
Automated Complexity Analysis Based on the

Dependency Pair Method?

Nao Hirokawa1 and Georg Moser2

1 School of Information Science, Japan Advanced Institute of Science and
Technology, Japan, hirokawa@jaist.ac.jp

2 Institute of Computer Science, University of Innsbruck, Austria
georg.moser@uibk.ac.at

Abstract. In this paper, we present a variant of the dependency pair
method for analysing runtime complexities of term rewrite systems au-
tomatically. This method is easy to implement, but signi�cantly extends
the analytic power of existing direct methods. Our �ndings extend the
class of TRSs whose linear or quadratic runtime complexity can be de-
tected automatically. We provide ample numerical data for assessing the
viability of the method.

1 Introduction

Term rewriting is a conceptually simple but powerful abstract model of compu-
tation that underlies much of declarative programming. In order to assess the
complexity of a (terminating) term rewrite system (TRS for short) it is natural
to look at the maximal length of derivation sequences, as suggested by Hofbauer
and Lautemann in [1]. More precisely, the derivational complexity function with
respect to a (terminating and �nitely-branching) TRS R relates the length of the
longest derivation sequence to the size of the initial term. For direct termination
techniques it is often possible to establish upper-bounds on the growth rate of
the derivational complexity function from the termination proof of R, see for
example [1,2,3,4,5,6].

However, if one is interested in methods that induce feasible (i.e., polynomial)
complexity, the existing body of research is not directly applicable. On one hand
this is due to the fact that for standard techniques the derivational complexity
cannot be contained by polynomial growth rates. (See [6] for the exception to the
rule.) Already termination proofs by polynomial interpretations induce a double-
exponential upper-bound on the derivational complexity, cf. [1]. On the other
hand this is�to some extent�the consequence of the de�nition of derivational
complexity as this measure does not discriminate between di�erent types of
initial terms, while in modelling declarative programs the type of the initial
term is usually quite restrictive. The following example clari�es the situation.

? This research is partly supported by FWF (Austrian Science Fund) project P20133,
Leading Project e-Society (MEXT of Japan), and STARC.

Example 1. Consider the TRS R

1: x− 0→ x 3: 0÷ s(y)→ 0

2: s(x)− s(y)→ x− y 4: s(x)÷ s(y)→ s((x− y)÷ s(y))

Although the functions computed by R are obviously feasible this is not re�ected
in the derivational complexity of R. Consider rule 4, which we abbreviate as
C[y]→ D[y, y]. Since the maximal derivation length starting with Cn[y] equals
2n−1 for all n > 0, R admits (at least) exponential derivational complexity.

After a moment one sees that this behaviour is forced upon us, as the TRS R
may duplicate variables, i.e., R is duplicating. Furthermore, in general the ap-
plicability of the above results is typically limited to simple termination. (But
see [4,5,6] for exceptions to this rule.) To overcome the �rst mentioned restric-
tion we propose to study runtime complexities of rewrite systems. The runtime
complexity function with respect to a TRS R relates the length of the longest
derivation sequence to the size of the arguments of the initial term, where the
arguments are supposed to be in normal form. In order to overcome the sec-
ond restriction, we base our study on a fresh analysis of the dependency pair
method. The dependency pair method [7] is a powerful (and easily automatable)
method for proving termination of term rewrite systems. In contrast to the above
cited direct termination methods, this technique is a transformation technique,
allowing for applicability beyond simple termination.

Studying (runtime) complexities induced by the dependency pair method is
challenging. Below we give an (easy) example showing that the direct transla-
tions of original theorems formulated in the context of termination analysis is
destined to failure in the context of runtime complexity analysis. If one recalls
that the dependency pair method is based on the observation that from an arbi-
trary non-terminating term one can extract a minimal non-terminating subterm,
this is not surprising. Through a very careful investigation of the original for-
mulation of the dependency pair method (see [7,8], but also [9]), we establish
a runtime complexity analysis based on the dependency pair method. In doing
so, we introduce weak dependency pairs and weak innermost dependency pairs
as a general adaption of dependency pairs to (innermost) runtime complexity
analysis. Here the innermost runtime complexity function with respect to a TRS
R relates the length of the longest innermost derivation sequence to the size of
the arguments of the initial term, where again the arguments are supposed to
be in normal form.

Our main result shows how natural improvements of the dependency pair
method, like usable rules, reduction pairs, and argument �lterings become ap-
plicable in this context. Moreover, for innermost rewriting, we establish an easy
criteria to decide when weak innermost dependency pairs can be replaced by
�standard� dependency pairs without introducing fallacies. Thus we establish
(for the �rst time) a method to analyse the derivation length induced by the
(standard) dependency pair method for innermost rewriting. We have imple-
mented the technique and experimental evidence shows that the use of weak
dependency pairs signi�cantly increases the applicability of the body of existing

results on the estimation of derivation length via termination techniques. In par-
ticular, our �ndings extend the class of TRSs whose linear or quadratic runtime
complexity can be detected automatically.

The remainder of this paper is organised as follows. In the next section we
recall basic notions and starting points of this paper. Section 3 and 4 introduce
weak dependency pairs and discuss the employability of the usable rule criteria.
In Section 5 we show how to estimate runtime complexities through relative
rewriting and in Section 6 we state our Main Theorem. The presented technique
has been implemented and we provide ample numerical data for assessing the
viability of the method. This evidence can be found in Section 7. Finally in
Section 8 we conclude and mention possible future work.

