Moreover,
we write �i∃ C if there exists a non-empty subset D of C such that �i (C,D).

Theorem 4.22. Let R be a TRS. The following conditions are equivalent:

1. �i S for every SCC S in IDG(R),
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2. �i∃ C for every cycle C in IDG(R).

2

A dependency graph with n dependency pairs has at most n SCCs. So
the number of groups of ordering constraints that need to be solved in order
to ensure (innermost) termination according to Corollary 4.15 is bounded by
n. We already remarked that the number of cycles and hence the number of
groups generated by the cycle approach of Corollary 4.16 is at most 2n − 1.
This upper bound cannot be improved, because a dependency graph may be a
complete graph (cf. Lemma 4.12), which contains 2n − 1 cycles. It is easy to
see that the recursive SCC algorithm of Theorem 4.20 (4.22) generates at most
n groups. This explains why the efficiency of the new approach is comparable
to the SCC approach and better than the cycle approach. It also explains why
(human or machine) verification of the (innermost) termination proof generated
by the new algorithm involves (much) less work than the one generated by the
approach based on Corollary 4.16.

We illustrate the recursive SCC algorithm of Theorem 4.20 on two relatively
small TRSs that contain very many cycles.

Example 4.23. As an extreme example, consider the TRS R (Example 11 in
[13]) consisting of the rules

D(t)→ 1 D(x+ y)→ D(x) + D(y)

D(c)→ 0 D(x× y)→ (y × D(x)) + (x× D(y))

D(−x)→ −D(x) D(x− y)→ D(x)− D(y)

D(lnx)→ D(x)/x D(x/y)→ (D(x)/y)− ((x× D(y))/y2)

D(xy)→ ((y × xy−1)× D(x)) + ((xy × lnx)× D(y))

The only defined symbol, D, occurs 12 times in the right-hand sides of the rules,
so DP(R) consists of 12 dependency pairs:

D♯(−x)→ D♯(x) D♯(x+ y)→ D♯(x) D♯(x+ y)→ D♯(y)

D♯(lnx)→ D♯(x) D♯(x− y)→ D♯(x) D♯(x− y)→ D♯(y)

D♯(xy)→ D♯(x) D♯(x× y)→ D♯(x) D♯(x× y)→ D♯(y)

D♯(xy)→ D♯(y) D♯(x/y)→ D♯(x) D♯(x/y)→ D♯(y)

All these dependency pairs have a right-hand side D♯(t) with t a variable. It
follows that the dependency graph DG(R) is a complete graph. Consequently,
there are 212 − 1 = 4095 cycles but just 1 SCC S = DP(R). We show the
termination of R. The subterm criterion takes care of all dependency pairs,
i.e., � (S,S) and thus also � S. Hence, R is terminating.

The next TRS is obtained by applying the first transformation of Giesl
and Middeldorp [23, Definition 12] to a context-sensitive rewrite system that
approximates the infinite sequence 1

1 , 1
4 , 1

9 , . . . , 1
n2 whose partial sums converge

to π2

6 (Lucas [42, Example 2]). In the termination proof we use LPO with quasi-
precedence and linear polynomial interpretations with coefficients in {0, 1} as
base orders.
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Example 4.24. Consider the following TRS R:

1: termsa(x)→ recip(sqra(m(x))) : terms(s(x)))

2 : sqra(0)→ 0

3: sqra(s(x))→ s(sqra(m(x)) +a dbla(m(x)))

4 : dbla(0)→ 0

5: dbla(s(x))→ s(s(dbla(m(x))))

6 : 0 +a y → m(y)

7 : s(x) +a y → s(m(x) +a m(y))

8 : firsta(0, z)→ nil

9: firsta(s(x), y : z)→ m(y) : first(x, z)

10 : halfa(0)→ 0

11: halfa(s(0))→ 0

12: halfa(s(s(x)))→ s(halfa(m(x)))

13 : halfa(dbl(x))→ m(x)

14 : m(terms(x))→ termsa(m(x)) 25 : termsa(x)→ terms(x)

15 : m(sqr(x))→ sqra(m(x)) 26 : sqra(x)→ sqr(x)

16 : m(x + y)→ m(x) +a m(y) 27 : x+a y → x+ y

17: m(dbl(x))→ dbla(m(x)) 28 : dbla(x)→ dbl(x)

18 : m(first(x, y))→ firsta(m(x),m(y)) 29 : firsta(x, y)→ first(x, y)

19 : m(half(x))→ halfa(m(x)) 30 : halfa(x)→ half(x)

20 : m(x : y)→ m(x) : y

21: m(recip(x))→ recip(m(x))

22 : m(s(x))→ s(m(x))

23 : m(0)→ 0

24: m(nil)→ nil

There are 33 dependency pairs:

31: terms♯
a(x)→ sqr♯a(m(x))

32 : terms♯
a(x)→ m♯(x)

33 : sqr♯a(s(x))→ sqra(m(x)) +♯
a dbla(m(x))

34 : sqr♯a(s(x))→ sqr♯a(m(x))

35 : sqr♯a(s(x))→ m♯(x)

36 : sqr♯a(s(x))→ dbl♯a(m(x))

37 : dbl♯a(s(x))→ dbl♯a(m(x))

38 : dbl♯a(s(x))→ m♯(x)

39 : 0 +♯
a y → m♯(y)

40 : s(x) +♯
a y → m(x) +♯

a m(y)

41 : s(x) +♯
a y → m♯(x)

42 : s(x) +♯
a y → m♯(y)
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43: first♯a(s(x), y : z)→ m♯(y)

44 : half♯a(s(s(x)))→ half♯a(m(x))

45 : half♯a(s(s(x)))→ m♯(x)

46 : half♯a(dbl(x))→ m♯(x)

47 : m♯(terms(x))→ terms♯
a(m(x))

48 : m♯(terms(x))→ m♯(x)

49 : m♯(sqr(x))→ sqr♯a(m(x))

50 : m♯(sqr(x))→ m♯(x)

51 : m♯(x+ y)→ m(x) +♯
a m(y)

52 : m♯(x+ y)→ m♯(x)

53 : m♯(x+ y)→ m♯(y)

54 : m♯(dbl(x))→ dbl♯a(m(x))

55 : m♯(dbl(x))→ m♯(x)

56 : m♯(first(x, y))→ first♯a(m(x),m(y))

57 : m♯(first(x, y))→ m♯(x)

58 : m♯(first(x, y))→ m♯(y)

59 : m♯(half(x))→ half♯a(m(x))

60 : m♯(half(x))→ m♯(x)

61 : m♯(x : y)→ m♯(x)

62 : m♯(recip(x))→ m♯(x)

63 : m♯(s(x))→ m♯(x)

The dependency graph contains a single SCC that consists of all dependency
pairs. The usable rules are all rules in R. By taking the argument filtering
π with π(dbl♯a) = π(half♯a) = π(m♯) = π(halfa) = π(:) = π(half) = π(m) =
π(recip) = 1 and π(first♯a) = 2 together with LPO with quasi-precedence 0 > nil,
termsa ≈ terms > terms♯

a > sqr♯a ≈ sqra ≈ sqr > + ≈ +a > +♯
a, sqr > dbl ≈

dbla > s, + > s, and firsta ≈ first, all rewrite rules are (weakly) decreasing, the
dependency pairs in {31–42, 44– 48, 50–58, 63} are strictly decreasing and the
remaining dependency pairs 43, 49, and 59– 62 are weakly decreasing.

• The dependency graph restricted to these dependency pairs contains one
SCC: {60, 61, 62}. By taking the simple projection π with π(m) = 1, all
dependency pairs are strictly decreasing. We obtain � {60, 61, 62}.

Therefore, � DP(R). Hence the termination of R is proved. The proof took
9.78 seconds. Using either LPO with quasi-precedence or linear polynomial in-
terpretations with coefficients in {0, 1} as base order will fail. The point we
want to stress, however, is that computing all cycles is doomed to fail. The
dependency graph contains at least 11,004,672 cycles but 24 hours of CPU time
was insufficient to compute the exact number.

In order to find a suitable argument filtering and LPO precedence, we used
the some heuristic and the divide and conquer technique with dynamic program-
ming, which are introduced in the next section.
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To conclude this section, we can safely state that every implementation of
the dependency pair method should use the recursive SCC algorithm for cycle
analysis.

4.3 Argument Filterings

The search for a suitable argument filtering that enables the simplified con-
straints to be solved by a reduction pair based on a strongly monotone sim-
plification order is the main bottleneck of the dependency pair method. The
standard approach is to enumerate all possible argument filterings until one is
encountered that enables the resulting constraints to be solved. However, since
a single function symbol of arity n already gives rise to 2n + n different argu-
ment filterings, enumeration is impractical except for small examples. In this
chapter we present two new ideas to reduce the number of computed argument
filterings.

4.3.1 Heuristics

We propose two simple heuristics that significantly reduce the number of argu-
ment filterings:

• In the some heuristic we consider for an n-ary function symbol f only the
‘full’ argument filtering π(f) = [1, . . . , n] and the n ‘collapsing’ argument
filterings π(f) = i for i = 1, . . . , n.

• In the some more heuristic we consider additionally the argument filtering
π(f) = [ ] (when n > 0).

Clearly, an n-ary function symbol admits n+ 1 argument filterings in the some
heuristic and n + 2 (1 if n = 0) in the some more heuristic. The following
example shows that even if the total number of function symbols is relatively
small, the savings made by these heuristics is significant.

Example 4.25. Consider the following TRS (from [5]), encoding the quicksort
algorithm:

1: high(n, nil) → nil 9: ifHigh(false, n, m : x) → m : high(n, x)

2 : high(n, m : x) → ifHigh(m ≤ n, n, m : x) 10: ifHigh(true, n, m : x) → high(n, x)

3 : low(n, nil) → nil 11: ifLow(false, n, m : x) → low(n, x)

4 : low(n, m : x) → ifLow(m ≤ n, n, m : x) 12: ifLow(true, n, m : x) → m : low(n, x)

5 : nil++ y → y 13: 0 ≤ y → true

6: (n : x)++ y → n : (x++ y) 14: s(x) ≤ 0 → false

7: qsort(nil) → nil 15: s(x) ≤ s(y) → x ≤ y

8: qsort(n : x) → qsort(low(n, x))++(n : qsort(high(n, x)))

There are 2 function symbols of arity 3, 5 function symbols of arity 2, 2 function
symbols of arity 1, and 2 function symbols of arity 0, resulting in (23 + 3)2 ×
(22 + 2)5 × (21 + 1)2 × (20 + 0)2 = 8468064 argument filterings for just the rule
constraints. The some more heuristic produces only 230400 possible argument
filterings and the some heuristic reduces this number further to 15552.



4.3. ARGUMENT FILTERINGS 49

One can imagine several other heuristics, like computing all argument filter-
ings for function symbols of arity n 6 2 but only some for function symbols of
higher arity. Needless to say, adopting any of these heuristics reduces the class of
TRSs that can be proved (innermost) terminating automatically. Nevertheless,
the experiments reported in Section 6.2 reveal that the two heuristics described
above are surprisingly effective. The reason is that termination is often caused
by a decrease in one argument of a recursive call, which can be captured by a
suitable ‘collapsing’ argument filtering. Moreover, the new recursive algorithm
for cycle analysis described in Section 4.2 supports the situation where different
recursive calls of the same function depend on a decrease of different arguments.

4.3.2 Divide and Conquer

In this subsection we propose a new divide and conquer approach for finding
all suitable argument filterings while avoiding enumeration. In the following we
develop this approach in a stepwise fashion.

The first observation is that argument filterings should be computed for
terms rather than for function symbols. Consider e.g. the term t = f(g(h(x)), y).
There are 6 × 3 × 3 = 54 possible argument filterings for the function symbols
f, g, and h. Many of these argument filterings contain redundant information.
For instance, if π(f) = [2] then it does not matter how π(g) and π(h) are defined
since g and h no longer appear in π(t) = f(y); likewise for π(f) = 2 or π(f) = [ ].
If π(f) ∈ {[1, 2], [1], 1} and π(g) = [ ] then the value of π(h) is irrelevant. It
follows that there are only 24 ‘minimal’ argument filterings for t. The following
definitions explains how these minimal argument filterings can be computed.

Definition 4.26. Let F be a signature. We consider partial argument filterings
that need not be defined for all function symbols in F . The completely undefined
argument filtering will be denoted by ǫ. Let π be a (partial) argument filtering
and t a term in T (F ,V). The domain dom(π) is the set of function symbols on
which π is defined. We define outer(t, π) as the subset of F consisting of those
function symbols in t where the computation of π(t) gets stuck: outer(t, π) = ∅

when t ∈ V and if t = f(t1, . . . , tn) then outer(t, π) = outer(ti, π) when π(f) = i,
outer(t, π) =

⋃m
j=1 outer(tij

, π) when π(f) = [i1, . . . , im], and outer(ti, π) = {f}
when π(f) is undefined. Let π and π′ be argument filterings. We say that π′ is
an extension of π and write π ⊆ π′ if dom(π) ⊆ dom(π′) and π(f) = π′(f) for
all f ∈ dom(π). Finally, if G ⊆ F then AF(G) denotes the set of all argument
filterings whose domain coincides with G.

