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Abstract. This paper builds on recent e�orts (Hirokawa and Moser,
2008) to exploit the dependency pair method for verifying feasible, i.e.,
polynomial runtime complexities of term rewrite systems automatically.
We extend our earlier results by revisiting dependency graphs in the
context of complexity analysis. The obtained new results are easy to
implement and considerably extend the analytic power of our existing
methods. The gain in power is even more signi�cant when compared to
existing methods that directly, i.e., without the use of transformations,
induce feasible runtime complexities. We provide ample numerical data
for assessing the viability of the method.

1 Introduction

Term rewriting is a conceptually simple but powerful abstract model of compu-
tation that underlies much of declarative programming. Runtime complexity is a
notion for capturing time complexities of functions de�ned by a term rewriting
system (TRS for short) introduced in [1] (but see also [2,3,4]). In recent research
we revisited the basic dependency pair method [5] in order to make it applicable
for complexity analysis, cf. [1]. The dependency pair method introduced by Arts
and Giesl [5] is one of the most powerful methods in termination analysis. The
method enables us to use several powerful techniques including, usable rules,
reduction pairs, argument �lterings, and dependency graphs. Our main results
in [1] show how natural improvements of the dependency pair method, like usable
rules, reduction pairs, and argument �lterings become applicable in the context
of complexity analysis. In this paper, we will extend these recent results further.

The dependency pair method for termination analysis is based on the obser-
vation that from an arbitrary non-terminating term one can extract a minimal
non-terminating subterm. For that one considers dependency pairs that essen-
tially encode recursive calls in a TRS. Notice that with respect to the TRS
de�ned in Example 1 below, one �nds 8 such pairs (see Section 4 for further
details).

? This research is partly supported by FWF (Austrian Science Fund) project P20133,
Grant-in-Aid for Young Scientists 20800022 of the Ministry of Education, Culture,
Sports, Science and Technology of Japan, and STARC.



Example 1. Consider the TRS R which computes the greatest common divisor.3

1: 0 6 y → true 6: gcd(0, y)→ y

2: s(x) 6 0→ false 7: gcd(s(x), 0)→ s(x)
3 : s(x) 6 s(y))→ x 6 y 8: gcd(s(x), s(y))→ ifgcd(y 6 x, s(x), s(y))
4 : x− 0→ x 9: ifgcd(true, s(x), s(y))→ gcd(x− y, s(y))
5 : s(x)− s(y)→ x− y 10: ifgcd(false, s(x), s(y))→ gcd(y − x, s(x))

A very well-studied re�nement of the dependency pair method are depen-
dency graphs. To show termination of a TRS, it su�ces to guarantee that none
of the cycles in DG(R) [5] can give rise to an in�nite rewrite sequence. (Here a
cycle C is a nonempty set of dependency pairs of R such that for every two pairs
s→ t and u→ v in C there exists a nonempty path in C from s→ t to u→ v.)
More precisely it su�ces to prove for every cycle C in the dependency graph
DG(R), that there are no C-minimal rewrite sequences (see [7], but also [8,9]).
To achieve this one may consider each cycle independently, i.e., for each cycle it
su�ces to �nd a reduction pair (&,�) (cf. Section 2) such that R ⊆ &, C ⊆ &
and C ∩ � 6= ∅, i.e., at least one dependency pair in C is strictly decreasing.

Example 2 (continued from Example 1). The dependency graph DG(R), whose
nodes are the mentioned 8 dependency pairs, has the following form

1318

16

12 17

15

14 11

This graph contains the maximal cycles {11}, {14}, and {13, 15, 17}, where the
latter contains two sub-cycles. As already mentioned, it su�ces to consider each
of these �ve cycles individually.

The main contribution of this paper is to extend the dependency graph re�ne-
ment of the dependency pair method to complexity analysis. This is a challenging
task, and we face a couple of di�culties, documented via suitable examples be-
low. To overcome these obstacles we adapt the standard notion of dependency
graph suitably and introduce weak (innermost) dependency graphs, based on
weak dependency pairs, which have been studied in [1]. Moreover, we observe
that in the context of complexity analysis, it is not enough to focus on the
(maximal) cycles of a (weak) dependency graph. Instead, we show how cycle
detection is to be replaced by path detection, in order to salvage the (standard)
technique of dependency graphs for runtime complexity considerations.