2 Preliminaries

We assume familiarity with term rewriting [10,11] but brie�y review basic con-
cepts and notations. Let V denote a countably in�nite set of variables and F a
signature. The set of terms over F and V is denoted by T (F ,V). The root symbol
of a term t is either t itself, if t ∈ V, or the symbol f , if t = f(t1, . . . , tn). The set
of position Pos(t) of a term t is de�ned as usual. We write PosG(t) ⊆ Pos(t) for
the set of positions of subterms, whose root symbol is contained in G ⊆ F . The
subterm relation is denoted as E. Var(t) denotes the set of variables occurring
in a term t and the size |t| of a term is de�ned as the number of symbols in t.

A term rewrite system (TRS for short) R over T (F ,V) is a �nite set of
rewrite rules l → r, such that l /∈ V and Var(l) ⊇ Var(r). The smallest rewrite
relation that contains R is denoted by →R. The transitive closure of →R is
denoted by→+

R, and its transitive and re�exive closure by→∗R. We simply write
→ for →R if R is clear from context. A term s ∈ T (F ,V) is called a normal
form if there is no t ∈ T (F ,V) such that s → t. With NF(R) we denote
the set of all normal forms of a term rewrite system R. The innermost rewrite
relation i−→R of a TRS R is de�ned on terms as follows: s i−→R t if there exist a
rewrite rule l → r ∈ R, a context C, and a substitution σ such that s = C[lσ],
t = C[rσ], and all proper subterms of lσ are normal forms of R. The set of
de�ned function symbols is denoted as D, while the constructor symbols are
collected in C. We call a term t = f(t1, . . . , tn) basic if f ∈ D and ti ∈ T (C,V)
for all 1 6 i 6 n. A TRS R is called duplicating if there exists a rule l→ r ∈ R
such that a variable occurs more often in r than in l. We call a TRS terminating
if no in�nite rewrite sequence exists. Let s and t be terms. If exactly n steps
are performed to rewrite s to t we write s →n t. The derivation length of a
terminating term t with respect to a TRS R and rewrite relation →R is de�ned
as: dl(s,→R) = max{n | ∃t s →n t}. Let R be a TRS and T be a set of terms.
The runtime complexity function with respect to a relation → on T is de�ned as
follows:

rc(n, T,→) = max{dl(t,→) | t ∈ T and |t| 6 n} .

In particular we are interested in the (innermost) runtime complexity with re-
spect to→R (i−→R) on the set Tb of all basic terms.3 More precisely, the runtime
complexity function (with respect toR) is de�ned as rcR(n) := rc(n, Tb,→R) and
we de�ne the innermost runtime complexity function as rci

R(n) := rc(n, Tb, i−→R).
Finally, the derivational complexity function (with respect to R) becomes de-
�nable as follows: dcR(n) = rc(n, T ,→R), where T denotes the set of all terms
T (F ,V). We sometimes say the (innermost) runtime complexity of R is linear,

quadratic, or polynomial if rc
(i)
R (n) is bounded linearly, quadratically, or polyno-

mially in n, respectively. Note that the derivational complexity and the runtime
complexity of a TRS R may be quite di�erent: In general it is not possible to
bound dcR polynomially in rcR, as witnessed by Example 1 and the observation
that the runtime complexity of R is linear (see Example 34, below).

A proper order is a transitive and irre�exive relation and a preorder is a
transitive and re�exive relation. A proper order � is well-founded if there is no
in�nite decreasing sequence t1 � t2 � t3 · · · . A well-founded proper order that is
also a rewrite relation is called a reduction order. We say a reduction order � and
a TRS R are compatible if R ⊆ �. It is well-known that a TRS is terminating if
and only if there exists a compatible reduction order. An F-algebra A consists
of a carrier set A and a collection of interpretations fA for each function symbol
in F . A well-founded and monotone algebra (WMA for short) is a pair (A, >),
where A is an algebra and > is a well-founded partial order on A such that
every fA is monotone in all arguments. An assignment α : V → A is a function
mapping variables to elements in the carrier. A WMA naturally induces a proper
order >A on terms: s >A t if [α]A(s) > [α]A(t) for all assignments α : V → A.

3 The Dependency Pair Method

The purpose of this section is to take a fresh look at the dependency pair method
from the point of complexity analysis. Familiarity with [7,9] will be helpful. The
dependency pair method for termination analysis is based on the observation
that from an arbitrary non-terminating term one can extract a minimal non-
terminating subterm. For complexity analysis we employ a similar observation:
From a given term t one can extract a list of subterms whose sum of the derivation
lengths is equal to the derivational length of t.

Let X be a set of symbols. We write C〈t1, . . . , tn〉X to denote C[t1, . . . , tn],
whenever root(ti) ∈ X for all 1 6 i 6 n and C is an n-hole context containing
no X-symbols. (Note that the context C may be degenerate and doesn't contain
a hole 2 or it may be that C is a hole.) Then, every term t can be uniquely
written in the form C〈t1, . . . , tn〉X .

Lemma 2. Let t be a terminating term, and let σ be a substitution. Then
dl(tσ,→R) =

∑
16i6n dl(tiσ,→R), whenever t = C〈t1, . . . , tn〉D∪V .

3 We can replace Tb by the set of terms f(t1, . . . , tn) with f ∈ D, whose arguments ti

are in normal form, while keeping all results in this paper.

We de�ne the function com as a mapping from tuples of terms to terms as
follows: com(t1, . . . , tn) is t1 if n = 1, and c(t1, . . . , tn) otherwise. Here c is a
fresh n-ary function symbol called compound symbol. The above lemma motivates
the next de�nition of weak dependency pairs.

De�nition 3. Let t be a term. We set t] := t if t ∈ V, and t] := f](t1, . . . , tn) if
t = f(t1, . . . , tn). Here f] is a new n-ary function symbol called dependency pair
symbol. For a signature F , we de�ne F] = F ∪{f] | f ∈ F}. Let R be a TRS. If

l→ r ∈ R and r = C〈u1, . . . , un〉D∪V then the rewrite rule l] → com(u]1, . . . , u
]
n)

is called a weak dependency pair of R. The set of all weak dependency pairs is
denoted by WDP(R).