The next definition introduces a set AF(t, π) of argument filterings that ex-
tend π and permit the term t to be completely evaluated.

Definition 4.27. Let F be a signature, t ∈ T (F ,V), and π an argument filter-
ing. We define a set AF(t, π) of argument filterings as follows: AF(t, π) = {π}
if outer(t, π) = ∅ and AF(t, π) =

⋃

{AF(t, π′) | π′ ∈ AF(outer(t, π)) × π} if
outer(t, π) 6= ∅. Here AF(outer(t, π)) returns the set of all argument filterings
whose domain coincide with outer(t, π) and AF(outer(t, π)) × π extends each of
these argument filterings with π.

Note that the recursion in the definition of AF(t, π) terminates since its
second argument enables more and more of t to be evaluated, until π(t) can be
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completely computed, i.e., until outer(t, π) = ∅. Next we present an equivalent
non-recursive definition of AF(t, π).

Definition 4.28. For a term t and an argument filtering π we denote by
AF′(t, π) the set of minimal extensions π′ of π such that outer(t, π′) = ∅. Min-
imality here means that if outer(t, π′′) = ∅ and π ⊆ π′′ ⊆ π′ then π′′ = π′.

Lemma 4.29. For all terms t and argument filterings π, AF(t, π) = AF′(t, π).

Proof. We use induction on n = |Fun(t) \ dom(π)|. If n = 0 then Fun(t) \
dom(π) = ∅ and thus outer(t, π) = ∅. Hence AF(t, π) = {π} = AF′(t, π).
Suppose n > 0. We have AF(t, π) =

⋃

{AF(t, π′) | π′ ∈ AF(outer(t, π)) × π}.
For every π′ ∈ AF(outer(t, π))× π, |Fun(t) \ dom(π′)| < n and thus AF(t, π′) =
AF′(t, π′) by the induction hypothesis. So it remains to show that

AF′(t, π) =
⋃

{AF′(t, π′) | π′ ∈ AF(outer(t, π)) × π}.

First suppose that π′′ ∈ AF′(t, π). So π ⊆ π′′ and outer(t, π′′) = ∅. Hence there
exists an argument filtering π′ ∈ AF(outer(t, π)) × π such that π′ ⊆ π′′. To
conclude that π′′ ∈ AF′(t, π′) we have to show that π′′ = π̄ whenever π′ ⊆ π̄ ⊆
π′′ and outer(t, π̄) = ∅. Clearly π ⊆ π̄ ⊆ π′′ for any such π̄ and thus π′′ = π̄ by
the assumption π′′ ∈ AF′(t, π).

Next suppose that π′′ ∈ AF′(t, π′) for some π′ ∈ AF(outer(t, π))×π. We have
outer(t, π′′) = ∅, π ⊆ π′ ⊆ π′′, and dom(π′) = dom(π)∪outer(t, π). To conclude
that π′′ ∈ AF′(t, π) it remains to show that π′′ = π̄ whenever π ⊆ π̄ ⊆ π′′ and
outer(t, π̄) = ∅. Any such π̄ satisfies dom(π) ∪ outer(t, π) ⊆ dom(π̄) and hence,
as π̄ ⊆ π′′ and π′ ⊆ π′′, π̄ and π′ agree on the function symbols in outer(t, π).
Consequently, π′ ⊆ π̄ and thus π′′ = π̄ by the assumption π′′ ∈ AF′(t, π′).

Since a term t can be completely evaluated by an argument filtering π if
and only if outer(t, π) = ∅, the next result is an immediate consequence of
Lemma 4.29.

Corollary 4.30. AF(t, ǫ) is the set of all minimal argument filterings π such
that π(t) can be completely evaluated.

We now explain how to compute the set of minimal argument filterings for
a set of terms.

Definition 4.31. Let T be a set of terms. We denote by AF(T ) the set of
all minimal argument filterings that completely evaluate each term in T . In
particular, we define AF(∅) = {ǫ}.

Definition 4.32. Two argument filterings π1 and π2 are said to be compatible if
they agree on the function symbols on which both are defined, in which case their
union π1 ∪ π2 is defined in the obvious way. If A1 and A2 are sets of argument
filterings then A1 ⊗A2 = {π1 ∪ π2 | π1 ∈ A1 and π2 ∈ A2 are compatible}.

Note that {ǫ} is the identity of the merge operation ⊗. The following lemma
expresses the fact that merging preserves the minimality property.

Lemma 4.33. If T1, T2 are sets of terms then AF(T1 ∪ T2) = AF(T1)⊗AF(T2).
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Proof. First we show that AF(T1∪T2) ⊆ AF(T1)⊗AF(T2). Let π ∈ AF(T1∪T2).
Let π1 and π2 be the minimum restrictions of π that completely evaluate every
term in T1 and T2, respectively. We have π1 ∈ AF(T1) and π2 ∈ AF(T2) by
definition. Since π1 and π2 are compatible, π1 ∪ π2 ∈ AF(T1) ⊗ AF(T2). Since
π1 ∪ π2 completely evaluates every term in T1 ∪ T2, we obtain π = π1 ∪ π2 from
the minimality of π.

Next we show that AF(T1)⊗AF(T2) ⊆ AF(T1∪T2). Let π ∈ AF(T1)⊗AF(T2).
So there exist compatible π1 ∈ AF(T1) and π2 ∈ AF(T2) such that π = π1 ∪ π2.
Since π completely evaluates every term in T1∪T2, there must be a π′ ∈ AF(T1∪
T2) such that π′ ⊆ π. Because π′ completely evaluates every term in T1 and T2,
the minimality of π1 and π2 yields π1 ⊆ π

′ and π2 ⊆ π
′. Hence π = π1∪π2 ⊆ π

′

and thus π = π′.

The combination of Corollary 4.30 and Lemma 4.33 yields that AF(T ) can
be computed as

⊗

{AF(t, ǫ) | t ∈ T }.
Definition 4.27 (for π = ǫ) is easily extended to rewrite rules.

Definition 4.34. For a rewrite rule l → r we define AF(l → r) = AF({l, r})
and AFvc(l → r) = {π ∈ AF(l→ r) | Var(π(r)) ⊆ Var(π(l))}.

The reason for excluding, in the definition of AFvc(l → r), argument filterings
π from AF(l → r) that violate the variable condition Var(π(r)) ⊆ Var(π(l)) is
simply that no simplification order > satisfies π(l) & π(r) if some variable in
π(r) does not also occur in π(l). If we know in advance which base order will
be used to satisfy the simplified constraints, then we can do even better. In the
following definition we illustrate this for LPO with strict precedence.

Definition 4.35. Let l → r be a rewrite rule. We define AFlpo(l → r) = {π ∈
AF(l → r) | π(l) >=

lpo π(r) for some precedence >}.

The next example shows the effectiveness of (restricted) partial argument
filterings.

Example 4.36. Table 4.1 shows for each rule l → r the number of argument
filterings in AF(Fun(l → r)), AF(l → r), AFvc(l → r), AFlpo(l → r), and
AFlpo(l→ r).

The idea is now to (1) compute all argument filterings for each constraint
separately and (2) subsequently merge them to obtain the argument filterings
of the full set of constraints.

Definition 4.37. We define AF(R) =
⊗

{AF(l → r) | l → r ∈ R} for a
set of rewrite rules R. Furthermore, if A is a set of argument filterings then
Alpo(R) = {π ∈ A | π(R) ⊆ >=

lpo for some precedence >}.

From the previous lemma we obtain the following equality:

AF(R1 ∪R2)lpo(R1∪R2) = (AF(R1)lpo(R1) ⊗ AF(R2)lpo(R2))lpo(R1∪R2)

The divide and conquer approach is based on the observation that the right-
hand side can be computed faster than a direct computation of the left-hand
side. By using the equality repeatedly, R is eventually divided into sets of single
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Table 4.1: Divide and conquer: quicksort (I).

l→ r AF(Fun(l→ r)) AF(l → r) AFvc(l → r) AFlpo(l → r)

1 6 6 6 5
2 2376 981 327 281
3 6 6 6 5
4 2376 981 327 281
5 6 6 3 3
6 36 36 27 23
7 3 3 3 3
8 3888 513 282 151
9 396 231 108 96

10 396 216 102 97
11 396 216 102 97
12 396 231 108 96
13 6 6 6 5
14 18 12 12 11
15 18 16 11 11

rules, but the form is not unique. For example, if 1, 2, and 3 are rewrite rules
then AF({1, 2, 3})lpo({1,2,3}) can be divided in three different ways:

((AF({1})lpo({1}) ⊗ AF({2})lpo({2}))lpo({1,2}))⊗ AF({3})lpo({3}))lpo({1,2,3})

((AF({1})lpo({1}) ⊗ AF({3})lpo({3}))lpo({1,3}))⊗ AF({2})lpo({2}))lpo({1,2,3})

((AF({2})lpo({2}) ⊗ AF({3})lpo({3}))lpo({2,3}))⊗ AF({1})lpo({1}))lpo({1,2,3})

We illustrate the divide and conquer approach on the TRS of Example 4.25.
Here we use the merge order corresponding to the numbering of the rewrite
rules.

Example 4.38. Table 4.2 shows the cumulative effect of the merge operation.
For instance, merging the 5 argument filterings for rule 1 with the 281 for rule
2 produces 279 argument filterings for the combination of rules 1 and 2. From
the last entry in the table we see that only 40 out of 8468064 argument filterings
enable the rule constraints to be solved by LPO with strict precedence.

The divide and conquer approach can easily be combined with the heuris-
tics of the previous subsection, just replace AF(outer(t, π)) in Definition 4.27 by
AFh(outer(t, π)) where h is the heuristic. With respect to Example 4.38, the
some more heuristic would produce 16 and the some heuristic just 9 suitable
argument filterings. This can be inferred from Table 4.2. An additional advan-
tage of the divide and conquer approach is that the argument filterings for the
usable rule constraints can be shared and reused among different cycles (SCCs)
in a dependency graph.

In the above we restricted the sets that were computed after every merge
operation by incorporating the underlying order. However, the cost of the ori-
entability check can be high. This is especially true if one uses KBO as base
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Table 4.2: Divide and conquer: quicksort (II).

h 1 2 3 4 5 6 7 8 9 10
all 5 279 1395 11579 34737 17368 52104 9637 5135 530

some
more 3 49 147 581 1162 681 2043 333 75 57

some 2 25 50 161 322 186 372 78 20 20
h 11 12 13 14 15
all 65 49 25 50 40

some
more 11 10 12 24 16

some 3 3 6 9 9

Table 4.3: Divide and conquer: quicksort (III).

h 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14
all 5 165 104 10 50 218 44 28 84 45 25 50 150 120 40

some
more 3 28 20 4 12 23 7 6 12 12 9 18 54 36 16

some 2 10 7 2 4 6 2 2 4 8 6 9 18 18 9

order, so we suggest to compute
⊗

{AFh
kbo(l → r) | l → r ∈ R}. The experi-

mental results reveal that this significantly improves the computation times (cf.
Table 6.4 in Section 6.2) .

4.3.3 Dynamic Programming

The effectiveness of the divide and conquer approach depends very much on
the merge order. Table 4.3 shows a different merge order for the rules of the
quicksort example. Although the final outcome is the same, the intermediate
results differ greatly.

In order to determine a good merge order, we use a dynamic programming
technique.

Definition 4.39. Let R be a set of rules over a signature F . We put root(R) =
{root(l), root(r) | l→ r ∈ R} ∩ F .

The key observation is that when merging two sets of argument filterings
A1 for R1 and A2 for R2, the size of A1 ⊗A2 often decreases when root(R1) =
root(R2). In general, the size of A1⊗A2 increases with the size of root(R1∪R2).
An argument filtering in A1 cannot be combined with an argument filtering
in A2 if the compatibility condition in the definition of the merge operation
(Definition 4.32) is not satisfied or if the orientability condition of the employed
base order is not satisfied (cf. Definition 4.37). Obviously, the first possibility
is more likely to happen if the domains of the two argument filterings have
a large intersection. For the second condition, function symbols that appear
at the root of terms in R1 ∪ R2 have a larger impact than function symbols
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Table 4.4: Divide and conquer: quicksort (IV).

R′

|A(R′)|
|root(R′)|

∅

1
–

{1}
5
–

{2}
281
–

{3}
5
–

{4}
281
–

{5}
3
–

{6}
23
–

{7}
3
–

{8}
151
–

{9}
96
–

{10}
97
–

R′

|A(R′)|
|root(R′)|

{11}
97
–

{12}
96
–

{13}
5
–

{14}
11
–

{15}
11
–

{14, 15}
10
2

{2, 10}
15
2

{4, 11}
15
2

R′

|A(R′)|
|root(R′)|

{5, 8}
83
2

{3, 7}
15
3

{13, 14, 15}
8
3

{2, 9, 10}
11
3

{4, 11, 12}
11
3

{5, 6, 8}
54
3

R′

|A(R′)|
|root(R′)|

{1, 3, 7}
75
4

{2, 4, 9, 10, 11, 12}
35
6

{5, 6, 8, 13, 14, 15}
432
6

R′

|A(R′)|
|root(R′)|

{1, 2, 3, 4, 7, 9, 10, 11, 12}
84
7

R
40
11

that appear only below the root since the latter might disappear. Based on
these observations, we now explain in some detail how the divide and conquer
approach is implemented in our termination prover TTT (cf. Chapter 6).