The remainder of the paper is organised as follows. After recalling basic
notions in Section 2. We recall in Section 3 main results from [1] that will be
extended in the sequel. In Section 4 we establish our dependency graph analysis
for complexity analysis. Finally, we conclude in Section 5, where we assess the
applicability of our method.

3 This is Example 3.6a in Arts and Giesl's collection of TRSs [6].
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2 Preliminaries

We assume familiarity with term rewriting [10,11], but brie�y review basic con-
cepts and notations.

Let V denote a countably in�nite set of variables and F a signature. The set
of terms over F and V is denoted by T (F ,V) (T for short). The root symbol of
a term t is either t itself, if t ∈ V, or the symbol f , if t = f(t1, . . . , tn). The set
of positions Pos(t) of a term t is de�ned as usual. We write PosG(t) ⊆ Pos(t)
for the set of positions of subterms whose root symbol is contained in G ⊆ F .
The descendants of a position with respect to a rewrite sequence are de�ned as
usual, cf. [11]. The subterm relation is denoted as E. Var(t) (Fun(t)) denotes
the set of variables (functions) occurring in a term t. The size |t| of a term is
de�ned as the number of symbols in t. A term rewrite system R over T (F ,V)
is a �nite set of rewrite rules l → r, such that l /∈ V and Var(l) ⊇ Var(r). The
smallest rewrite relation that contains R is denoted by →R, and its transitive
and re�exive closure by →∗R. We simply write → for →R if R is clear from
context. A term s ∈ T (F ,V) is called a normal form if there is no t ∈ T (F ,V)
such that s → t. The innermost rewrite relation i−→R of a TRS R is de�ned on
terms as follows: s i−→R t if there exists a rewrite rule l → r ∈ R, a context C,
and a substitution σ such that s = C[lσ], t = C[rσ], and all proper subterms of
lσ are normal forms of R. The set of de�ned symbols is denoted as D, while the
constructor symbols are collected in C. We call a term t = f(t1, . . . , tn) basic if
f ∈ D and ti ∈ T (C,V) for all 1 6 i 6 n.

We call a TRS terminating if no in�nite rewrite sequence exists. The n-fold
composition of → is denoted as →n and the derivation length of a terminat-
ing term t with respect to a TRS R and rewrite relation →R is de�ned as:
dl(s,→R) := max{n | ∃t s →n t}. Let R be a TRS and T be a set of terms.
The runtime complexity function with respect to a relation → on T is de�ned as
follows:

rc(n, T,→) := max{dl(t,→) | t ∈ T and |t| 6 n} .

In particular we are interested in the (innermost) runtime complexity with re-
spect to→R ( i−→R) on the set Tb of all basic terms.4 More precisely, the runtime
complexity function (with respect toR) is de�ned as rcR(n) := rc(n, Tb,→R) and
we de�ne the innermost runtime complexity function as rci

R(n) := rc(n, Tb, i−→R).
Notice that the derivational complexity function (with respect toR) becomes de-
�nable as follows: dcR(n) := rc(n, T ,→R), where T denotes the set of all terms
T (F ,V), compare [12]. We sometimes say the (innermost) runtime complexity

of R is linear, quadratic, or polynomial if rc(i)
R is bounded by a linear, quadratic,

or polynomial function in n, respectively.

A proper order is a transitive and irre�exive relation and a preorder is a
transitive and re�exive relation. A proper order � is well-founded if there is
no in�nite decreasing sequence t1 � t2 � t3 · · · . An F-algebra A consists of a

4 We can replace Tb by the set of terms f(t1, . . . , tn) with f ∈ D, whose arguments ti
are in normal form, while keeping all results in this paper.
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carrier set A and an interpretation fA for each function symbol in F . A well-
founded and monotone algebra (WMA for short) is a pair (A, >), where A is
an algebra and > is a well-founded proper order on A such that every fA is
monotone in all arguments. An assignment α : V → A is a function mapping
variables to elements in the carrier, and [α]A(·) denotes the usual evaluation
function associated with A. A WMA naturally induces a proper order >A on
terms: s >A t if [α]A(s) > [α]A(t) for all assignments α : V → A. For the re�exive
closure > of >, the preorder >A is similarly de�ned. Clearly the proper order
>A is a reduction order, i.e., if R ⊆ >A, for a TRS R, then we can conclude
termination ofR. A rewrite preorder is a preorder on terms which is closed under
contexts and substitutions. A reduction pair (&,�) consists of a rewrite preorder
& and a compatible well-founded order � which is closed under substitutions.
Here compatibility means the inclusion & · � · & ⊆ �. Note that for any WMA
A the pair (>A, >A) constitutes a reduction pair.