Example 4 (continued from Example 1). The set WDP(R) consists of the next
four weak dependency pairs:

5: x−] 0→ x 7: 0÷] s(y)→ c1

6: s(x)−] s(y)→ x−] y 8: s(x)÷] s(y)→ (x− y)÷] s(y)

Lemma 5. Let t ∈ T (F ,V) be a terminating term with root(t) ∈ D. We have
dl(t,→R) = dl(t],→WDP(R)∪R).

Proof. We show dl(t,→R) 6 dl(t],→WDP(R)∪R) by induction on ` = dl(t,→R).
If ` = 0, the inequality is trivial. Suppose ` > 0. Then there exists a term u such
that t→R u and dl(u,→R) = `− 1. We distinguish two cases depending on the
rewrite position p.

� If p is a position below the root, then clearly root(u) = root(t) ∈ D and
t] →R u]. The induction hypothesis yields dl(u,→R) 6 dl(u],→WDP(R)∪R),
and we obtain ` 6 dl(t],→WDP(R)∪R).

� If p is a root position, then there exist a rewrite rule l → r ∈ R and a
substitution σ such that t = lσ and u = rσ. We have r = C〈u1, . . . , un〉D∪V
and thus by de�nition l] → com(u]1, . . . , u

]
n) ∈ WDP(R) such that t] = l]σ.

Now, either ui ∈ V or root(ui) ∈ D for every 1 6 i 6 n. Suppose ui ∈ V.
Then u]iσ = uiσ and clearly no dependency pair symbol can occur and thus,

dl(uiσ,→R) = dl(u]iσ,→R) = dl(u]iσ,→WDP(R)∪R) .

Otherwise, root(ui) ∈ D and thus u]iσ = (uiσ)]. We have dl(uiσ,→R) 6
dl(u,→R) < l, and conclude dl(uiσ,→R) 6 dl(u]iσ,→WDP(R)∪R) by the in-
duction hypothesis. Therefore,

` = dl(u,→R) + 1 =
∑

16i6n

dl(uiσ,R) + 1 6
∑

16i6n

dl(u]iσ,WDP(R) ∪R) + 1

6 dl(com(u]1, . . . , u
]
n)σ,→WDP(R)∪R) + 1 = dl(t],→WDP(R)∪R) .

Here we used Lemma 2 for the second equality.

Note that t is R-reducible if and only if t] is WDP(R) ∪ R-reducible. Hence as
t is terminating, t] is terminating on →WDP(R)∪R. Thus, similarly, dl(t,→R) >
dl(t],→WDP(R)∪R) is shown by induction on dl(t],→WDP(R)∪R). ut

Lemma 6. Let t be a terminating term and σ a substitution such that xσ is a
normal form of R for all x ∈ Var(t). Then dl(tσ,→R) =

∑
16i6n dl(tiσ,→R),

whenever t = C〈t1, . . . , tn〉D.

De�nition 7. Let R be a TRS. If l → r ∈ R and r = C〈u1, . . . , un〉D then the

rewrite rule l] → com(u]1, . . . , u
]
n) is called a weak innermost dependency pair

of R. The set of all weak innermost dependency pairs is denoted by WIDP(R).

Example 8 (continued from Example 1). The set WIDP(R) consists of the next
four weak dependency pairs (with respect to i−→):

x−] 0→ c1 0÷] y → c2

s(x)−] s(y)→ x−] y s(x)÷] s(y)→ (x− y)÷] s(y)

The next lemma adapts Lemma 5 to innermost rewriting.

Lemma 9. Let t be an innermost terminating term in T (F ,V) with root(t) ∈ D.
We have dl(t, i−→R) = dl(t], i−→WIDP(R)∪R).

We conclude this section by discussing the applicability of standard depen-
dency pairs ([7]) in complexity analysis. For that we recall the standard de�nition
of dependency pairs.

De�nition 10 ([7]). The set DP(R) of (standard) dependency pairs of a TRS
R is de�ned as {l] → u] | l→ r ∈ R, u E r, root(u) ∈ D}.

The next example shows that Lemma 5 (Lemma 9) does not hold if we replace
weak (innermost) dependency pairs with standard dependency pairs.

Example 11. Consider the one-rule TRS R: f(s(x)) → g(f(x), f(x)). DP(R) is
the singleton of f](s(x)) → f](x). Let tn = f(sn(x)) for each n > 0. Since
tn+1 →R g(tn, tn) holds for all n > 0, it is easy to see dl(tn+1,→R) > 2n,
while dl(t]n+1,→DP(R)∪R) = n.

Hence, in general we cannot replace weak dependency pairs with (standard)
dependency pairs. However, if we restrict our attention to innermost rewriting,
we can employ dependency pairs in complexity analysis without introducing
fallacies, when speci�c conditions are met.

Lemma 12. Let t be an innermost terminating term with root(t) ∈ D. If all
compound symbols in WIDP(R) are nullary, dl(t, i−→R) 6 dl(t], i−→DP(R)∪R) + 1
holds.

Example 13 (continued from Example 8). The occurring compound symbols are
nullary. DP(R) consists of the next three dependency pairs:

s(x)−] s(y)→ x−] y s(x)÷] s(y)→ x−] y
s(x)÷] s(y)→ (x− y)÷] s(y)

4 Usable Rules

In the previous section, we studied the dependency pair method in the light of
complexity analysis. LetR be a TRS and P a set of weak dependency pairs, weak
innermost dependency pairs, or standard dependency pairs of R. Lemmata 5, 9,
and 12 describe a strong connection between the length of derivations in the
original TRSs R and the transformed (and extended) system P ∪ R. In this
section we show how we can simplify the new TRS P ∪ R by employing usable
rules.