First we consider automation of Theorem 3.20, which is easier than Theo-
rems 3.36 and 3.28. Suppose we want to compute AF(R)lpo(R). We create a
table A consisting of pairs of sets of rewrite rules R′ ⊆ R and the correspond-
ing sets of partial argument filterings AF(R′)lpo(R′). The table is initialized as
follows:

A(∅) = AF(∅) A({l → r}) = AF({l→ r})lpo({l→r})

for all l → r ∈ R. Let us write maxA(R) for the set of maximal subsets S ⊆ R
such that A(S) is defined. So initially maxA(R) consists of the set of all singleton
subsets of R. As long as maxA(R) contains at least two sets, we choose two
distinct sets R1 and R2 from maxA(R) such that the size of root(R1 ∪ R2) is
minimal and we add the following entry to the table:

A(R1 ∪R2) = (A(R1)⊗A(R2))lpo(R1∪R2)

This process terminates if maxA(R) equals {R}, which means that A(R) =
AF(R)lpo(R) has been computed.

Example 4.40. For the fifteen rewrite rules of the TRS R of Example 4.25,
after initializing the table, it turns out that |root({14, 15})| = |{≤, false}| = 2 is
minimal, so we add

A({14, 15}) = (A(14)⊗A(15))lpo({14,15})

to the table. Next the pair of {2} and {10} is selected. Continuing in this
fashion, the data in Table 4.4 is computed (left to right, top to bottom).
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When using the condition “� S for every SCC S in DG(R)” of Theorem 4.20
for proving termination, for the first SCC S we compute A(R∪S) by first com-
puting A(S) and, if this set is non-empty, then computing A(R) before merging
these two sets to get A(R∪S) = (A(R)⊗A(S))lpo(R∪S). The obvious reason is
that the result of the computation of A(R) can be reused in combination with
other SCCs, including newly generated ones.

If one incorporates the usable rules of Theorems 3.36 and 3.28 with the
recursive SCC algorithm, it does not make sense to compute A(R), because
different SCCs (may) have different usable rules and some rewrite rules may
not be usable at all. Rather, we compute A(R′) for suitable subsets of R on
demand. This is illustrated in the following example.

Example 4.41. Consider the following TRS R (from [5]):

1: 0 + y → y 3: quot(x, 0, s(z))→ s(quot(x, z + s(0), s(z)))

2 : s(x) + y → s(x+ y) 4 : quot(0, s(y), s(z))→ 0

5: quot(s(x), s(y), z)→ quot(x, y, z)

Since R is non-overlapping, it is sufficient to prove innermost termination by
Theorem 2.22. There are four dependency pairs:

6: s(x) +♯ y → x+♯ y

7: quot♯(x, 0, s(z))→ z +♯ s(0)

8 : quot♯(x, 0, s(z))→ quot♯(x, z + s(0), s(z))

9 : quot♯(s(x), s(y), z)→ quot♯(x, y, z)

The EIDG or EIDG∗ approximated innermost dependency graph

6

��
7oo 9oo �� oo // 8oodd

contains two SCCs: S1 = {6}, S2 = {8, 9}.

• First consider the SCC S1. Since U(S1) = ∅ and S1 has just one element,
initializing the table A will produce

A(∅) = AF(∅) A({6}) = AF({6})lpo({6})

Since A({6}) contains a suitable argument filtering, we have �i S1.

• Next we consider the constraints for SCC S2. We have U(S2) = {1, 2}, so
we add the following entries to our table:

A({1}) = AF({1})lpo({1}) A({8}) = AF({8})lpo({8})

A({2}) = AF({2})lpo({2}) A({9}) = AF({9})lpo({9})

We want to compute A(U(S2)∪S2) by merging A(U(S2)) and A(S2) since
it is more likely that the two partial results can be reused than some mixture
of elements of both A(U(S2)) and A(S2). So we compute A({1, 2}) and
A({8, 9}):

A({1, 2}) = (A({1})⊗A({2}))lpo({1,2})

A({8, 9}) = (A({8})⊗A({9}))lpo({8,9})
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and then we compute A({1, 2, 8, 9}) by merging the results:

A({1, 2, 8, 9}) = (A({1, 2})⊗A({8, 9}))lpo({1,2,8,9})

In A({1, 2, 8, 9}) we find an argument filtering that makes rule 9 strictly
decreasing. By the construction of A, all (other) rules are weakly decreas-
ing, so SCC S2 gives rise to the new SCC S3 = {8}.

• We have U(S3) = {1, 2}, so we have to compute A({1, 2, 8}). An obvious
search through the table reveals that maxA({1, 2, 8}) = {{1, 2}, {8}}. So
the computation of A({1, 2, 8}) involves just one merge operation:

A({1, 2, 8}) = (A({1, 2})⊗A({8}))lpo({1,2,8})

Since A({1, 2, 8}) contains a suitable argument filtering (i.e., an argument
filtering that makes rule 8 strictly decreasing), the constraints for SCC S3

are solved, i.e., we have �i S3 and thus also �i S2.

Hence R is (innermost) terminating. The following table summarizes the divide
and conquer process:

R′
∅ {6} {1} {2} {8} {9} {1, 2} {8, 9} {1, 2, 8, 9} {1, 2, 8}

|A(R′)| 1 9 3 14 36 19 6 28 35 46

We conclude this section by mentioning a different approach to search for
suitable argument filterings. In [26] one always starts with the dependency
pairs. Given an SCC S, a single argument filtering π is selected that makes
one pair in S strictly decreasing and all other pairs weakly decreasing. This
argument filtering is then extended to handle the rule constraints in a step-wise
fashion. A depth-first search algorithm is used to explore the search space.
The advantage of this approach is that the computationally expensive merge
operation is avoided, but we see two disadvantages. First of all, a wrong choice
in the selection of the dependency pair that must be strictly decreasing causes
backtracking. Secondly, if there is no solution the whole search space must be
explored before this is detected whereas in the divide and conquer approach the
search is terminated as soon as an empty set of argument filterings is produced.



Chapter 5

Polynomial Orders

In Chapter 3 we used polynomial interpretations with non-negative integer coef-
ficients to construct reduction triples. In this chapter we show that polynomial
interpretations over the integers with negative coefficients like x−1 and x−y+1
can also be used for constructing reduction triples. In Section 5.1 we consider
polynomials with negative constants. In Section 5.2 we show how non-constant
coefficients can be negative integers by using a different construction of reduc-
tion triples.

5.1 Negative Constants

To make the discussion more concrete, let us consider a somewhat artificial
example: the recursive definition

f(x) = if x > 0 then f(f(x− 1)) + 1 else 0

from [15]. It computes the identity function over the natural numbers. Termi-
nation of the rewrite system

1: f(s(x))→ s(f(f(p(s(x)))))

2 : f(0)→ 0

3: p(s(x))→ x

obtained after the obvious translation is not easily proved. The (manual) proof
in [15] relies on forward closures whereas Theorem 3.36 with any reduction triple
based on a simplification order fails.1 There are three dependency pairs:

4 : f♯(s(x))→ f♯(f(p(s(x))))

5 : f♯(s(x))→ f♯(p(s(x)))

6 : f♯(s(x))→ p♯(s(x))

and the dependency graph contains one SCC: C = {4, 5}. All rules of R are
usable. By taking the natural polynomial interpretation

fZ(x) = f
♯
Z
(x) = x sZ(x) = x+ 1 0Z = 0 pZ(x) = x− 1

1See Section 6.3 for a discussion how existing automatic tools perform on this example.

57
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over the integers, the rule and dependency pair constraints reduce to the fol-
lowing inequalities:

1 : x+ 1 > x+ 1 3: x > x

2: 0 > 0 4, 5: x+ 1 > x

These constraints are obviously satisfied. The question is whether we are allowed
to conclude termination at this point. We will argue that the answer is affirma-
tive and, moreover, that the search for appropriate natural interpretations can
be efficiently implemented.

5.1.1 Theoretical Framework

When using polynomial interpretations with negative constants, the first chal-
lenge we face is that the standard order > on Z is not well-founded. Restrict-
ing the domain to the set N of natural numbers makes an interpretation like
pZ(x) = x − 1 ill-defined. Dershowitz and Hoot observe in [15] that if all (in-
stantiated) subterms in the rules of the TRS are interpreted as non-negative
integers, such interpretations can work correctly. Following their observation,
we propose to modify the interpretation of p to pN(x) = max{0, x− 1}.

Definition 5.1. Let F be a signature and let (Z, {fZ}f∈F) be an F-algebra such
that every interpretation function fZ is weakly monotone in all its arguments.
The interpretation functions of the induced algebra (N, {fN}f∈F) are defined as
follows: fN(x1, . . . , xn) = max{0, fZ(x1, . . . , xn)} for all x1, . . . , xn ∈ N.

With respect to the interpretations in the example at the beginning of Sec-
tion 5.1, we obtain sN(pN(x)) = max{0,max{0, x− 1}+ 1} = max{0, x− 1}+ 1,
pN(0N) = max{0, 0} = 0, and pN(sN(x)) = max{0,max{0, x+ 1} − 1} = x.

Lemma 5.2. If (Z, {fZ}f∈F) is an F-algebra with weakly monotone interpre-
tations then (>N,>N, >N) is a reduction triple.

Proof. It is easy to show that the interpretation functions of the induced algebra
are weakly monotone in all arguments. Routine arguments reveal that the
relation >N is a well-founded order which is closed under substitutions and that
>N is a preorder closed under contexts and substitutions. Moreover, the identity
>N · >N = >N holds. Hence (>N,>N, >N) is a reduction triple.

The reduction triples (>N,>N, >N) of this section can be used in connection
with Theorem 3.36 because they can be made CE -compatible by simply defining
consN(x, y) = max{x, y}.

Corollary 5.3. Let R be a TRS over a signature F and let C be a cycle in
DG(R). If there exist an F-algebra (Z, {fZ}f∈F) with weakly monotone inter-
pretations such that U(C)∪C ⊆ >N and C∩>N 6= ∅ then there are no C-minimal
rewrite sequences.

Note that there is no need for argument filterings here since their effect can
be incorporated in the definition of the interpretation functions.

It is interesting to remark that unlike usual polynomial interpretations, the
relation >N does not have the (weak) subterm property. For instance, with
respect to the interpretations in the example at the beginning of Section 5.1,
we have s(0) >N p(s(0)) and not p(s(0)) >N p(0).
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Example 5.4. Consider the TRS consisting of the following rewrite rules:

1: half(0)→ 0 4: bits(0)→ 0

2: half(s(0))→ 0 5: bits(s(x))→ s(bits(half(s(x))))

3 : half(s(s(x)))→ s(half(x))

The function half(x) computes ⌈x
2 ⌉ and bits(x) computes the number of bits that

are needed to represent all numbers less than or equal to x. Termination of
this TRS is proved in [5] by using the dependency pair method together with the
narrowing refinement. There are three dependency pairs:

6: half♯(s(s(x)))→ half♯(x)

7 : bits♯(s(x))→ bits♯(half(s(x)))

8 : bits♯(s(x))→ half♯(s(x))

and DG(R) contains two SCCs: {6} and {7}. The SCC {6} is handled by the
subterm criterion with the simple projection π(half♯) = 1. Consider the SCC
{7}. The usable rules are U({7}) = {1, 2, 3}. By taking the interpretations

0Z = 0, halfZ(x) = x− 1, bitsZ(x) = half
♯
Z
(x) = x, and sZ(x) = bits

♯
Z
(x) = x+1,

we obtain the following constraints over N:

1, 2: 0 > 0 3: x+ 1 > max{0, x− 1}+ 1 7: x+ 2 > x+ 1

5.1.2 Towards Automation

The constraints in Example 5.4 are satisfied. However, how can an inequality
like x+ 1 > max{0, x− 1}+ 1 be verified automatically? Because the inequali-
ties resulting from interpretations with negative constants may contain the max
operator, we cannot use standard techniques for comparing polynomial expres-
sions. In order to avoid reasoning by case analysis (x − 1 > 0 or x − 1 6 0
for constraint 3 in Example 5.4), we approximate the evaluation function of the
induced algebra.

Definition 5.5. Given a polynomial P with coefficients in Z, we denote the con-
stant part by c(P ) and the non-constant part P−c(P ) by n(P ). Let (Z, {fZ}f∈F)
be an F-algebra such that every fZ is a weakly monotone polynomial. With ev-
ery term t we associate polynomials Pleft (t) and Pright (t) with coefficients in Z

and variables in t as indeterminates:

Pleft (t) =











t if t is a variable

0 if t = f(t1, . . . , tn), n(P1) = 0, and c(P1) < 0

P1 otherwise

where P1 = fZ(Pleft (t1), . . . , Pleft (tn)) and

Pright (t) =











t if t is a variable

n(P2) if t = f(t1, . . . , tn) and c(P2) < 0

P2 otherwise
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where P2 = fZ(Pright (t1), . . . , Pright (tn)). Let α : V → N be an assignment.
The result of evaluating Pleft (t) and Pright (t) under α is denoted by [α]l

Z
(t) and

[α]r
Z
(t). Furthermore, the result of evaluating a polynomial P under α is denoted

by α(P ).