We call a WMA A based on the natural numbers N a polynomial interpreta-
tion, if all functions fA are polynomials. A polynomial P (x1, . . . , xn) (over the
natural numbers) is called strongly linear if P (x1, . . . , xn) = x1 + · · · + xn + c
where c ∈ N. A polynomial interpretation is called linear restricted if all construc-
tor symbols are interpreted by strongly linear polynomials and all other function
symbols by linear polynomials. If on the other hand the non-constructor symbols
are interpreted by quadratic polynomials, the polynomial interpretation is called
quadratic restricted. Here a polynomial is quadratic if it is a sum of monomials
of degree at most 2 (see [13]). It is easy to see that if a TRS R is compatible
with a linear or quadratic restricted interpretation, the runtime complexity of
R is linear or quadratic, respectively (see [1] but also [3]). Finally, we introduce
a very restrictive class of polynomial interpretations: strongly linear interpreta-
tions (SLI for short). A polynomial interpretation is called strongly linear if all
functions fA are interpreted as strongly linear polynomials.

3 Complexity Analysis Based on the Dependency Pair

Method

In this section, we recall central de�nitions and results established in [1]. We
kindly refer the reader to [1] for additional examples and underlying intuitions.

We write C〈t1, . . . , tn〉X to denote C[t1, . . . , tn], whenever root(ti) ∈ X for
all 1 6 i 6 n and C is an n-hole context containing no X-symbols. Let t be a
term. We set t] := t if t ∈ V, and t] := f ](t1, . . . , tn) if t = f(t1, . . . , tn). Here f ]

is a new n-ary function symbol called dependency pair symbol. For a signature
F , we de�ne F ] = F ∪ {f ] | f ∈ F}.
De�nition 3. Let R be a TRS. If l→ r ∈ R and r = C〈u1, . . . , un〉D∪V then the

rewrite rule l] → com(u]
1, . . . , u

]
n) is called a weak dependency pair of R. Here

com is de�ned with a fresh n-ary function symbol c (corresponding to l→ r) as
follows: com(t1, . . . , tn) is t1 if n = 1, and c(t1, . . . , tn) otherwise. The symbol c
is called compound symbol. The set of all weak dependency pairs is denoted by
WDP(R).
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Example 4 (continued from Example 1). The set WDP(R) consists of the next
ten weak dependency pairs.

11: 0 6] y → c1 16: gcd](0, y)→ y

12: s(x) 6] 0→ c2 17: gcd](s(x), 0)→ x

13: s(x) 6] s(y)→ x 6] y 18: gcd](s(x), s(y))→ ifgcd
](y 6 x, s(x), s(y))

14: s(x)−] 0→ x 19: ifgcd
](true, s(x), s(y))→ gcd](x− y, s(y))

15: s(x)−] s(y)→ x−] y 20: ifgcd
](false, s(x), s(y))→ gcd](y − x, s(x))

De�nition 5. Let R be a TRS. If l → r ∈ R and r = C〈u1, . . . , un〉D then the

rewrite rule l] → com(u]
1, . . . , u

]
n) is called a weak innermost dependency pair

of R. The set of all weak innermost dependency pairs is denoted by WIDP(R).

De�nitions 3 and 5 should be compared to the de�nition of �standard� de-
pendency pairs.

De�nition 6 ([5]). The set DP(R) of (standard) dependency pairs of a TRS
R is de�ned as {l] → u] | l→ r ∈ R, u E r, root(u) ∈ D}.

Example 7 (continued from Example 1). As already mentioned in the Introduc-
tion, the TRS R admits 8 (standard) dependency pairs. Notice that the sets
DP(R) and WDP(R) are incomparable. For example 0 6] y → c1 ∈ WDP(R) \
DP(R), while gcd](s(x), s(y))→ y 6] x ∈ DP(R) \WDP(R).