De�nition 14. We write f �d g if there exists a rewrite rule l → r ∈ R such
that f = root(l) and g is a de�ned function symbol in Fun(r). For a set G of
de�ned function symbols we denote by R�G the set of rewrite rules l → r ∈ R
with root(l) ∈ G. The set U(t) of usable rules of a term t is de�ned as R�{g |
f �∗d g for some f ∈ Fun(t)}. Finally, if P is a set of (weak) dependency pairs
then U(P) =

⋃
l→r∈P U(r).

Example 15 (continued from Examples 4 and 8). The sets of usable rules are
equal for the weak dependency pairs and for the weak innermost dependency
pairs, i.e., we have U(WDP(R)) = U(WIDP(R)) = {1, 2}.

The usable rule criterion in termination analysis (cf. [12,9]) asserts that a
non-terminating rewrite sequence of R∪DP(R) can be transformed into a non-
terminating rewrite sequence of U(DP(R))∪DP(R)∪{g(x, y)→ x, g(x, y)→ y},
where g is a fresh function symbol. Because U(DP(R)) is a (small) subset of R
and most termination methods can handle g(x, y) → x and g(x, y) → y easily,
the termination analysis often becomes easy by switching the target of analysis
from the former TRS to the latter TRS. Unfortunately the transformation used
in [12,9] increases the size of starting terms, therefore we cannot adopt this trans-
formation approach. Note, however that the usable rule criteria for innermost
termination [8] can be directly applied in the context of complexity analysis.
Nevertheless, one may show a new type of usable rule criterion by exploiting the
basic property of a starting term. Recall that Tb denotes the set of basic terms;
we set T]b = {t] | t ∈ Tb}.

Lemma 16. Let P be a set of (weak) dependency pairs and let (ti)i=0,1,... be a

(�nite or in�nite) derivation of R∪P. If t0 ∈ T]b then (ti)i=0,1,... is a derivation
of U(P) ∪ P.

Proof. Let G be the set of all non-usable symbols with respect to P. We write
P (t) if t|q∈ NF(R) for all q ∈ PosG(t). Since ti →U(P)∪P ti+1 holds whenever
P (ti) and ti →R∪P ti+1, it is su�cient to show P (ti) for all i. We perform
induction on i.

1. Assume i = 0. Since t0 ∈ T]b , we have t0 ∈ NF(R) and thus t|p∈ NF(R)
for all positions p. The assertion P follows trivially.

2. Suppose i > 0. By induction hypothesis, there exist l → r ∈ U(P) ∪ P,
p ∈ Pos(ti−1), and a substitution σ such that ti−1 |p= lσ and ti |p= rσ. In
order to show property P for ti, we �x a position q ∈ G. We have to show
ti|q∈ NF(R). We distinguish three cases:

� Suppose that q is above p. Then ti−1|q is reducible, but this contradicts
the induction hypothesis P (ti−1).

� Suppose p and q are parallel but distinct. Since ti−1 |q= ti |q∈ NF(R)
holds, we obtain P (ti).

� Otherwise, q is below p. Then, ti|q is a subterm of rσ. Because r contains
no G-symbols by the de�nition of usable symbols, ti|q is a subterm of xσ
for some x ∈ Var(r) ⊆ Var(l). Therefore, ti|q is also a subterm of ti−1,
from which ti|q∈ NF(R) follows. We obtain P (ti).

ut

The following theorem follows from Lemmata 5, 9, and 12 in conjunction with
the above Lemma 16. It adapts the usable rule criteria to complexity analysis.4

Theorem 17. Let R be a TRS and let t ∈ Tb. If t is terminating with respect
to → then dl(t,→) 6 dl(t],→U(P)∪P), where → denotes →R or i−→R depending
on whether P = WDP(R) or P = WIDP(R). Moreover, suppose all compound
symbols in WIDP(R) are nullary then dl(t, i−→R) 6 dl(t],→U(DP(R))∪DP(R)) + 1.

It is worth stressing that it is (often) easier to analyse the complexity of U(P)∪P
than the complexity of R. To clarify the applicability of the theorem in com-
plexity analysis, we consider two restrictive classes of polynomial interpretations,
whose de�nitions are motivated by [13].

A polynomial P (x1, . . . , xn) (over the natural numbers) is called strongly lin-
ear if P (x1, . . . , xn) = x1 + · · ·+xn+c where c ∈ N. A polynomial interpretation
is called linear restricted if all constructor symbols are interpreted by strongly
linear polynomials and all other function symbols by a linear polynomial. If
on the other hand the non-constructor symbols are interpreted by quadratic
polynomials, the polynomial interpretation is called quadratic restricted. Here a
polynomial is quadratic if it is a sum of monomials of degree at most 2. It is
easy to see that if a TRS R is compatible with a linear or quadratic restricted
interpretation, the runtime complexity of R is linear or quadratic, respectively
(see also [13]).

Corollary 18. Let R be a TRS and let P = WDP(R) or P = WIDP(R). If
U(P) ∪ P is compatible with a linear or quadratic restricted interpretation,

the (innermost) runtime complexity function rc
(i)
R with respect to R is linear

or quadratic, respectively. Moreover, suppose all compound symbols in WIDP(R)
are nullary and U(DP(R)) ∪ DP(R) is compatible with a linear (quadratic) re-
stricted interpretation, then R admits at most linear (quadratic) innermost run-
time complexity.