According the following lemma, Pleft (t) is a lower bound and Pright (t) is an
upper bound of the interpretation of t in the induced algebra.

Lemma 5.6. Let (Z, {fZ}f∈F) be an F-algebra such that every fZ is a weakly
monotone polynomial. Let t be a term. For every assignment α : V → N we
have [α]r

Z
(t) > [α]N(t) > [α]l

Z
(t).

Proof. By induction on the structure of t. If t ∈ V then [α]r
Z
(t) = [α]l

Z
(t) =

α(t) = [α]N(t). Suppose t = f(t1, . . . , tn). According to the induction hypothe-
sis, [α]r

Z
(ti) > [α]N(ti) > [α]l

Z
(ti) for all i. Since fZ is weakly monotone,

fZ([α]r
Z
(t1), . . . , [α]r

Z
(tn)) > fZ([α]N(t1), . . . , [α]N(tn))

> fZ([α]l
Z
(t1), . . . , [α]l

Z
(tn))

By applying the weakly monotone function max{0, ·}we obtain max{0, α(P2)} >

[α]N(t) > max{0, α(P1)} where P1 = fZ(Pleft (t1), . . . , Pleft (tn)) and P2 =
fZ(Pright (t1), . . . , Pright (tn)). We have

[α]lZ(t) =

{

0 if n(P1) = 0 and c(P1) < 0

α(P1) otherwise

and thus [α]l
Z
(t) 6 max{0, α(P1)}. Likewise,

[α]rZ(t) =

{

α(n(P2)) if c(P2) < 0

α(P2) otherwise

In the former case, α(n(P2)) = α(P2) − c(P2) > α(P2) and α(n(P2)) > 0. In
the latter case α(P2) > 0. So in both cases we have [α]r

Z
(t) > max{0, α(P2)}.

Hence we obtain the desired inequalities.

Corollary 5.7. Let (Z, {fZ}f∈F) be an F-algebra such that every fZ is a weakly
monotone polynomial. Let s and t be terms. If Pleft (s) − Pright (t) > 0 then
s >N t. If Pleft (s)− Pright (t) > 0 then s >N t.

Example 5.8. Consider again the TRS of Example 5.4. By applying Pleft to
the left-hand sides and Pright to the right-hand sides of the rewrite rules and the
dependency pairs, the following ordering constraints are obtained:

1: 0 > 0 2: 0 > 0 3: x+ 1 > x+ 1 7: x+ 2 > x+ 1

The only difference with the constraints in Example 5.4 is the interpretation of
the term s(half(x)) on the right-hand side of rule 3. We have Pright (half(x)) =
n(x− 1) = x and thus Pright (s(half(x))) = x+ 1. Although x+ 1 is less precise
than max{0, x − 1} + 1, it is accurate enough to solve the ordering constraint
resulting from rule 3.
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So once the interpretations fZ are determined, we transform a rule l → r
into the polynomial Pleft (l)− Pright (r). Standard techniques (cf. [34]) can then
be used to test whether this polynomial is positive (or non-negative) for all
values in N for the variables. The remaining question is how to find suitable
interpretations for the function symbols. This problem will be discussed in
Chapter 6.1.

5.2 Negative Coefficients

Let us start with an example which shows that negative coefficients in polyno-
mial interpretations can be useful.

Example 5.9. Consider the following variation of a TRS in [5]:

1: 0 6 y → true 7: x− 0→ x

2: s(x) 6 0→ false 8: s(x)− s(y)→ x− y

3: s(x) 6 s(y)→ x 6 y 9: x− x→ 0

4: mod(0, s(y))→ 0 10: if(true, x, y)→ x

5: mod(s(x), 0)→ 0 11: if(false, x, y)→ y

6: mod(s(x), s(y))→ if(y 6 x,mod(s(x) − s(y), s(y)), s(x))

There are six dependency pairs:

12: s(x) 6♯ s(y)→ x 6♯ y

13: s(x)−♯ s(y)→ x−♯ y

14: mod♯(s(x), s(y))→ if♯(y 6 x,mod(s(x)− s(y), s(y)), s(x))

15 : mod♯(s(x), s(y))→ y 6♯ x

16: mod♯(s(x), s(y))→ mod♯(s(x)− s(y), s(y))

17 : mod♯(s(x), s(y))→ s(x) −♯ s(y)

The dependency graph contains three SCCs: {12}, {13}, and {16}. The first two
are handled by the subterm criterion (take π(>♯) = 1, and π(−♯) = 1). The SCC
{16} is problematic. The usable rules are U({16}) = {7, 8, 9}. We need to find a
reduction triple (&,>, >) such that rules 7, 8, and 9 are weakly decreasing (i.e.,
compatible with &) and dependency pair 16 is strictly decreasing (with respect
to >). The only way to achieve the latter is by using the observation that s(x)
is semantically greater than the syntactically larger term s(x)− s(y). If we take
the natural interpretation −Z(x, y) = x− y, sZ(x) = x− 1, and 0Z = 0, together

with mod
♯
Z
(x, y) = x then we obtain the following induced ordering constraints

over the natural numbers:

7: x > x

8: max{0, x− y} > max{0, x− y}

9: 0 > 0

16: x+ 1 > max{0, x− y}

which are obviously satisfied. However, are we allowed to use an interpretation
like −Z(x, y) = x− y in termination proofs?
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5.2.1 Theoretical Framework

The answer to the question in Example 5.9 appears to be negative because
Lemma 5.2 no longer holds. Because the induced interpretation −N(x, y) =
max{0, x− y} is not weakly monotone in its second argument, the order >N of
the induced algebra is not closed under contexts, so if s >N t then it may happen
that C[s] 6N C[t]. Consequently, we do not obtain a reduction triple. However,
if we have s =N t rather than s >N t, closure under contexts is obtained for free.
Here, for an algebra A, we write s =A t if [α]A(s) = [α]A(t) for all assignments
α. Note that the relation =N ∪ >N is properly contained in >N and hence the
reduction triple (=N,>N, >N) outperforms the reduction pair (=N, >N), i.e., the
reduction triple (=N,=N∪>N, >N). If we use the latter, all dependency pairs in
a cycle have to be compatible with =N ∪>N, which is rather restrictive because
dependency pairs that are transformed into a polynomial constraint of the form
x2 > x or x + 2y > x + y cannot be handled. The lemma and corollary below
states the soundness of our approach in a more abstract setting.

Lemma 5.10. Let A be an F-algebra equipped with a well-founded order >.
The triple (=A,>A, >A) is a reduction triple.

Corollary 5.11. Let R be a TRS and let C be a cycle in its dependency graph.
If there exists an algebra A equipped with a well-founded order > such that
R ⊆ =A, C ⊆ >A, and C ∩ >A 6= ∅ then there are no C-minimal rewrite
sequences.

The constraint R ⊆ =A in Corollary 5.11 means that A is a model of R. It
cannot be weakened to U(C) ⊆ =A. The reason is that CE does not admit any
nontrivial models; in any model A of CE we have x = consA(x, y) = y for all x, y
in the carrier ofA. This is a problem for the TRS in Example 5.9. There we have
U({16}) ⊆ =N but one easily checks that R ⊆ =N implies modN(x, y) = xmod y,
which cannot be represented with polynomials of finite degree. The following
example shows that replacing R ⊆ =A by U(C) ⊆ =A is actually unsound.

Example 5.12. Consider the following non-terminating TRS R1 ∪ R2 of Ex-
ample 1.2. The only dependency pair f♯(a, b, x) → f♯(x, x, x) forms a cycle in
the dependency graph. There are no usable rules. If we take the polynomial
interpretation aZ = 1, bZ = 0, and f

♯
Z
(x, y, z) = x − y then the dependency pair

is transformed into 1− 0 = 1 > 0 = x− x.

In order to conclude the absence of C-minimal innermost rewrite sequences
we are allowed to replace R by U(C). This follows from Theorem 3.28.

Corollary 5.13. Let R be a TRS and let C be a cycle in its innermost depen-
dency graph. If there exists an algebra A equipped with a well-founded order >
such that U(C) ⊆ =A, C ⊆ >A, and C ∩ >A 6= ∅ then there are no C-minimal
innermost rewrite sequences.

With this result the innermost termination of the TRS in Example 5.9 is
proved. Since the TRS in question is a locally confluent overlay system, by
a result of Gramlich [28] this suffices to conclude termination. However, the
usual syntactic condition to ensure local confluence, viz. non-overlappingness
(cf. Theorem 2.22), is not fulfilled.
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In the following we prove that also for termination we may replace R ⊆ =A

by U(C) ⊆ =A, provided > is a well-order and, more importantly, A regards
U(C) ∪ C as right-linear. The latter concept is defined as follows.

Definition 5.14. A linear term s is called a linearization of a term t if s = tσ
for some variable substitution σ. Let A be an algebra. A TRS R is A-right-
linear if for every rule l → r ∈ R there exists a linearization r′ of r such that
r =A r′.

The following definition introduces a new algebraic construction that is used
to prove the desired result.

Definition 5.15. Let F be a signature and let A = (A, {fA}f∈F) be an F-
algebra equipped with a well-order >. Let F be the set of all nonempty finite
subsets of A. We define the set extension of A as the (F ∪{cons})-algebra with
carrier F and interpretations consF(X,Y ) = X ∪ Y and

fF(X1, . . . , Xn) = {fA(x1, . . . , xn) | x1 ∈ X1, . . . , xn ∈ Xn}

for all f ∈ F . The relations ⊇F, >F, and >F are defined on terms as follows:

s ⊇F t if [α]F(s) ⊇ [α]F(t)

s >F t if max([α]F(s)) > max([α]F(t))

s >F t if max([α]F(s)) > max([α]F(t))

for all assignments α : V → F.

Note that since [α]F(u) is a finite nonempty set for every term u and > is a
well-order, the relations >F and >F are well-defined.

Lemma 5.16. The triple (⊇F,>F, >F) is a CE -compatible reduction triple.

Proof. The relations ⊇F and >F are clearly preorders. Closure under contexts
of ⊇F follows because all interpretations in F are weakly monotone with respect
to set inclusion. We show that ⊇F is closed under substitutions. Suppose that
s ⊇F t and let σ be a substitution. Let α : V → F be an arbitrary assignment.
We have to show that [α]F(sσ) ⊇ [α]F(tσ). Define the assignment β as β(x) =
[α]F(xσ) for all x ∈ V . It is not difficult to show that [α]F(sσ) = [β]F(s) and
[α]F(tσ) = [β]F(t). The assumption s ⊇F t yields [β]F(s) ⊇ [β]F(t). Closure
under substitutions of >F and >F follows in the same way. The relation >F

is a proper order. It inherits well-foundedness from >. Since ⊇F ⊆ >F and
>F · >F = >F, compatibility holds. We have CE ⊆ ⊇F by the definition of
consF.

The next example illustrates the difference between >N and >F.

Example 5.17. Consider again the TRS and the interpretation of Example 5.12.
If we take an assignment α with α(x) = {0, 1} then [α]F(f♯(a, b, x)) = {1} and
[α]F(f♯(x, x, x)) = {0, 1}. Hence f♯(a, b, x) >F f♯(x, x, x) does not hold.

In the following lemma β ∈ α abbreviates “β(x) ∈ α(x) for all x ∈ V”.

Lemma 5.18. Let t be a term. For every assignment α : V → F we have

[α]F(t) ⊇ {[β]A(t) | β ∈ α}.

Moreover, if t is linear then the reverse inclusion also holds.
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Proof. We show the inclusion by induction on t. Let β ∈ α. If t is a variable
then [β]A(t) = β(t) ∈ α(t) = [α]F(t). Suppose t = f(t1, . . . , tn). The induc-
tion hypothesis yields [β]A(ti) ∈ [α]F(ti) for all i ∈ {1, . . . , n}. Hence, by the
definition of fF,

[β]A(t) = fA([β]A(t1), . . . , [β]A(tn)) ∈ fF([α]F(t1), . . . , [α]F(tn)) = [α]F(t).

Now suppose that t is linear. We show the reverse inclusion

[α]F(t) ⊆ {[β]A(t) | β ∈ α}

by induction on t. If t is a variable then

[α]F(t) = α(t) = {β(t) | β ∈ α} = {[β]A(t) | β ∈ α}.

Suppose t = f(t1, . . . , tn). The induction hypothesis yields

[α]F(ti) ⊆ {[β]A(ti) | β ∈ α}

for all i ∈ {1, . . . , n}. Because t is linear, the variables in t1, . . . , tn are pairwise
disjoint and hence [α]F(t1)× · · · × [α]F(tn) ⊆ {([β]A(t1), . . . , [β]A(tn)) | β ∈ α}.
Consequently,

[α]F(t) = {fA(a1, . . . , an) | (a1, . . . , an) ∈ [α]F(t1)× · · · × [α]F(tn)}

⊆ {fA([β]A(t1), . . . , [β]A(tn)) | β ∈ α}

= {[β]A(t) | β ∈ α}

As can be seen from Example 5.17, set equality in the above lemma is not
guaranteed without the linearity of t.