We write f �d g if there exists a rewrite rule l→ r ∈ R such that f = root(l)
and g is a de�ned symbol in Fun(r). For a set G of de�ned symbols we denote by
R�G the set of rewrite rules l → r ∈ R with root(l) ∈ G. The set U(t) of usable
rules of a term t is de�ned as R�{g | f �∗d g for some f ∈ Fun(t)}. Finally, if P is
a set of (weak or weak innermost) dependency pairs then U(P) =

⋃
l→r∈P U(r).

Proposition 8 ([1]). Let R be a TRS and let t ∈ Tb. If t is terminating with
respect to → then dl(t,→) 6 dl(t],→U(P)∪P), where → denotes →R or i−→R
depending on whether P = WDP(R) or P = WIDP(R).

We recall the notion of relative rewriting [11]. Let R and S be TRSs. We
write →R/S for →∗S · →R · →∗S and we call →R/S the relative rewrite relation
of R over S. (Note that →R/S =→R, if S = ∅.) Let A denote a strongly linear
interpretation.

Proposition 9 ([1]). Let R and S be TRSs, and A an SLI compatible with
S. There exist constants K and L, depending only on R and A, such that
dl(t,→R∪S) 6 K · dl(t,→R/S) + L · |t| for all terminating terms t on R∪ S.

We need some further de�nitions. Let R be a TRS, let P a set of weak or
weak innermost dependency pairs of R and let G denote a mapping associating
a term (over F ] and V) and a proper order � with a natural number. An order
� on terms is G-collapsible for a TRS R if s →P∪U(P) t and s � t implies
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G(s,�) > G(t,�). An order � is collapsible for a TRS R, if there is a mapping
G such that � is G-collapsible for R.5

We write T ]
b for {t] | t ∈ Tb}. The set T ]

c is inductively de�ned as follows (i)
T ] ∪ T ⊆ T ]

c , where T ] = {t] | t ∈ T }. And (ii) c(t1, . . . , tn) ∈ T ]
c , whenever

t1, . . . , tn ∈ T ]
c and c a compound symbol. A proper order � on T ]

c is called safe if
c(s1, . . . , si, . . . , sn) � c(s1, . . . , t, . . . , sn) for all n-ary compound symbols c and
all terms s1, . . . , sn, t with si � t. A reduction pair (&,�) is called collapsible
for a TRS R if � is collapsible for R. It is called safe if the well-founded order
� is safe. In order to construct safe reduction pairs one may use safe algebras,
i.e., weakly monotone well-founded algebras (A,�) such that the interpretations
of compound symbols are strictly monotone with respect to �. It is easy to see
that if (A, >) is a safe algebra then (>A, >A) is a safe reduction pair.

Proposition 10 ([1]). Let R be a TRS, let A an SLI, let P be the set of weak
or weak innermost dependency pairs, and let (&,�) be a safe and G-collapsible
reduction pair such that U(P) ⊆ & and P ⊆ �. If in addition U(P) ⊆ >A then
for any t ∈ Tb, there exist constants K and L (depending only on R and A) such
that dl(t,→) 6 K · G(t],�) + L · |t|. Here → denotes →R or i−→R depending on
whether P = WDP(R) or P = WIDP(R).

Suppose the assertions of the proposition are met and there exists a polynomial
p such that G(t],�) 6 p(|t|) holds. Then, as an easy corollary to Proposition 10,
we observe that the runtime complexity induced by R is majorised by p.

4 Dependency Graphs

In this section, we study a natural re�nement of the dependency pair method,
namely dependency graphs (see [5,7,14,8]) in the context of complexity analy-
sis. We start with a brief motivation. Let R be a TRS, let P denote a set of
weak or weak innermost dependency pairs and let (si)i=0,...,n denote a maximal
derivation D with respect to R with s0 ∈ Tb. In order to estimate the length ` of
this derivation it su�ces to estimate the length of the derivation t0 →∗U(P)∪P tn,

where t0 = s]
0 ∈ T

]
b , cf. Proposition 8. If we suppose compatibility of U(P) with

a strongly linear interpretation A, we may estimate the derivation length ` by
�nding one (safe and collapsible) reduction pair (&,�) such that U(P) ⊆ & and
P ⊆ � holds, cf. Proposition 10. On the other hand in termination analysis�as
already mentioned in the Introduction�it su�ces to guarantee that for any cy-
cle C in the dependency graph DG(R), there are no C-minimal rewrite sequences,
cf. [7]. Hence, we strive to extend this idea to complexity analysis.