4 Note that Theorem 17 only holds for basic terms t ∈ T]
b . In order to show this, we

need some additional technical lemmas, which are the subject of the next section.

Proof. Let R be a TRS. For simplicity we suppose P = WDP(R) and assume
the existence of a linear restricted interpretation A, compatible with U(P) ∪
P. Clearly this implies the well-foundedness of the relation →U(P)∪P , which in
turn implies the well-foundedness of →R, cf. Lemma 16. Hence Theorem 17 is
applicable and we conclude dl(t,→R) 6 dl(t],→WDP(R)∪R). On the other hand,

compatibility with A implies that dl(t],→WDP(R)∪R) = O(|t]|). As |t]| = |t|, we
can combine these equalities to conclude linear runtime complexity of R. ut

5 The Weight Gap Principle

We recall the notion of relative rewriting ([14,11]).

De�nition 19. Let R and S be TRSs. We write →R/S for →∗S · →R · →∗S and
we call →R/S the relative rewrite relation of R over S.5

Since dl(t,→R/S) corresponds to the number of →R-steps in a maximal deriva-
tion of→R∪S from t, we easily see the bound dl(t,→R/S) 6 dl(t,→R∪S). In this
section we study this opposite, i.e., we �gure out a way to give an upper-bound
of dl(t,→R∪S) by a function of dl(t,→R/S).

First we introduce the key ingredient, strongly linear interpretations, a very
restrictive form of polynomial interpretations. Let F denote a signature. A
strongly linear interpretation (SLI for short) is a WMA (A,�) that satis�es
the following properties: (i) the carrier of A is the set of natural numbers N, (ii)
all interpretation functions fA are strongly linear, (iii) the proper order � is the
standard order > on N. Note that an SLI A is conceivable as a weight function.
We de�ne the maximum weight MA of A as max{fA(0, . . . , 0) | f ∈ F}. Let
A denote an SLI, let α0 denote the assignment mapping any variable to 0, i.e.,
α0(x) = 0 for all x ∈ V, and let t be a term. We write [t] as an abbreviation for
[α0]A(t).

Lemma 20. Let A be an SLI and let t be a term. Then [t] 6 MA · |t| holds.

Proof. By induction on t. If t ∈ V then [t] = 0 6 MA · |t|. Otherwise, suppose
t = f(t1, . . . , tn), where fA(x1, . . . , xn) = x1 + . . . + xn + c. By the induction
hypothesis and c 6 MA we obtain the following inequalities:

[t] = fA([t1], . . . , [tn]) 6 [t1] + · · ·+ [tn] + c

6 MA · |t1|+ · · ·+ MA · |tn|+ MA = MA · |t| .

ut

The conception of strongly linear interpretations as weight functions allows
us to study (possible) weight increase throughout a rewrite derivation. This
observation is re�ected in the next de�nition.

5 Note that →R/S = →R, if S = ∅.

De�nition 21. Let A be an algebra and let R be a TRS. The weight gap
∆(A,R) of A with respect to R is de�ned on N as follows: ∆(A,R) = max{[r] ·−
[l] | l→ r ∈ R}, where ·− is de�ned as usual: m ·− n := max{m− n, 0}

The following weight gap principle is a direct consequence of the de�nitions.

Lemma 22. Let R be a TRS and A an SLI. If s→R t then [s]+∆(A,R) > [t].

We stress that the lemma does not require any condition. Indeed, the implication
in the lemma holds even if TRS R is not compatible with a strongly linear
interpretation. This principle brings us to the next theorem.

Theorem 23. Let R and S be TRSs, and A an SLI compatible with S. Then
we have dl(t,→R∪S) 6 (1 + ∆(A,R)) · dl(t,→R/S) + MA · |t|, whenever t is
terminating on R∪ S.

Proof. Let m = dl(t,→R/S), let n = |t|, and set ∆ = ∆(A,R). Any derivation
of →R∪S is representable as follows

s0 →k0
S t0 →R s1 →k1

S t1 →R · · · →km

S tm ,

and without loss of generality we may assume that the derivation is maximal.
We observe the next two facts.

(a) ki 6 [si]− [ti] holds for all 0 6 i 6 m. This is because [s] > [t] + 1 whenever
s→S t by the assumption S ⊆ >A, and we have si →Ski ti.

(b) [si+1] − [ti] 6 ∆ holds for all 0 6 i < m as due to Lemma 22 we have
[ti] +∆ > [si+1].

We obtain the following inequalities:

dl(s0,→R∪S) = m+ k0 + · · ·+ km

6 m+ ([s0]− [t0]) + · · ·+ ([sm]− [tm])
= m+ [s0] + ([s1]− [t0]) + · · ·+ ([sm]− [tm−1])− [tm]
6 m+ [s0] +m∆− [tm]
6 m+ [s0] +m∆

6 m+ MA · n+m∆ = (1 +∆)m+ MA · n .

Here we used (a) m-times in the second line, (b) m− 1-times in the fourth line,
and Lemma 20 in the last line. ut

The next example clari�es that the conditions expressed in Theorem 23 are
optimal: We cannot replace the assumption that the algebra A is strongly linear
with a weaker assumption: Already if A is a linear polynomial interpretation,
the derivation height of R ∪ S cannot be bounded polynomially in dl(t,→R/S)
and |t| alone.