The following lemma relates interpretations in A to interpretations in F.

Lemma 5.19. Let l → r be an A-right-linear rewrite rule.

• If l =A r then l ⊇F r.

• If l >A r then l >F r.

• If l >A r then l >F r.

Proof. Let r′ be a linearization of r such that r′ =A r and let σ be a substitution
such that r′σ = r. We may assume that σ only affects the (fresh) variables in
Var(r′) \ Var(r). In particular, l = lσ. Since the relations ⊇F, >F, and >F are
closed under substitutions it is sufficient to show l ⊇F r

′, l >F r
′, and l >F r

′

under the stated conditions. We have

[α]F(l) ⊇ {[β]A(l) | β ∈ α}

and

[α]F(r′) = {[β]A(r′) | β ∈ α} = {[β]A(r) | β ∈ α}
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according to Lemma 5.18. Now, if l =A r then [β]A(l) = [β]A(r) for all assign-
ments β and thus [α]F(l) ⊇ [α]F(r′). Hence l ⊇F r

′ by definition. Next, if l >A r
then [β]A(l) > [β]A(r) for all assignments β. Hence

max ([α]F(l)) > max {[β]A(l) | β ∈ α}

> max {[β]A(r) | β ∈ α}

= max ([α]F(r′))

and thus l >F r
′ by definition. The proof that l >F r whenever l >A r follows

in exactly the same way.

We are now ready for the usable rules criterion announced earlier.

Theorem 5.20. Let R be a TRS and let C be a cycle in its dependency graph.
If there exists an algebra A equipped with a well-order > such that U(C) ∪ C
is A-right-linear, U(C) ⊆ =A, C ⊆ >A, and C ∩ >A 6= ∅ then there are no
C-minimal rewrite sequences.

Proof. From Lemma 5.19 we obtain U(C) ⊆ ⊇F, C ⊆ >F, and C ∩ >F 6= ∅.
Lemma 5.16 states that (⊇F,>F, >F) is a reduction triple and CE ⊆ ⊇F. Hence
the conditions of Theorem 3.36 are satisfied (by taking the trivial argument
filtering) and the result follows.

Note that the set extension is only used in the proof of Theorem 5.20.

Example 5.21. Consider again the problematic SCC C = {16} of Example 5.9.
We claim that the induced algebra over N regards U(C) ∪ C as right-linear. For
the rules in U(C) = {7, 8, 9} this is clear as they are right-linear. Because of the

interpretation mod
♯
Z
(x, y) = x, we have

mod♯(s(x) − s(y), s(y)) =N mod♯(s(x) − s(y), s(z))

and thus the single rule in C is regarded as right-linear. Hence Theorem 5.20
is applicable and we can finally conclude the termination of the TRS in Exam-
ple 5.9.

5.2.2 Towards Automation

How do we verify a constraint like x+1 > max{0, x−y}? The approach that we
developed in Section 5.1.2 for dealing with negative constants is not applicable
because Lemma 5.6 relies essentially on weak monotonicity of the polynomial
interpretations.

Let P>0 be a subset of the set of polynomials P with integral coefficients
such that α(P ) > 0 for all α : V → N for which membership is decidable. For
instance, P>0 could be the set of polynomials without negative coefficients. We
define P<0 in the same way.

Definition 5.22. Let (Z, {fZ}f∈F) be an algebra. With every term t we asso-
ciate a polynomial Q(t) as follows:

Q(t) =



















t if t is a variable

P if t = f(t1, . . . , tn) and P ∈ P>0

0 if t = f(t1, . . . , tn) and P ∈ P<0

v(P ) otherwise
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where P = fZ(Q(t1), . . . , Q(tn)). In the last clause v(P ) denotes a fresh abstract
variable that we uniquely associate with P .

There are two kinds of indeterminates in Q(t): ordinary variables occurring
in t and abstract variables. The intuitive meaning of an abstract variable v(P ) is
max{0, P}. The latter quantity is always non-negative, like an ordinary variable
ranging over the natural numbers, but from v(P ) we can extract the original
polynomial P and this information may be crucial for a comparison between
two polynomial expressions to succeed. Note that the polynomial P associated
with an abstract variable v(P ) may contain other abstract variables. However,
because v(P ) is different from previously selected abstract variables, there are
no spurious loops like P1 = v(x − v(P2)) and P2 = v(x− v(P1)).

The reason for using P>0 and P<0 in the above definition is to make our ap-
proach independent of the particular method that is used to test non-negativeness
or negativeness of polynomials.

Definition 5.23. With every assignment α : V → N we associate an assignment
α∗ : V → N defined as follows:

α∗(x) =

{

max{0, α∗(P )} if x is an abstract variable v(P )

α(x) otherwise

The above definition is recursive because P may contain abstract variables.
However, since v(P ) is different from previously selected abstract variables, the
recursion terminates and it follows that α∗ is well-defined.

Theorem 5.24. Let (Z, {fZ}f∈F) be an algebra such that every fZ is a polyno-
mial. Let t be a term. For every assignment α we have [α]N(t) = α∗(Q(t)).

Proof. We show that [α]N(t) = α∗(Q(t)) by induction on t. If t is a variable
then [α]N(t) = α(t) = α∗(t) = α∗(Q(t)). Suppose t = f(t1, . . . , tn). Let P =
fZ(Q(t1), . . . , Q(tn)). The induction hypothesis yields [α]N(ti) = α∗(Q(ti)) for
all i and thus

[α]N(t) = fN(α∗(Q(t1)), . . . , α
∗(Q(tn)))

= max{0, fZ(α∗(Q(t1)), . . . , α
∗(Q(tn)))} = max{0, α∗(P )}

We distinguish three cases, corresponding to the definition of Q(t).

• First suppose that P ∈ P>0. This implies that α∗(P ) > 0 and thus we
have max{0, α∗(P )} = α∗(P ). Hence [α]N(t) = α∗(P ) = α∗(Q(t)).

• Next suppose that P ∈ P<0. So α∗(P ) < 0 and thus max{0, α∗(P )} = 0.
Hence [α]N(t) = 0 = α∗(Q(t)).

• In the remaining case we do not know the status of P . We have Q(t) =
v(P ) and thus α∗(Q(t)) = max{0, α∗(P )} which immediately yields the
desired identity [α]N(t) = α∗(Q(t)).

Corollary 5.25. Let (Z, {fZ}f∈F) be an F-algebra such that every fZ is a
polynomial. Let s and t be terms. If Q(s) = Q(t) then s =N t. If α∗(Q(s) −
Q(t)) > 0 for all assignments α : V → N then s >N t. If α∗(Q(s) − Q(t)) > 0
for all assignments α : V → N then s >N t.
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Example 5.26. Consider again dependency pair 16 from Example 5.9:

mod♯(s(x), s(y))→ mod♯(s(x) − s(y), s(y))

We have Q(mod♯(s(x), s(y))) = x+1 and Q(mod♯(s(x)− s(y), s(y))) = v(x− y).
Since x+1−v(x−y) may be negative (when interpreting v(x−y) as a variable),
the above corollary cannot be used to conclude that 16 is strictly decreasing.
However, if we estimate v(x − y) by x, the non-negative part of x− y, then we
obtain x+ 1− x = 1 which is clearly positive.

Given a polynomial P with coefficients in Z, we denote the non-negative
part of P by N(P ).

Lemma 5.27. Let Q be a polynomial with integral coefficients. Suppose v(P )
is an abstract variable that occurs in Q but not in N(Q). If Q′ is the polynomial
obtained from Q by replacing v(P ) with N(P ) then α∗(Q) > α∗(Q′) for all
assignments α : V → N.

Proof. Let α : V → N be an arbitrary assignment. In α∗(Q) every occurrence
of v(P ) is assigned the value α∗(v(P )) = max{0, α∗(P )}. We have α∗(N(P )) >
α∗(P ) > α∗(v(P )). By assumption, v(P ) occurs only in the negative part of Q.
Hence Q is (strictly) anti-monotone in v(P ) and therefore α∗(Q) > α∗(Q′).

In order to determine whether s >N t (or s >N t) holds, the idea now is to
first use standard techniques to test the non-negativeness of Q = Q(s) − Q(t)
(i.e., we determine whether α(Q) > 0 for all assignments α by checking whether
Q ∈ P>0). If Q is non-negative then we certainly have α∗(Q) > 0 for all
assignments α and thus s >N t follows from Corollary 5.25. If non-negativeness
cannot be shown then we apply the previous lemma to replace an abstract
variable that occurs only in the negative part of Q. The resulting polynomial
Q′ is tested for non-negativeness. If the test succeeds then for all assignments α
we have α∗(Q′) > 0 and thus also α∗(Q) > 0 by the previous lemma. According
to Corollary 5.25 this is sufficient to conclude s >N t. Otherwise we repeat the
above process with Q′. The process terminates when there are no more abstract
variables left that appear only in the negative part of the current polynomial.

We conclude this chapter by mentioning the work of Lucas [43, 44], in
which polynomials with real coefficients for automatically proving termination
of (context-sensitive) rewriting systems are considered. He solves the problem
of well-foundedness by replacing the standard order on R with >δ for some fixed
positive δ ∈ R: x >δ y if and only if x − y > δ. In addition, he demands that
interpretations are uniformly bounded from below (i.e., there exists an m ∈ R

such that fR(x1, . . . , xn) > m for all function symbols f and x1, . . . , xn > m).
While this method allows one to use finer positive polynomial like x2 − 1

2x+ 1,
the latter requirement entails that interpretations like x− 1 or x− y+1 cannot
be handled. This contrasts our approach in which a given algebra (on Z) is
replaced by an induced algebra (on N). We anticipate that by combining both
approaches, unrestricted polynomial interpretations with real coefficients like
x− 1

2y can be used for termination proofs.
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Chapter 6

Tyrolean Termination Tool

The Tyrolean Termination Tool (TTT) is a tool for automatically proving termi-
nation and innermost termination of term rewrite systems and simply typed ap-
plicative rewrite systems. The techniques introduced in the preceding chapters
have been implemented in TTT. TTT is described in Section 6.1. In Section 6.2
we provide experimental data for all new techniques presented in preceding
chapters. In the final section we compare our tool with other systems.

6.1 Tyrolean Termination Tool

The Tyrolean Termination Tool is the successor of the Tsukuba Termination
Tool [29], which was a tool for automatically proving termination of term rewrite
systems. TTT produces high-quality output and has a convenient web interface.
The tool is available at

http://cl2-informatik.uibk.ac.at/ttt

This section is organized as follows: In Section 6.1.1 we explain the web in-
terface of TTT. In Section 6.1.2 we explain how to use TTT to obtain termination
proofs of simply-typed applicative systems. In Section 6.1.3 we describe how to
input a collection of rewrite systems and how to interpret the resulting output.
Some implementation details are given in Section 6.1.4.

6.1.1 Web interface

The web interface provides a fully automatic mode and a semi-automatic mode.

Fully Automatic Mode. Figure 6.3 shows the web interface for the fully
automatic mode. In this mode TTT uses a simple strategy to (recursively) solve
the ordering constraints for each SCC of the approximated dependency graph.
The strategy is based on the new features described in the previous chapters and
uses LPO (both with strict and quasi-precedence) with some argument filterings
in Section 4.3.1 and mostly linear polynomial interpretations with coefficients
from {−1, 0, 1} as base orders.

After computing the SCCs of the approximated (innermost) dependency
graph, the strategy subjects each SCC to the following algorithm:

69
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Figure 6.1: A screen shot of the fully automatic mode of TTT.

1. First we check whether the subterm criterion is applicable.

2. If the subterm criterion was unsuccessful, we compute the usable rules.

3. The resulting (usable rules and dependency pairs) constraints are sub-
jected to the natural (see below) polynomial interpretation.

4. If the constraints could not be solved in step 3, we employ the divide
and conquer algorithm for computing suitable argument filterings with
respect to the some heuristic in Section 4.3.1 and the lexicographic path
order (LPO) with strict precedence.

5. If the previous step was unsuccessful, we repeat step 3 with arbitrary linear
polynomial interpretations with coefficients from {0, 1}.

6. Next we repeat step 4 with the variant of LPO based on quasi-precedences
and a small increase in the search space for argument filterings (see below).

7. If the constraints could still not be solved, we try polynomial interpreta-
tions with negative constants.

8. As a last resort, we use polynomial interpretations with coefficients from
{−1, 0, 1} in connection with Corollary 5.13 (for innermost termination)
or Corollary 5.20 (for termination). If the latter fails, due to the A-right-
linearity restriction, we give Corollary 5.11 a try.

If only part of an SCC could be handled, we subject the resulting new SCCs
recursively to the same algorithm.