4.1 From Cycle Analysis to Path Detection

Let us recall the de�nition of a dependency graph and extend it suitably to weak
and weak innermost dependency pairs.

5 Note that most reduction orders are collapsible. E.g. if A is a polynomial interpre-
tation then >A is collapsible, as one may take any α and set G(t, >A) := [α]A(t).
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De�nition 11. Let R be a TRS over a signature F and let P be the set of
weak, weak innermost, or (standard) dependency pairs. The nodes of the weak
dependency graph WDG(R), weak innermost dependency graph WIDG(R), or
dependency graph DG(R) are the elements of P and there is an arrow from
s→ t to u→ v if and only if there exist a context C and substitutions σ, τ : V →
T (F ,V) such that tσ →∗ C[uτ ], where → denotes →R or i−→R depending on
whether P = WDP(R), P = DP(R) or P = WIDP(R), respectively.

Example 12 (continued from Example 4). The weak dependency graph WDG(R)
has the following form.

11 13 12 15 14 19 18 20 16 17

We recall a theorem on the dependency graph re�nement in conjunction with
usable rules and innermost rewriting (see [7], but also [15]). Similar results hold
in the context of full rewriting, see [9,8].

Theorem 13 ([7]). A TRS R is innermost terminating if for every maximal
cycle C in the dependency graph DG(R) there exists a reduction pair (&,�) such
that U(C) ⊆ & and C ⊆ �.

The following example shows that we cannot directly employ Theorem 13 in
the realm of complexity analysis. Even though in this setting we can restrict our
attention to a speci�c strategy: innermost rewriting.

Example 14. Consider the TRS Rexp

exp(0)→ s(0) d(0)→ 0

exp(r(x))→ d(exp(x)) d(s(x))→ s(s(d(x)))

DP(Rexp) consists of three pairs: 1: exp](r(x)) → d](exp(x)), 2: exp](r(x)) →
exp](x), and 3: d](s(x)) → d](x). Hence the dependency graph DG(Rexp) con-
tains two maximal cycles: {2} and {3}. It is easy to see how to de�ne two
reduction pairs (>A, >A) and (>B, >B) such that the conditions of the theorem
are ful�lled. For that it su�ces to de�ne interpretations A and B, respectively.
Because one can �nd suitable linear restricted ones for A and B, compatibil-
ity with these interpretations apparently induces linear runtime complexity of
Rexp, cf. [3,1] (even for full rewriting). However, we must not conclude linear
innermost runtime complexity for Rexp in this setting, as Rexp formalises the
exponentiation function and setting tn = exp(rn(0)) we obtain dl(tn,

i−→R) > 2n

for each n > 0. Thus the innermost runtime complexity of Rexp is exponential.

Note that the problem exempli�ed by Example 14 cannot be circumvented by
replacing the dependency graph employed in Theorem 13 with weak (innermost)
dependency graphs. Furthermore, observe that while Proposition 8 allows us to
replace in Example 14 the innermost rewrite relation i−→R by the (sometimes
simpler) rewrite relation i−→U(DP(R))∪DP(R), this is of no help: The exponential
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length of t]n in Example 14 with respect to U(DP(R)) ∪ DP(R) is not due to
the cycles {2} or {3}, but achieved through the non-cyclic pair 1 and its usable
rules. These observations are cast into De�nition 15, below.

A graph is called strongly connected if any node is connected with every other
node by a path. A strongly connected component (SCC for short) is a maximal
strongly connected subgraph.6

De�nition 15. Let G be a graph, let ≡ denote the equivalence relation induced
by SCCs, and let P be a SCC in G. The set of all source nodes in G/≡ is denoted
by Src. Let l → r be a dependency pair in G, let K ∈ G/≡ and let C denote the
SCC represented by K. Then we write l→ r ∈ K if l→ r ∈ C.

Example 16 (Continued from Example 12). There are 8 SCCs in WDG(R), al-
most all except {18, 19, 20} being trivial. Hence the graph WDG(R)/≡ has the
following form and Src = {{13}, {15}, {17}, {18, 19, 20}}.