Example 24. Consider the TRSs R

exp(0)→ s(0) d(0)→ 0

exp(r(x))→ d(exp(x)) d(s(x))→ s(s(d(x)))

This TRS formalises the exponentiation function. Setting tn = exp(rn(0)) we
obtain dl(tn,→R) > 2n for each n > 0. Thus the runtime complexity of R is
(at least) exponential. In order to show the claim, we split R into two TRSs
R1 = {exp(0) → s(0), exp(r(x)) → d(exp(x))} and R2 = {d(0) → 0, d(s(x)) →
s(s(d(x)))}. Then it is easy to verify that the next linear polynomial interpreta-
tion A is compatible with R2: 0A = 0, dA(x) = 3x, and sA(x) = x+1. Moreover
an upper-bound of dl(tn,→R1/R2) can be estimated by using the following poly-
nomial interpretation B: 0B = 0, dB(x) = sB(x) = x, and expB(x) = rB(x) =
x + 1. Since →R1 ⊆ >B and →∗R2

⊆ >B hold, we have →R1/R2 ⊆ >B. Hence
dl(tn,→R1/R2) 6 [α0]B(tn) = n + 2. But clearly from this we cannot conclude
a polynomial bound on the derivation length of R1 ∪ R2 = R, as the runtime
complexity of R is exponential, at least.

To conclude this section, we show that Theorem 17 can only hold for basic
terms t ∈ T]b .

Example 25. Consider the one-rule TRS R = {a(b(x)) → b(b(a(x)))} from [15,
Example 2.50]. It is not di�cult to see that dl(an(b(x)),→R) = 2n − 1, see [4].
The set WDP(R) consists of just one dependency pair a](b(x)) → a](x)). In
particular the set of usable rules is empty. The following SLI A is compatible
with WDP(R): a]A(x) = aA(x) = x and bA(x) = 1. Hence, due to Lemma 20 we
can conclude the existence of a constant K such that dl(t],→WDP(R)) 6 K · |t|.
Due to Theorem 17 we conclude linear runtime complexity of R.

6 Reduction Pairs and Argument Filterings

In this section we study the consequences of combining Theorem 17 and The-
orem 23. In doing so, we adapt reduction pairs and argument �lterings ([7]) to
runtime complexity analysis. Let R be a TRS, and let A be a strongly linear
interpretation and suppose we consider weak, weak innermost, or (standard) de-
pendency pairs P. If U(P) ⊆ >A then there exist constants K,L > 0 (depending
on P and A only) such that

dl(t,→R) 6 K · dl(t],→P/U(P)) + L · |t]| ,

for all terminating basic terms t ∈ Tb. This follows from the combination of
Theorems 17 and 23. Thus, in order to estimate the derivation length of t with
respect to R it su�ces to estimate the maximal P steps, i.e., we have to estimate
dl(t],→P/U(P)) suitably. Consider a maximal derivation (ti)i=0,...,n of →P/U(P)

with t0 = t]. For every 0 6 i < n there exist terms ui and vi such that

ti →∗U(P) ui →P vi →
∗
U(P) ti+1 . (1)

Let & and � be a pair of orders with & · � ·& ⊆ �. If ti & ui � vi & ti+1 holds
for all 0 6 i < n, we obtain t] = t0 � t1 � · · · � tn. Therefore, dl(t],→P/U(P))
can be bounded in the maximal length of �-descending steps. We formalise these
observations through the use of reduction pairs and collapsible orders.

De�nition 26. Let R be a TRS, let P a set of weak dependency pairs of R and
let G denote a mapping associating a term (over F] and V) and a proper order
� with a natural number. An order � on terms is G-collapsible for a TRS R if
s→P∪U(P) t and s � t implies G(s,�) > G(t,�). An order � is collapsible for
a TRS R, if there is a mapping G such that � is G-collapsible for R.

Note that most reduction orders are collapsible. For instance, if A is a poly-
nomial interpretation then >A is collapsible, as witnessed by the evaluation
function [α0]A. Furthermore, simpli�cation orders like MPO, LPO and KBO are
collapsible (cf. [2,3,5]).6

De�nition 27. A rewrite preorder is a preorder on terms which is closed under
contexts and substitutions. A reduction pair (&,�) consists of a rewrite preorder
& and a compatible well-founded order � which is closed under substitutions.
Here compatibility means the inclusion & · � · & ⊆ �. A reduction pair (&,�)
is called collapsible for a TRS R if � is collapsible for R.

Recall the derivation in (1): Due to compound symbols the rewrite step
ui →P vi may take place below the root. Hence P ⊆ � does not ensure ui � vi.
To address this problem we introduce a notion of safety that is based on the
next de�nitions.

De�nition 28. The set T]c is inductively de�ned as follows (i) T]b ⊆ T]c and
(ii) c(t1, . . . , tn) ∈ T]c , whenever t1, . . . , tn ∈ T]c and c a compound symbol.

De�nition 29. A proper order � on T]c is called safe if c(s1, . . . , si, . . . , sn) �
c(s1, . . . , t, . . . , sn) for all n-ary compound symbols c and all terms s1, . . . , sn, t
with si � t. A reduction pair (&,�) is called safe if � is safe.

Lemma 30. Let P be a set of weak, weak innermost, or standard dependency
pairs, and (&,�) be a safe reduction pair such that U(P) ⊆ & and P ⊆ �. If
s ∈ T]c and s→P/U(P) t then s � t and t ∈ T]c .

Employing Theorem 17, Theorem 23, and Lemma 30 we arrive at our Main
Theorem.

Theorem 31. Let R be a TRS, let A an SLI, let P be the set of weak, weak
innermost, or (standard) dependency pairs, and let (&,�) be a safe and G-
collapsible reduction pair such that U(P) ⊆ & and P ⊆ �. If in addition U(P) ⊆
>A then for any t ∈ Tb, we have dl(t,→) 6 p(G(t], >A), |t|), where p(m,n) :=
(1 + ∆(A,P)) ·m + MA · n and → denotes →R or i−→R depending on whether
P = WDP(R) or P = WIDP(R). Moreover if all compound symbols in WIDP(R)
are nullary we have dl(t, i−→R) 6 p(G(t], >A), |t|) + 1.
6 On the other hand it is easy to construct non-collapsible orders: Suppose we extend
the natural numbers N by a non-standard element ∞ such that for any n ∈ N we
set ∞ > n. Clearly we cannot collapse ∞ to a natural number.