Taking the following polynomial interpretations for certain function symbols
that appear in many example TRSs is what we call natural (for other function
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symbols we take linear interpretations with coefficients from {0, 1}):

0Z = 0 1Z = 1 2Z = 2 · · ·

sZ(x) = x+ 1 pZ(x) = x− 1 +Z(x, y) = x+ y ×Z(x, y) = xy

If the current set of constraints can be solved in step 4 or 5, then they can
also be solved in step 6 or 7, respectively, but the reverse is not true. The sole
reason for adopting LPO and polynomial interpretations in alternating layers is
efficiency; the search space in steps 3 and 4 is significantly smaller than in steps
5 and 6. Needless to say, the search space in step 5 is much smaller than in
step 7 which in turn is much smaller than in step 8. The reason for putting the
subterm criterion first is that with this criterion many SCCs can be eliminated
very quickly, cf. the third paragraph of Section 6.1.4. The extension of the
search space for argument filterings mentioned in step 6 is obtained by also
considering the full reverse argument filtering [n, . . . , 1] for every n-ary function
symbol. The advantage of this extension is that there is no need for a specialized
version of LPO with right-to-left status.

The effectiveness of the automatic strategy can be seen from the data pre-
sented in Figure 6.2, which were obtained by running TTT in fully automatic
mode on the 89 terminating TRSs (66 in Section 3 and 23 in Section 4) of [5].
An explanation of the data is given in Section 6.1.3.

An empirical evaluation of the automatic strategy can be found in Sec-
tion 6.2.

Semi Automatic Mode. Figure 6.3 shows the web interface for the semi-
automatic mode. Although the fully automatic mode usually derives most power
of TTT, sometimes the user needs to set options of TTT properly: For instance,
this is the case for the TRS of Example 4.24.

Most of the boxes and buttons are self-explanatory. Many correspond to
settings of the fully automatic mode. There are three features that are not
covered by the fully automatic mode. First of all, the user can select the Knuth-
Bendix order as base order of a reduction triple. Secondly, the user can choose
the (non-)heuristics for argument filterings described in Section 4.3.1. Finally,
by clicking the enumerate box, the user can use the enumeration method, which
tries to find a suitable argument filtering by enumerating possible all argument
filterings. For most examples the divide and conquer method of Section 4.3 is
more efficient than the straightforward enumeration method, but still, there are
TRSs where enumeration is more effective (cf. Section 6.2), so the user has the
option to change the search strategy.

6.1.2 Simply-Typed Applicative Rewrite Systems

Besides ordinary first-order TRSs, TTT accepts simply-typed applicative rewrite
systems [1]. Applicative terms are built from variables, constants, and a single
binary operator ·, called application. Constants and variables are equipped with
a simple type such that the rewrite rules typecheck.

Definition 6.1. Let B be a set of constants and → a binary function symbol.
A term in T (B ∪ {→},∅) is called a simple type, and we write ST for T (B ∪
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Figure 6.2: Output produced by TTT.

{→},∅). Let F be a set of constants and V a set of variables. Let Γ be a
function from F ∪ V to ST. Consider the following typing rules.

t ∈ F ∪ V Γ(t) = τ

Γ ⊢ t : τ

Γ ⊢ t1 : τ1 → τ2 t2 : τ1
Γ ⊢ t1 · t2 : τ2

If Γ ⊢ t : τ can be derived then t is called a simply-typed applicative term and
we write type(t) = τ . Furthermore, we write ST for all simply-typed applicative
terms.

Note that if t ∈ ST then type(t) is uniquely determined. If t ∈ ST then t
can be written in the form a · t1 · · · · · tn, where a ∈ F ∪ V . Moreover, type(τ)
can be written in the form τ1 → · · · → τn → τ .

Definition 6.2. A simply-typed applicative rewrite system (STARS) R is a
set of rewrite rules l → r between terms in ST such that type(l) = type(r) and
l is of the form c · t1 · · · · · tn with a constant c.

A typical example is provided by the following rules for the map function

(map · f) · nil→ nil

(map · f) · ((cons · x) · y)→ (cons · (f · x)) · ((map · f) · y)
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Figure 6.3: A screen shot of the semi automatic mode of TTT.

with the type declaration nil : α, cons : β → α → α, map : (β → β) → α → α,
f : β → β, x : β, and y : α. Here α is the list type and β the type of elements
of lists. STARSs are useful to model higher-order functions in a first-order
setting. As usual, the application operator · is suppressed in the notation and
parentheses are removed under the “association to the left” rule. The above
rules then become

map f nil→ nil

map f (cons x y)→ cons (f x) (map f y)

This corresponds to the syntax of STARSs in TTT. The types of constants must
be declared by the keyword TYPES. The types of variables is automatically
inferred when typechecking the rules, which follow the RULES keyword. So the
above STARS would be inputted to TTT as

TYPES

nil : a ;

cons : b => (a => a) ;

map : (b => b) => a => a ;

RULES

map f nil -> nil ;

map f (cons x y) -> cons (f x) (map f y) ;

In order to prove termination of STARSs, TTT uses the two-phase transfor-
mation developed by Aoto and Yamada [2]. In the first phase all head variables
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(e.g. f in the subterm f x of the second right-hand side) are removed by the
head variable instantiation technique.

Definition 6.3. The set of all head variables in a term t, denoted by HV(t), is
defined as follows:

HV(t) =











∅ if t ∈ F ∪ V

Var(t1) ∪ HV(t2) if t = t1 · t2 and t1 ∈ F ∪ V

HV(t1 · t2) ∪ HV(t3) if t = (t1 · t2) · t3

Definition 6.4. Let R be an STARS. For each l → r ∈ R, we define ψl→r as
follows: If x ∈ HV(l) ∪ HV(r) then

ψl→r(x) = {f · x1 · · · · · xn | f ∈ F and type(f) = τ1 → · · · → τn → type(x)}

Otherwise ψl→r(x) = {x}. Here x1, . . . , xn are pairwise distinct fresh variables.
The head variable instantiation HVI(R) of R is

⋃

l→r∈R

{lσ→ rσ | ∀x ∈ Var(l) σ(x) ∈ ψl→r(x)}

The soundness of this phase relies on (1) the ground term existence condition
and (2) η-saturation. Basically, the former states that all simple types are
inhabited by at least one ground term. The latter is defined as follows.

Definition 6.5. Let R be an STARS. The η-saturation Rη of R is the smallest
set S containing R such that if l → r ∈ S and l is not of basic type then
l · x→ r · x ∈ S for some variable x.

Users need not be concerned about these technicalities as TTT automatically
adds fresh constants of the appropriate types to the signature so that the ground
term existence condition is satisfied. Moreover, TTT performs η-saturation au-
tomatically.

After the first phase an ordinary TRS is obtained in which the application
symbol is the only non-constant symbol. Such TRSs are not easily proved
terminating since the root symbol of every term that has at least two symbols is
the application symbol and thus provides no information which could be put to
good use. In the second phase applicative terms are transformed into ordinary
terms by the translation to functional form technique. This technique removes
all occurrences of the application symbol.

Definition 6.6. The map FF is defined as follows:

FF(f · t1 · . . . · tn) =

{

fn(FF(t1), . . . ,FF(tn)) if f is a constant

f if f is a variable

for all applicative terms f · t1 · . . . · tn. Here, f0 stands for f , and fn is an n-ary
function symbol for 1 6 i 6 n. We write FF(R) for {FF(l) → FF(r) | l → r ∈
R}.

Summing up, for a STARS R given as input, TTT tries to prove termination
of the TRS FF(HVI(Rη)).
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Theorem 6.7 ([2]). Let R be an STARS satisfying the ground term existence
condition. R is terminating if the TRS FF(HVI(Rη)) is terminating.

We contend ourselves with showing the Postscript output (in Fig. 6.4) pro-
duced by TTT on the following variation of combinatory logic (inspired by a
question posted on the TYPES Forum by Jeremy Dawson1):

TYPES

I : o => o ;

W : (o => o => o) => o => o ;

S : (o => o => o) => (o => o) => o => o ;

RULES

I x -> x ;

W f x -> f x x ;

S x y z -> x z (y z) ;

Note that the types are crucial for termination; the untyped version admits the
cyclic rewrite step W W W→W W W.

6.1.3 A Collection of Rewrite Systems as Input

Single TRSs (or STARSs) are inputted by typing (the type declarations and)
the rules into the upper left text area or by uploading a file via the browse
button. Besides the original TTT syntax (which is obtained by clicking the TRS
link), TTT supports the official format2 of the Termination Problems Data Base.
The user can also upload a zip archive. All files ending in .trs are extracted
from the archive and the termination prover runs on each of these files in turn.
The results are collected and presented in two tables. The first table lists for
each TRS the execution time in seconds together with the status: bold green
indicates success, red italics indicates failure, and gray indicates timeout. By
clicking green (red) entries the user can view the termination proof (attempt)
in HTML or high-quality Postscript format. The second table gives the number
of successes and failures, both with the average time spent on each TRS, the
number of timeouts, and the total number of TRSs extracted from the zip
archive together with the total execution time. Figure 6.2 shows the two tables
for the 89 terminating TRSs in Sections 3 and 4 of [5]. Here we used TTT’s fully
automatic mode with a timeout of 1 second (for each TRS). The experiment
was performed on a PC equipped with a 2.80 GHz Intel Pentium Processor 4
and 512 KB of memory, using native-compiled code for Linux/Debian.

6.1.4 Some Implementation Details

The web interface of TTT is written in Ruby3 and the termination prover un-
derlying TTT is written in Objective Caml (OCaml),4 using the third-party
libraries5 findlib, extlib, and pcre-ocaml.

1Posted on August 3, 2004.
2http://www.lri.fr/~marche/tpdb/format.html
3http://www.ruby-lang.org/
4http://www.ocaml.org/
5http://caml.inria.fr/humps/
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Termination Proof Scripta

Consider the simply-typed applicative TRS

I x → x

W f x → f x x

S x y z → x z (y z)

over the signature I : o ⇒ o, W : (o ⇒ o⇒ o)⇒ o ⇒ o, and S : (o ⇒ o ⇒ o)⇒
(o ⇒ o) ⇒ o ⇒ o. In order to satisfy the ground term existence condition we
extend the signature by c : o⇒ o⇒ o and c′ : o. Instantiating all head variables
yields the following rules:

I x → x

W c x → c x x

S c I z → c z (I z)

S c (W w) z → c z (W w z)

S c (S w v) z → c z (S w v z)

S c (c w) z → c z (c w z)

By transforming terms into functional form the TRS

1 : I1(x) → x

2 : W2(c, x) → c2(x, x)

3 : S3(c, I, z) → c2(z, I1(z))

4 : S3(c,W1(w), z) → c2(z,W2(w, z))

5 : S3(c, S2(w, v), z) → c2(z, S3(w, v, z))

6 : S3(c, c1(w), z) → c2(z, c2(w, z))

is obtained. There are 3 dependency pairs:

7 : S
♯
3(c, I, z) → I

♯
1(z)

8 : S
♯
3(c,W1(w), z) → W

♯
2(w, z)

9 : S
♯
3(c, S2(w, v), z) → S

♯
3(w, v, z)

The approximated dependency graph contains one SCC: {9}.

• Consider the SCC {9}. By taking the simple projection π with π(S♯
3) = 2,

the dependency pair simplifies to

9 : S2(w, v) → v

and is compatible with the proper subterm relation.

Hence the TRS is terminating.

aTyrolean Termination Tool (0.01 seconds) — September 21, 2005

Figure 6.4: Example output.
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The termination prover consists of about 13,000 lines of OCaml code. About
20% is used for the manipulation of terms and rules. Another 15% is devoted
to graph manipulations. This part of the code is not only used to compute
dependency graph approximations, but also for precedences in KBO and LPO,
and for the dependency relation which is used to compute the usable rules. The
various termination methods that are provided by TTT account for less than
10% each. Most of the remaining code deals with I/O: parsing the input and
producing HTML and Postscript output. For the official Termination Problems
Data Base format we use parsers written in OCaml by Claude Marché. A rich
OCaml library for the manipulation of terms (or rose trees) and graphs would
have made our task much easier!

It is interesting to note that two of the original techniques that make TTT

fast, the recursive SCC algorithm and the subterm criterion, account for just 13
and 20 or 11 lines, respectively. Actually, we implemented the subterm criterion
twice. The former count refers to a straightforward encoding that generates all
simple projections until a suitable one is found. This encoding works fine on all
examples we tested (see Section 6.2), with one exception (AProVE/AAECC-ring).
The reason is that the dependency graph of that TRS contains an SCC consisting
of nine 7-ary and one 6-ary dependency pair symbols, amounting to 79 × 6 =
242121642 simple projections. The latter count refers to the specialization of the
divide and conquer algorithm developed in Section 3.19 for arbitrary argument
filterings. (The generic divide and conquer algorithm is implemented in 209
lines of OCaml code.) This implementation is the one used in the experiments
described in Section 6.2 and the only one available from the web interface.

Concerning the implementation of simply-typed applicative rewrite systems,
we use the Damas-Milner type reconstruction algorithm (see e.g. [48]) to infer
the types of variables.