11 13 12 15 14 {18,19,20} 16 17

4.2 Re�nement Based on Path Detection

We re-consider the motivating derivation D:

t0 →U(P)∪P t1 →U(P)∪P · · · →U(P)∪P tn , (1)

where t0 ∈ T ]
b . To simplify the exposition, we set P = WDP(R) and G =

WDG(R). Momentarily we assume that all compound symbol are of arity 0, as
is for instance the case in Example 4. Above we asserted that there exists an SLI
A such that U(P) ⊆ >A. Hence Proposition 9 is applicable. Thus, to estimate the
length of the derivation (1) it su�ces to consider the following relative rewriting
derivation:

t0 →P/U(P) t1 →P/U(P) · · · →P/U(P) tn . (2)

Exploiting the given assumptions, it is not di�cult to see that derivation (2) is
representable as follows:

t0 →`1
P1/U(P1)

t`1 →
`2
P2/U(P1)∪U(P2)

· · · →`m

Pm/U(P1)∪···∪U(Pm) tn (3)

where, (P1, . . . ,Pm) is a path in G/≡ with P1 ∈ Src. Since the length ` of the
pictured →P/U(P)-rewrite sequence equals `1 + · · · + `m, this suggests that we
can estimate each `j (j ∈ {1, . . . ,m}) independently. We assume the existence
of a family of SLIs Bj (j ∈ {1, . . . ,m}) such that U(P1) ∪ · · · ∪ U(Pj) ⊆ >Bj

and Pj ⊆ >Bj holds for every i. From this we can conclude `j = O(|t`j |) for all
j ∈ {1, . . . ,m}. The next step is to estimate each `j by a function (preferable a
polynomial) in |t0|. As each of the WMAs Bj is assumed to be strongly linear,
we can even conclude [α0]Bj

(t`j
) = Ω(|t`j

|).(Here α0 denotes the assignment

6 Note that in the literature SCCs are sometimes de�ned as maximal cycles. This
alternative de�nition is of limited use in our context.
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mapping any variable to 0.) In sum, we obtain for each j ∈ {1, . . . ,m}, the ex-
istence of a constant cj such that |t`j

| 6 cj · |t0| and thus there exists a linear
polynomial p(x) such that `j 6 p(|t0|). However, some care is necessary in as-
sessing this observation: Note that the given argument cannot be used to deduce
polynomial runtime complexity, if we weaken the assumption that the algebras
Bj are strongly linear only slightly. Hence, we replace the direct application of
Proposition 9 as follows.

Lemma 17. n 6 dl(s,→R2/S1∪S2) whenever s→S1∗ · →R2/S2
n u.

Proof. Straightforward. ut

We lift the assumption that all compound symbols are of arity at most 0.
Perhaps surprisingly this generalisation complicates the matter considerably.
First a maximal derivation need no longer be of the form given in (3) which is
exempli�ed by Example 18 below.

Example 18. Consider the TRS R = {f(0) → leaf, f(s(x)) → branch(f(x), f(x))}
The set WDP(R) consists of the two weak dependency pairs: 1: f](0) → c1

and 2: f](s(x)) → c2(f](x), f](x)). Hence the weak dependency graph WDG(R)
contains 2 SCCs: {2} and {1}. Clearly Src = {{2}}. Let tn = f](sn(0)). Consider
the following sequence:

t2 →{2}2 c2(c2(t0, t0), t1)→{1} c2(c2(c1, t0), t1)

→{2} c2(c2(c1, t0), c2(t0, t0))→{1}3 c2(c2(c1, c1), c2(c1, c1)) .

This derivation does not have the form (3), because it is based on the sequence
({2}, {1}, {2}, {1}), which is not a path in WDG(R)/≡.

Notice that the derivation in Example 18 can be reordered (without a�ecting
its length) such that the derivation becomes based on a path. Still, not every
derivation can be abstracted to a path. Consider a maximal (with respect to
subset inclusion) component of WDG(R)/≡. Clearly this component forms a
directed acyclic graph G, and without loss of generality we can conceive G as a
tree T with root in Src. Suppose further that T is not degenerated to a branch.
Then a given derivation may only be abstractable by di�erent paths in T , as
exempli�ed by Example 19.