Proof. First, observe that the assumptions imply that any basic term t ∈ Tb is
terminating with respect to R. This is a direct consequence of Lemma 16 and
Lemma 30 in conjunction with the assumptions of the theorem. Without loss of
generality, we assume P = WDP(P). By Theorem 17 and 23 we obtain:

dl(t,→) 6 dl(t],→U(P)∪P) 6 p(dl(t],→P/U(P)), |t]|)
6 p(G(t], >A), |t]|) = p(G(t], >A), |t|) .

In the last line we exploit that |t]| = |t|. ut

Note that there exists a subtle disadvantage of Theorem 31 in comparison to
Theorem 17. Since the Main Theorem requires compatibility of usable rules with
some strongly linear interpretation, all usable rules must be non-duplicating.
This is not necessary to meet the requirements of Theorem 17.

In order to construct safe reduction pairs one may use safe algebras, i.e.,
weakly monotone well-founded algebras (A,�) such that the interpretations of
compound symbols are strictly monotone with respect to �. Another way is to
apply an argument �ltering to a reduction pair.

De�nition 32. An argument �ltering for a signature F is a mapping π that
assigns to every n-ary function symbol f ∈ F an argument position i ∈ {1, . . . , n}
or a (possibly empty) list [i1, . . . , im] of argument positions with 1 6 i1 < · · · <
im 6 n. The signature Fπ consists of all function symbols f such that π(f) is
some list [i1, . . . , im], where in Fπ the arity of f is m. Every argument �ltering
π induces a mapping from T (F ,V) to T (Fπ,V), also denoted by π:

π(t) =


t if t is a variable

π(ti) if t = f(t1, . . . , tn) and π(f) = i

f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im]

An argument �ltering π is called safe if π(c) = [1, . . . , n] for all n-ary compound
symbol. For a relation R on T (F ,V) we de�ne Rπ on T (Fπ,V) as follows: s Rπ t
if and only if π(s) R π(t).

Lemma 33. If (A,�) is a safe algebra then (>A, >A) is a safe reduction pair.
Furthermore, (&π,�π) is a safe reduction pair if (&,�) is a reduction pair and
π is a safe argument �ltering.

The below given example applies the Main Theorem to the motivating Ex-
ample 1 introduced in Section 1.

Example 34 (continued from Example 4.). By taking the SLI A with interpreta-
tion 0A = 0, sA(x) = x+1, and x−Ay = x+y+1, we obtain U(WDP(R)) ⊆ >A.
Moreover, we take the safe algebra B with 0B = 0, sB(x) = x + 2, x −B y =
x−]B y = x÷]B y = x+ 1, and (c1)B = 0. B interprets WDP(R) and U(WDP(R))
as follows:

1: x+ 1 > x 5: x+ 1 > x 7: 1 > 0
2: x+ 3 > x+ 1 6: x+ 3 > x+ 1 8: x+ 3 > x+ 2 .

Therefore, WDP(R) ⊆ >B and U(WDP(R)) ⊆ >B hold. Hence, the runtime
complexity of R for full rewriting is linear.

Following the pattern of the proof of Corollary 18 it is an easy exercise to
extend Theorem 31 to a method for complexity analysis. In the above example,
we have already used the easy fact that (obvious extensions of) linear restricted
interpretation may be used as safe reduction pairs.

Corollary 35. Let R be a TRS, let A be an SLI, let P be the set of weak,
weak innermost, or standard dependency pairs, where the compound symbols in
WIDP(R) are nullary, if P = DP(R). Moreover let B be a linear or quadratic
restricted interpretation such that (>B, >B) forms a safe reduction pair with
U(P) ⊆ >B and P ⊆ >B. If U(P) ⊆ >A then the (innermost) runtime complex-

ity function rc
(i)
R with respect to R is linear or quadratic, respectively.

Note that if U(P) = ∅, the compatibility of U(P) with an SLI is trivially satis�-
able. In this special case by taking the SLI A that interprets all symbols with the
zero function, we obtain dl(t,→) 6 G(t], >A) because ∆(A,∅) = MA = 0. As a
consequence of Theorem 31 and Lemma 12 we obtain the following corollary.

Corollary 36. Let R be a TRS, let A be an SLI, let all compound symbols in
WIDP(R) be nullary and let B be a linear or quadratic restricted interpretation
such that (>B, >B) forms a reduction pair with U(DP(R)) ⊆ >B and DP(R) ⊆
>B. If in addition U(DP(R)) ⊆ >A then the innermost runtime complexity
function rci

R with respect to R is linear or quadratic, respectively.

Corollary 36 establishes (for the �rst time) a method to analyse the derivation
length induced by the standard dependency pair method for innermost rewrit-
ing. More general, if all compound symbols in WIDP(R) are nullary and there
exists a collapsible reduction pair (&,�) such that U(P) ⊆ & and P ⊆ �, then
the innermost runtime complexity of R is linear in the maximal length of �-
descending steps. Clearly for string rewriting (cf. [11]) the compound symbols
in WIDP(R) are always nullary and the conditions works quite well for TRSs,
too (see Section 7).