We conclude this section with some remarks on the implementation of base
orders in TTT. The implementation of LPO follows [29] but we first check
whether the current pair of terms can be oriented by the embedding order in
every recursive call to LPO. This improves the efficiency by about 20%. The
implementation of KBO is based on [40]. We use the “method for complete
description” [16] to compute a suitable weight function. The implementation
of polynomial interpretations with coefficients from {0, 1} is based on [11, Fig-
ure 1] together with the simplification rules described in Section 4.4.1 of the
same paper. The current implementation of polynomial interpretations with
coefficients from {−1, 0, 1} in TTT is rather naive. We anticipate that the recent
techniques of [11] can be extended to handle negative coefficients.

6.2 Experiments

In this chapter we assess the techniques introduced in the preceding chapters
on the 773 TRSs (at least 94 of which are non-terminating) in the Termination
Problem Data Base (version 2.0).6

We list the number of successful termination attempts, the number of failures
(which means that no termination proof was found while fully exploring the
search space implied by the options), and the number of timeouts, whose values
are given in parentheses. The figures below the number of successes and failures

6http://www.lri.fr/~marche/tpdb/
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Table 6.1: Dependency graph approximations.

innermost
termination termination
EDG EDG∗ EIDG EIDG∗

success 43 51 73 80
0.00 0.01 0.01 0.01

failure 730 722 700 693
0.01 0.01 0.10 0.21

timeout (30 s) 0 0 0 0
total time 10 11 69 145
total arrows 52788 51642 48618 47575

denote the average time in seconds. Some tables contain execution time of
individual TRSs. There, we use the following convention to indicate the status:
bold green indicates success, red italics indicates failure, and gray∞ indicates
timeout.

Dependency Graph Approximations. Our first experiment concerns the
new estimations of the (innermost) dependency graph mentioned in Section 4.1.
Remark that (innermost) termination of TRS is concluded when the approx-
imated (innermost) dependency graph contains no SCCs (cf. Chapter 4.2).
Table 6.1 shows that EDG∗ and EIDG∗ outperform EDG and EIDG and that the
overhead of the additional unification in EDG∗ is negligible. As we see later, the
computational cost of EIDG∗ is very small compared to the methods that are
applied afterwards, except for the subterm criterion. Actually, there are a few
exceptional cases. Table 6.2 lists all TRSs for which the computation of EIDG∗

takes longer than 5 seconds. Since EIDG∗ uses unification twice as often as EIDG,
it is natural to expect that EIDG∗ takes twice as long as EIDG. However, com-
puting EIDG∗ for Cime/mucrl1 takes much longer than expected. The reason is
that it consists of a very large number of rewrite rules, and therefore the time to
compute usable rules is not negligible. The inefficiency of currying/AG01 3.13

is due to large term structures. We remark that the current version of TTT uses
a simple exponential algorithm for unification. The use of an almost-linear time
unification algorithm would significantly reduce the computation time for the
last TRS.

Cycle Analysis and Subterm Criterion. Looking at Table 6.3 the follow-
ing claim is clearly verified: “the recursive SCC algorithm (�) has the power of
the standard cycle criterion (�∃) and the efficiency of the SCC approach (�∀).”
The subterm criterion is extremely fast. It is interesting to note that it could
handle 1052 of the 1589 generated SCCs, resulting in termination proofs for 206
of the 773 TRSs. Clearly, the subterm criterion should be the method of first
choice in any termination prover incorporating the dependency pair technique.
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Table 6.2: Innermost dependency graph approximations: individual TRSs.

EIDG EIDG∗

R rules DPs time (arrows) time (arrows)
Cime/mucrl1 377 61 1.91 (136) 8.17 (132)
TRCSR/Ex1 2 AEL03 C 74 113 3.60 (1631) 7.69 (1631)
TRCSR/Ex6 15 AEL02 C 90 131 5.48 (2092) 11.74 (2089)
TRCSR/ExAppendixB AEL03 C 80 124 4.86 (1930) 10.40 (1930)
currying/AG01 3.13 14 36 3.91 (822) 7.75 (822)

Table 6.3: Cycle analysis and the subterm criterion.

�∃ �∀ �

success 205 175 206
0.22 0.01 0.01

failure 521 598 567
0.44 0.02 0.02

timeout (30 s) 47 0 0
total time 1684 11 12

Techniques for Argument filterings. Tables 6.4 and 6.5 compare enumer-
ation (E) with the dynamic programming method described in Section 4.3.3
(DP1), in combination with the heuristics of Section 4.3.1. Column DP2 is similar
to DP1 but it uses the approach described in the last paragraph of Section 4.3.2.
We adopted the usable rule criterion.

Comparing the E and DP2 columns, the effectiveness of the divide and con-
quer approach of Section 4.3.3 is clear, especially if one keeps in mind that all
possible partial argument filterings that solve the constraints are computed. In
contrast, enumeration terminates as soon as the first successful argument fil-
tering is generated. So the average time in case of failure is probably more
significant (since it implies that the search space is fully explored), but then the
advantage of the divide and conquer approach over enumeration is even more
pronounced. Another interesting conclusion is that the combination of KBO,
some heuristic and DP2 is surprisingly efficient.

Usable Rules. In Table 6.6 the combination of the subterm criterion and the
usable rule criterion in connection with traditional simplification orders is ex-
amined. In all experiments we used the EDG∗ approximation of the dependency
graph and the EIDG∗ approximation of the innermost dependency graph. More-
over, we adopted the recursive SCC algorithm of Section 4.2 for handling cycles
in the graph. When the lexicographic path order or Knuth-Bendix order is used,
the divide and conquer technique with dynamic programming described in Sec-
tion 4.3.3 is used to search for suitable argument filterings. The experiments
were conducted in the same environment as described in Section 6.1.3.

We tested individual methods and combinations of them. The results are
summarized in Tables 6.6–6.8. The letters in the column headings have the
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Table 6.4: Argument filterings.

some some more all
LPO E DP1 DP2 E DP1 DP2 E DP1 DP2
success 246 243 247 259 259 261 267 266 267

0.15 0.13 0.08 0.14 0.09 0.20 0.47 0.15 0.19

failure 485 502 510 430 470 474 407 441 442
0.74 0.40 0.31 0.83 0.63 0.55 0.96 0.99 0.90

timeout (30 s) 42 28 16 84 44 38 99 66 64

total time 1656 1071 658 2915 1640 1450 3485 2454 2369
some some more all

KBO E DP1 DP2 E DP1 DP2 E DP1 DP2
success 266 261 268 287 279 281 288 276 293

0.18 0.22 0.06 0.33 0.48 0.21 0.49 0.69 0.43

failure 468 458 501 387 392 410 366 366 376
0.75 0.63 0.25 0.53 0.65 0.74 0.41 0.72 0.42

timeout (30 s) 39 54 4 99 102 82 119 131 104

total time 1567 1965 260 3270 3450 2822 3863 4383 3401

following meaning:

s the subterm criterion of Section 3.2,

u the usable rule criterion of Section 3.4 (for Tables 6.6 and 6.7) and 5.2 (for
Table 6.8),

l lexicographic path order in combination with some argument filterings,

k Knuth-Bendix order in combination with some argument filterings,

p polynomial interpretation restricted to linear polynomials with coefficients
and constants indicated in the table headings.

Polynomial Interpretations with Negative Coefficients Table 6.7 shows
the effect of the usable rule criterion in combination with linear polynomial inter-
pretations possible with negative coefficients. Enlarging the coefficient domain
{0, 1} with the value 2 gives very few additional examples (when using the us-
able rule criterion). The effect of allowing −1 as constant is more apparent. An
interesting remark is that there is no overlap between the additional TRSs that
can be proved terminating by allowing 2 and by allowing −1.

In Table 6.8 we use the negative coefficient method developed in Chap-
ter 5.2. Theorem 5.20 (up) is much more powerful and considerably faster
than Theorem 5.11 (p). As we discuss below, the A-right-linearity condi-
tion in Theorem 5.20 is not restrictive for most ordinary TRSs. Nevertheless,
there are five TRSs that can be handled by p but not by up. Three of them
are variations of Toyama’s example, the remaining two are the one-rule sys-
tem x × ((−y) × y) → (−(y × y)) × x and the two-rule system consisting of
f(x, x) → f(g(x), x) and g(x) → s(x). In parentheses we provide the results
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Table 6.5: Argument filterings: individual TRSs.

some some more all
LPO E DP1 DP2 E DP1 DP2 E DP1 DP2
AG01/3.10 3.03 0.10 0.08 85.98 0.19 0.19 6784.15 1.63 3.47
AG01/3.11 0.09 0.03 0.04 0.51 0.05 0.06 11.73 0.52 0.63
AG01/3.13 0.22 0.03 0.03 1.12 0.05 0.04 594.37 17.67 33.74
AG01/3.55 0.10 0.04 0.03 0.53 0.05 0.06 12.14 0.53 0.70
D33/11 0.01 0.02 0.02 0.01 0.02 0.03 1.73 0.03 0.02

some some more all
KBO E DP1 DP2 E DP1 DP2 E DP1 DP2
AG01/3.10 3.16 1.93 0.15 100.46 25.97 11.96 7872.95 301.04 1125.30
AG01/3.11 0.10 0.23 0.06 0.10 1.61 0.99 95.11 929.74 1.90
AG01/3.13 0.27 0.27 0.06 25.90 6.78 0.74 654.91 180.67 59.19
AG01/3.55 0.11 0.24 0.06 0.11 1.62 0.99 92.43 925.17 1.92
D33/11 0.01 0.03 0.02 0.01 0.03 0.02 1.70 0.03 0.02

Table 6.6: Subterm criterion and usable rules: LPO and KBO.

s l ul sul k uk suk

success 206 206 244 260 162 262 290
0.01 0.06 0.14 0.14 0.29 0.29 0.24

failure 567 540 504 488 548 465 437
0.02 0.57 0.43 0.43 0.96 0.75 0.79

timeout (30 s) 0 27 25 25 63 46 46

total time 12 1132 999 996 2464 1807 1796

of the following refinement: If the TRS in question is non-overlapping then we
use the innermost version of Theorem 5.11 (i.e., usable rules without CE and
with EIDG∗ instead of EDG∗ to estimate the dependency graph), otherwise we
use Theorem 5.11. There are two additional TRSs that are handled by this
strategy but not by Theorem 5.20. One is a variant of Toyama’s example. The
other one (AG01/3.6) clearly illustrates the limitation of the A-right-linearity
condition; in order to handle the term gcd♯(x − y, s(y)) which appears on the

right-hand side of a dependency pair, one must use an interpretation gcd
♯
Z
(x, y)

that depends on both arguments, contradicting A-right-linearity.

Fully automatic mode. Table 6.9 shows the power of the fully automatic
mode of TTT. A remarkable 94% of the successful termination proofs obtained
with a 30 seconds timeout are also obtained when setting the timeout to 1
second. Most of the remaining 6% are due to polynomial interpretations. The
figures in parentheses refer to a version in which the conditions of Lemma 3.41
are not activated.
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Table 6.7: Polynomial interpretation.

coefficients 0, 1 0, 1, 2 0, 1
constants 0, 1 0, 1, 2 −1, 0, 1

p up sup p up sup p up sup

success 248 340 364 263 348 369 256 355 380
0.36 0.29 0.27 0.38 0.29 0.26 0.29 0.29 0.20

failure 458 395 371 372 347 326 348 326 300
1.10 0.77 0.82 0.96 0.60 0.63 1.61 1.25 1.17

timeout (30 s) 67 38 38 138 78 78 169 92 93

total time 2602 1545 1542 4597 2648 2643 5704 3267 3219

Table 6.8: Polynomial interpretations with negative coefficients from {−1, 0, 1}.

p up sup

success 151 264 (192) 303 (286)
0.46 0.36 (0.37) 0.30 (0.20)

failure 398 356 (386) 324 (325)
2.29 1.36 (1.99) 1.29 (1.74)

timeout (30 s) 224 153 (195) 146 (162)

total time 7702 5169 (6687) 4889 (5484)

6.3 Comparison

Needless to say, TTT is not the only available tool for proving termination of
rewrite systems. In this final section we compare our tool with the other tools
that participated in the TRS category of the 2005 termination competition.7

• We start our discussion with CiME [10], the very first tool for automatically
proving termination of rewrite systems that is still available. CiME is a
tool with powerful techniques for finding termination proofs based on poly-
nomial interpretations in connection with the dependency pair method.
Since CiME does not support (yet) the most recent insights in the depen-
dency pair method, it is less powerful than AProVE (described below) or
TTT. In contrast to TTT, CiME can handle rewrite systems with AC oper-
ators. As a matter of fact, termination is only a side-issue in CiME. Its
main strength lies in completing equational theories modulo theories like
AC and C.

• Matchbox [57] is a tool that is entirely based on methods from formal lan-
guage theory. These methods are especially useful for proving termination

7We downloaded the tools from http://www.lri.fr/~marche/termination-competition/

2005
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Table 6.9: Fully automatic mode.

t 1 2 10 30
success 387 394 403 411 (411)

0.03 0.06 0.17 0.55 (0.55)

failure 180 200 223 239 (234)
0.20 0.32 0.72 1.75 (2.31)

timeout (t s) 206 179 147 128 (123)

total time 254 445 1696 4331 (4604)

of string rewrite systems. Matchbox tries to establish termination or non-
termination by using recent results on match-bounded rewriting [18, 19].