Example 19. Consider the TRS R = {f → c(g, h), g→ a, h→ a}. Thus WDP(R)
consists of three dependency pairs: 1: f] → c1(g], h]), 2: g] → c2, and 3: h] → c3.
Let P := WDP(R), then Then clearly P = WDG(R) = WDG(R)/≡. Consider
the following derivation

f] →P c1(g], h])→P c1(c2, h
])→P c1(c2, c3) .

This derivation is composed from the paths ({1}, {2}) and ({1}, {3}).

Fortunately, we can circumvent these obstacles. Let P denote the set of weak
or weak innermost dependency pairs of a TRS R. We make the following easy
observation.
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Lemma 20. Let G denote a weak or weak innermost dependency graph. Let
C ⊆ G and let D : s→∗C/U(P) t denote a derivation based on C with s ∈ T ]

c . Then
D has the following form: s = s0 →C/U(P) s1 →C/U(P) · · · →C/U(P) sn = t where

each si ∈ T ]
c .

Proof. It is easy to see that D has the presented form and that for each i ∈
{0, . . . , n} there exists a context C such that si = C[u]

1, . . . , u
]
r] and C consists

of compound symbols only. This establishes the lemma. ut

Motivated by Example 18 we observe that a weak (innermost) dependency
pair containing an m-ary (m > 1) compound symbol can only induces m inde-
pendent derivations. Hence, we can reorder derivations to achieve the structure
of derivation (3). This is formally proven via the next two lemmas.

Lemma 21. Let G denote a weak or weak innermost dependency graph and let
K and L denote two di�erent nodes in G/≡ such that there is no edge from K
to L. Let s0 ∈ T ]

c and suppose the existence of a derivation D of the following
form: s0 →n

K/U(P) sn →∗U(P) t0 →
m
L/U(P) tm. Then there exists a derivation D′

which has the form t′0 →m
L/U(P) t

′
m →∗U(P) s

′
0 →n

K/U(P) s
′
n with t′0 ∈ T ]

c .

Proof. Consider the following two dependency pairs: 1: u]
k → com(v]

k1, . . . , v
]
kr)

and 2: u]
l → com(v]

l1, . . . , u
]
lr). Here the dependency pair 1 belongs to K and

denotes the last dependency pair employed in D before the path leaves K into
L, while 2 denotes the �rst pair in L. The assumption that there is no edge
connecting K and L can be reformulated as follows:

(†) No context C and no substitutions σ, τ : V → T (F ,V) exist such that

com(v]
k1σ, . . . , v

]
krσ)→∗U(P) C[u]

lτ ] holds.

To prove the lemma, we proceed by induction on n. It su�ces to consider the
step case n > 1. By assumption the last rewrite step in the subderivation
D0 : s0 →n

K/U(P) sn employs dependency pair 1. Let p ∈ Pos(sn) denote the

position of the reduct com(v]
k1τ, . . . , v

]
krτ) in sn. By assumption there exists a

derivation sn →∗U(P) t0. Let q ∈ Pos(sn) denote the position of the redex in sn

that is contracted as �rst step in this reduction. Without loss of generality we
can assume that both positions are parallel to each other. Otherwise one of the
following cases applies. Either p < q or p > q. But clearly the �rst case contra-
dicts the assumption (†). Hence, assume the second. But this is also impossible.
Lemma 20 yields that sn|q∈ T ]

c , which contradicts that q is redex with respect
to U(P). Repeating this argument we see that position p has exactly one descen-
dant in t0. A similar argument shows that all redex positions in the subderivation
D1 : t0 →m

L/U(P) tm are parallel to (descendants of) p. Hence, we can move the
last rewrite step sn−1 →K sn in the derivation D0 after the derivation D1. Note
that in each of the terms (ti)i=1,...,m the position p exists and denotes the term

com(v]
k1τ, . . . , v

]
krτ). Hence, the replacement of com(v]

k1τ, . . . , v
]
krτ) everywhere

by u]
kσ does not a�ect the validity of the rewrite sequence. Furthermore the set

T ]
c is closed under this operation. Now, induction hypothesis becomes applicable

to derive the existence of the sought derivation D′. ut
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Let G denote a weak or weak innermost dependency graph and let D : s→`

t denote a derivation, such that s ∈ T ]
b . Here → denotes either →P/U(P) or

i−→P/U(P). We say that D is based on (P1, . . . ,Pm) in G/≡ if D is of form

s
(i)−→`1
P1/U(P) · · ·

(i)−→`m

Pm/U(P) t ,

with `1, . . . , `m > 0. We arrive at the main lemma of this section.