7 Experiments

We implemented a complexity analyser based on syntactical transformations for
dependency pairs and usable rules together with polynomial orders (based on
[16]). To deal e�ciently with polynomial interpretations, the issuing constraints
are encoded in propositional logic in a similar spirit as in [17]. Assignments
are found by employing a state-of-the-art SAT solver, in our case MiniSat7.
Furthermore, strongly linear interpretations are handled by a decision procedure
for Presburger arithmetic. As suitable test bed we used the rewrite systems in
the Termination Problem Data Base version 4.0.8 This test bed comprises 1679

7 http://minisat.se/.
8 http://www.lri.fr/~marche/tpdb/

http://minisat.se/
http://www.lri.fr/~marche/tpdb/

Table 1. Experimental Results for TRSs

Linear Runtime Complexities

full rewriting innermost rewriting

LC Cor. 18 Cor. 35 both Cor. 18 (DP) Cor. 35 (DP) both

success 139 138 119 161 143 (135) 128 (113) 170
15 21 18 33 21 (20) 21 (15) 34

failure 1529 1501 1560 1478 1495 (1502) 1550 (1565) 1467
1564 2517 152 2612 2489 (2593) 180 (149) 2580

timeout 11 40 0 40 41 (42) 1 (1) 42

Quadratic Runtime Complexities

full rewriting innermost rewriting

QC Cor. 18 Cor. 35 both Cor. 18 (DP) Cor. 35 (DP) both

success 176 169 124 188 168 (152) 125 (109) 189
473 598 254 781 564 (457) 237 (128) 755

failure 702 657 1486 601 654 (707) 1486 (1502) 593
2569 2591 527 2700 2522 (2461) 602 (546) 2570

timeout 799 852 69 890 856 (816) 68 (68) 896

TRSs, including 358 TRSs for innermost rewriting. The presented tests were
performed single-threaded on a 1.50 GHz Intel® Core� Duo Processor L2300
and 1.5 GB of memory. For each system we used a timeout of 30 seconds, the
times in the tables are given in seconds. Table 1 summarises the results of the
conducted experiments.9 Text written in italics below the number of successes
or failures indicates total time of success cases or failure cases, respectively.10

We use the following abbreviations: The method LC (QC) refers to compatibil-
ity with linear (quadratic) restricted interpretation, cf. Section 3. In interpreting
de�ned and dependency pair functions, we restrict the search to polynomials in
the range {0, 1, . . . , 5}. The upper half of Table 1 shows the experimental results
for linear runtime complexities based on LC. The columns marked �Cor. 18�
and �Cor. 35� refer to the applicability of the respective corollaries. In the col-
umn marked �both� we indicate the results, we obtain when we �rst try to apply
Corollary 35 and if this fails Corollary 18. The lower half summarises experimen-
tal results for quadratic runtime complexities based on QC. On the studied test
bed there are 1567 TRSs such that one may switch from WIDP(R) to DP(R).
For the individual tests, we indicated the results in parentheses for this versions
of Corollary 18 and Corollary 35.

8 Conclusion

In this paper we studied the runtime complexity of rewrite systems. We have
established a variant of the dependency pair method that is applicable in this
context and is easily mechanisable. In particular our �ndings extend the class of

9 For full experimental evidence see http://www.jaist.ac.jp/~hirokawa/08a/.
10 Sum of numbers in each column may be less than 1679 because of stack over�ow.

http://www.jaist.ac.jp/~hirokawa/08a/

TRSs whose linear or quadratic runtime complexity can be detected automati-
cally. We provided ample numerical data for assessing the viability of the method.
To conclude, we mention possible future work. In the experiments presented, we
have restricted our attention to interpretation based methods inducing linear or
quadratic (innermost) runtime complexity. Recently in [18] a restriction of the
multiset path order, called polynomial path order has been introduced that in-
duces polynomial runtime complexity. In future work we will test to what extent
this is e�ectively combinable with our Main Theorem. Furthermore, we strive to
extend the approach presented here to handle dependency graphs [7].

References

1. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations.
In: Proc. 3rd RTA. Volume 355 of LNCS. (1989) 167�177

2. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive re-
cursive derivation lengths. TCS 105(1) (1992) 129�140

3. Weiermann, A.: Termination proofs for term rewriting systems with lexicographic
path orderings imply multiply recursive derivation lengths. TCS 139 (1995) 355�
362

4. Hofbauer, D.: Termination proofs by context-dependent interpretations. In: Proc.
12th RTA. Volume 2051 of LNCS. (2001) 108�121

5. Moser, G.: Derivational complexity of Knuth Bendix orders revisited. In: Proc.
13th LPAR. Volume 4246 of LNCS. (2006) 75�89

6. Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify
termination of left-linear term rewriting systems. IC 205(4) (2007) 512�534

7. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. TCS
236 (2000) 133�178

8. Giesl, J., Arts, T., Ohlebusch, E.: Modular termination proofs for rewriting using
dependency pairs. JSC 34(1) (2002) 21�58

9. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features.
IC 205 (2007) 474�511

10. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

11. Terese: Term Rewriting Systems. Volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press (2003)

12. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. JAR 37(3) (2006) 155�203

13. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial
interpretation termination proof. JFP 11(1) (2001) 33�53

14. Geser, A.: Relative Termination. PhD thesis, Universität Passau (1990)
15. Steinbach, J., Kühler, U.: Check your ordering � termination proofs and open

problems. Technical Report SR-90-25, Universität Kaiserslautern (1990)
16. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termi-

nation using polynomial interpretations. JAR 34(4) (2005) 325�363
17. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:

SAT solving for termination analysis with polynomial interpretations. In: Proc.
10th SAT. Volume 4501 of LNCS. (2007) 340�354

18. Avanzini, M., Moser, G.: Complexity analysis by rewriting. In: Proc. 9th FLOPS.
Volume 4989 of LNCS. (2008) 130�146

	Automated Complexity Analysis Based on the Dependency Pair Method
	Nao Hirokawa and Georg Moser