• TEPARLA [56] is a new tool based on semantic labelling [60] with a two-
valued domain and polynomial interpretations. By applying labelling re-
peatedly, the limitation of having only two labels is (partly) overcome. As
a preprocessing step, rewrite systems are transformed into equivalent ones
(as far as non-termination is concerned) over a signature containing only
function symbols of arity at most two.

• TPA [38] is another recent tool based on semantic labelling. Besides a
two-valued domain it also uses natural numbers as labels [39], which is
surprisingly powerful. Polynomial interpretations and recursive path or-
ders are available as basic techniques. Both TEPARLA and TPA can prove
relative termination (Geser [17]). Because of semantic labelling, both tools
are capable of proving termination of rewrite systems that are not handled
by any current tool based on dependency pairs (cf. Table 6.3).

• Last but not least, AProVE [24], a very powerful tool for proving termi-
nation and non-termination of ordinary rewrite systems (possibly modulo
AC), logic programs, conditional rewrite systems, context-sensitive rewrite
systems. Of all existing tools, AProVE supports the most base orders and
even offers several different algorithms implementing these. AProVE has
several methods that are not available in any other tool. We mention
here the size-change principle [52], transformations for dependency pairs
like narrowing and instantiation, and a modular refinement where the set
of usable rules is determined after a suitable argument filtering has been
computed. These are integrated by the dependency pair framework [25],
which encompasses the recursive SCC algorithm.

Table 6.3 shows the performance of these tools on the important examples in
this paper. The left column for TTT refers to the 2005 termination competition
version, the right column to the version described in Section 6.1. The difference
(Example 5.9) is due to Theorem 5.20. Example 3.38 shows the usefulness of
semantic labelling. AProVE handles the leading example of Chapter 3 (dnf) by
the size-change principle; for the leading example of Section 5.1 (identity) it
uses a polynomial interpretation with negative constants. TPA solves the latter
example by semantic labelling with natural numbers.
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Table 6.10: Termination tools. (3600 seconds timeout)

AProVE CiME Matchbox TEPARLA TPA TTT

Example 1.3 2.54 0.81 ∞ 77.21 ∞ 0.32 0.06
Example 3.15 3.76 374.74 ∞ 85.22 ∞ 0.24 0.02
Example 3.16 0.93 0.03 29.02 61.60 2.90 0.01 0.00
Example 3.38 61.11 0.04 96.66 0.89 1.33 4.71 6.43
Example 4.17 5.10 1.80 2.70 0.10 0.17 0.08 0.00
Example 4.23 1.88 0.04 810.56 0.02 0.02 0.02 0.11
Example 4.24 ∞ ∞ ∞ 1730.37 ∞ 225.03 ∞
Example 4.25 9.96 504.14 ∞ 169.60 1674 0.16 0.08
Example 4.41 1.34 568.95 1133.09 2708.99 ∞ 0.11 0.01
Example 5.4 2.27 0.09 7.09 3.46 5.41 0.01 0.01
Example 5.9 65.05 858.00 ∞ 12.64 ∞ 3.80 0.02
dnf 1.40 0.07 ∞ 47.26 ∞ 0.01 0.00
identity 2.23 0.22 8.43 5.28 0.01 0.01 0.00
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[36] S. Kamin and J.J. Lévy. Two generalizations of the recursive path ordering.
Unpublished manuscript, University of Illinois, 1980.



88 BIBLIOGRAPHY

[37] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebra.
In Computational Problems in Abstract Algebra, Pergamon Press, pages
263–297, 1970.

[38] A. Koprowski. TPA: Termination proved automatically. In Proceedings of
the 17th International Conference on Rewriting Techniques and Applica-
tions, Lecture Notes in Computer Science, 2006. To appear.

[39] A. Koprowski and H. Zantema. Recursive path ordering for infinite labelled
rewrite systems. In Proceedings of the 3rd International Joint Conference
on Automated Reasoning, Lecture Notes in Artificial Intelligence, 2006. To
appear.

[40] K. Korovin and A. Voronkov. Orienting rewrite rules with the Knuth-
Bendix order. Information and Computation, 183:165–186, 2003.

[41] D. Lankford. On proving term rewriting systems are Noetherian. Technical
Report MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

[42] S. Lucas. Context-sensitive rewriting strategies. Information and Compu-
tation, 178(1):294–343, 2002.

[43] S. Lucas. Polynomials for proving termination of context-sensitive rewrit-
ing. In Proceedings of the 7th International Conference on Foundations
of Software Science and Computation Structures, volume 2987 of Lecture
Notes in Computer Science, pages 318–332, 2004.

[44] S. Lucas. Polynomials over the reals in proof of termination. RAIRO
Theoretical Informatics and Applications, 39:547–586, 2005.

[45] A. Middeldorp. Approximating dependency graphs using tree automata
techniques. In Proceedings of the International Joint Conference on Auto-
mated Reasoning, volume 2083 of Lecture Notes in Artificial Intelligence,
pages 593–610, 2001.

[46] A. Middeldorp. Approximations for strategies and termination. In Pro-
ceedings of the 2nd International Workshop on Reduction Strategies in
Rewriting and Programming, volume 70(6) of Electronic Notes in Theo-
retical Computer Science, 2002.

[47] A. Middeldorp and H. Ohsaki. Type introduction for equational rewriting.
Acta Informatica, 36(12):1007–1029, 2000.

[48] B.C. Pierce. Types and Programming Languages. MIT Press, 2002.

[49] J. Steinbach. Generating polynomial orderings. Information Processing
Letters, 49:85–93, 1994.

[50] J. Steinbach and U. Kühler. Check your ordering – termination proofs and
open problems. Technical Report SR-90-25, Universität Kaiserslautern,
1990.

[51] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.



BIBLIOGRAPHY 89

[52] R. Thiemann and J. Giesl. The size-change principle and dependency pairs
for termination of term rewriting. Applicable Algebra in Engineering, Com-
munication and Computing, 16(4):229–270, 2005.

[53] R. Thiemann, J. Giesl, and P. Schneider-Kamp. Improved modular termi-
nation proofs using dependency pairs. In Proceedings of the 2nd Interna-
tional Joint Conference on Automated Reasoning, volume 3097 of Lecture
Notes in Artificial Intelligence, pages 75–90, 2004.

[54] Y. Toyama. Counterexamples to the termination for the direct sum of term
rewriting systems. Information Processing Letters, 25:141–143, 1987.

[55] X. Urbain. Modular & incremental automated termination proofs. Journal
of Automated Reasoning, 32:315–355, 2004.

[56] J. van der Wulp. Proving termination of term rewriting automatically.
Technical Report 1075, Technische Universiteit Eindhoven, 2005. Master’s
thesis.

[57] J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In
Proceedings of the 15th International Conference on Rewriting Techniques
and Applications, volume 3091 of Lecture Notes in Computer Science, pages
85–94, 2004.

[58] H. Xi. Towards automated termination proofs through “freezing”. In Pro-
ceedings of the 9th International Conference on Rewriting Techniques and
Applications, volume 1379 of Lecture Notes in Computer Science, pages
271–285, 1998.

[59] H. Zantema. Termination of term rewriting: interpretation and type elim-
ination. Journal of Symbolic Computation, 17:23–50, 1994.

[60] H. Zantema. Termination of term rewriting by semantic labelling. Funda-
menta Informaticae, 24:89–105, 1995.



90 BIBLIOGRAPHY



Appendix A

Example

We use TTT to prove termination of the TRS in Example 1.3. The input looks
like this:

[x, y, n, xs, ys]

x - 0 -> x;

s(x) - s(y) -> x - y;

0 <= y -> true;

s(x) <= 0 -> false;

s(x) <= s(y) -> x <= y;

if(true, x, y) -> x;

if(false, x, y) -> y;

x | 0 -> true;

s(x) | s(y) -> if(x <= y, s(x) | (y-x), false);

filter(x, nil) -> nil;

filter(x, y : ys) -> if_filter(x | y, x, y : ys);

if_filter(true, x, y : ys) -> filter(x, ys);

if_filter(false, x, y : ys) -> y : filter(x, ys);

sieve(nil) -> nil;

sieve(x : xs) -> x : sieve(filter(x, xs));

The next three pages contain the termination proof generated by TTT.
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Termination Proof Script1

Consider the TRS R consisting of the rewrite rules

1 : x − 0 → x

2 : s(x ) − s(y) → x − y

3 : 0 6 y → true

4 : s(x ) 6 0 → false

5 : s(x ) 6 s(y) → x 6 y

6 : if(true, x , y) → x

7 : if(false, x , y) → y

8 : x | 0 → true

9 : s(x ) | s(y) → if(x 6 y, s(x ) | (y − x ), false)

10 : filter(x , nil) → nil

11 : filter(x , y : ys) → iffilter(x | y, x , y : ys)

12 : iffilter(true, x , y : ys) → filter(x , ys)

13 : iffilter(false, x , y : ys) → y : filter(x , ys)

14 : sieve(nil) → nil

15 : sieve(x : xs) → x : sieve(filter(x , xs))

There are 12 dependency pairs:

16 : s(x ) −♯ s(y) → x −♯ y

17 : s(x ) 6♯ s(y) → x 6♯ y

18 : s(x ) |♯ s(y) → IF(x 6 y, s(x ) | (y − x ), false)

19 : s(x ) |♯ s(y) → x 6♯ y

20 : s(x ) |♯ s(y) → s(x ) |♯ (y − x )

21 : s(x ) |♯ s(y) → y −♯ x

22 : FILTER(x , y : ys) → IFFILTER(x | y, x , y : ys)

23 : FILTER(x , y : ys) → x |♯ y

24 : IFFILTER(true, x , y : ys) → FILTER(x , ys)

25 : IFFILTER(false, x , y : ys) → FILTER(x , ys)

26 : SIEVE(x : xs) → SIEVE(filter(x , xs))

27 : SIEVE(x : xs) → FILTER(x , xs)

The approximated dependency graph

1Tyrolean Termination Tool (0.03 seconds) — May 21, 2006
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16
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19

20

21

22 24

25

23

26 27

contains 5 SCCs: {16}, {17}, {20}, {22, 24, 25} and {26}.

• Consider the SCC {16}. By taking the simple projection π with π(−♯) =
1, the dependency pair simplifies to

16 : s(x ) → x

and is compatible with the proper subterm relation.

• Consider the SCC {17}. By taking the simple projection π with π(6♯) =
1, the dependency pair simplifies to

17 : s(x ) → x

and is compatible with the proper subterm relation.

• Consider the SCC {20}. By taking the polynomial interpretation trueN =
sieveN(x) = nilN = falseN = 0N = 1, −N(x, y) = x, sN(x) = x+1, :N(x, y) =
y, |♯

N
(x, y) = |N(x, y) = filterN(x, y) = 6N(x, y) = y + x + 1, ifN(x, y, z) =

z + y and iffilterN(x, y, z) = z + y + 1, the involved rules reduce to the
following inequalities:

1 : x & x

2 : x + 1 > x

3 : y + 2 > 1

4 : x + 3 > 1

5 : x + y + 3 > x + y + 1

6 : x + y & x

7 : x + y & y

8 : x + 2 > 1

9 : x + y + 3 & x + y + 3

10 : x + 2 > 1

11 : x + ys + 1 & x + ys + 1

12 : x + ys + 1 & x + ys + 1

13 : x + ys + 1 & x + ys + 1

14 : 1 & 1

15 : 1 & 1

20 : x + y + 3 > x + y + 2
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• Consider the SCC {22, 24, 25}. By taking the simple projection π with
π(FILTER) = 2 and π(IFFILTER) = 3, the dependency pairs simplify to

22 : y : ys → y : ys

24 : y : ys → ys

25 : y : ys → ys

and are compatible with the subterm relation: rule 22 is weakly decreasing
and the rules in {24, 25} are strictly decreasing.

• Consider the SCC {26}. By taking the polynomial interpretation trueN =
nilN = falseN = 0N = 1, −N(x, y) = x, SIEVEN(x) = sieveN(x) = sN(x) =
x + 1, filterN(x, y) = y, |N(x, y) = 6N(x, y) = :N(x, y) = y + x + 1,
iffilterN(x, y, z) = z and ifN(x, y, z) = z + y, the involved rules reduce to
the following inequalities:

1 : x & x

2 : x + 1 > x

3 : y + 2 > 1

4 : x + 3 > 1

5 : x + y + 3 > x + y + 1

6 : x + y & x

7 : x + y & y

8 : x + 2 > 1

9 : x + y + 3 & x + y + 3

10 : 1 & 1

11 : ys + y + 1 & ys + y + 1

12 : ys + y + 1 > ys

13 : ys + y + 1 & ys + y + 1

14 : 2 > 1

15 : xs + x + 2 & xs + x + 2

26 : xs + x + 2 > xs + 1

Hence the TRS is terminating.
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