Lemma 22. Let P denote a set of weak or weak innermost dependency pairs,
let s ∈ T ]

b and let D : s →` t denote a maximal derivation, where → denotes
→P/U(P) or

i−→P/U(P) respectively. Suppose that D is based on (P1, . . . ,Pm) and
P1 ∈ Src. Then there exists a derivation D′ : s→` t based on (P ′1, . . . ,P ′m′), with
P ′1 ∈ Src such that all P ′i (i ∈ {1, . . . ,m′}) are pairwise distinct.

Proof. Without loss of generality, we restrict our attention to weak dependency
pairs. To prove the lemma, we consider a sequence (P1, . . . ,Pm), where there
exist indices i, j and k with i < j < k and Pi = Pk. By induction on j − i
we show that this path is transformable into a sequence (P ′1, . . . ,P ′m′) of the
required form. It su�ces to prove the step case. Moreover, we can assume without
loss of generality that k = j + 1. Consider the two dependency pairs: 1: l]j →
com(u]

j1, . . . , u
]
jr) and 2: l]k → com(u]

k1, . . . , u
]
kr). Dependency pair 1 belongs

to Pj and denotes the last dependency pair employed in D before the sequence
leaves Pj into Pk, while 2 denotes the �rst pair in Pk. We consider two cases:

1. Assume there exist a context C and substitutions σ, τ : V → T (F ,V) such

that the following holds: com(u]
j1σ, . . . , u

]
jrσ)→∗ C[l]kτ ]. Thus by de�nition

of weak dependency graphs the node in WDG(R) representing dependency
pair 1 is connected to the node representing dependency pair 2. In particular
every node in the SCCs represented by Pi = Pk is connected to every node
in the SCC represented by Pj . This implies that Pi = Pj = Pk contradicting
the assumption.

2. Otherwise, there is no edge between Pj and Pk in the graph G/≡ and by
the assumptions on (P1, . . . ,P`) we �nd a derivation of the following form:
D0 : sj1 →

p
Pj/U(P) sjp

→∗U(P) sk1 →
q
Pk/U(P) skq

. Due to Lemma 21 there

exists a derivation D1 : s′k1
→q
Pk/U(P) s

′
kq
→∗U(P) s

′
j1
→p
Pj/U(P) s

′
jp

so that

the number of (weak) dependency pair steps is unchanged. The sequence
(P1, . . . ,Pj ,Pk, . . . ,Pm) is reorderable into (P1, . . . ,Pk,Pj , . . . ,Pm) without
a�ecting the length ` of the →P/U(P)-rewrite sequence. By assumption k =
j + 1, hence induction hypothesis becomes applicable and we conclude the
existence of a path (P ′1, . . . ,P ′m′) ful�lling the assertions of the lemma. ut

Finally, we arrive at the main contribution of this paper.

Theorem 23. Let R be a TRS, let P be the set of weak or weak innermost
dependency pairs, let A denotes the maximum arity of compound symbols and
let K denotes the number of SCCs in the weak (innermost) dependency graph G.
Suppose t ∈ T ]

b is (innermost) terminating and de�ne

L(t) := max{dl(t,→Pm/S) | (P1, . . . ,Pm) is a path in G/≡ such that P1 ∈ Src} ,

11



where S = P1∪· · ·∪Pm−1∪U(P1∪· · ·∪Pm). Then dl(t, (i)−→P/U(P)) 6 AK ·K ·L(t).

Proof. Let (P1, . . . ,Pm) be a path in P/≡ such that P1 ∈ Src and let D : t→` u,
denote a maximal derivation based on this path. (Here → denotes →P/U(P) or
i−→P/U(P).) Lemma 22 yields that D has the following form:

t = t0 →`1
P1/U(P1)

t`1 →
`2
P2/U(P1)∪U(P2)

· · · →`m

Pm/U(P1)∪···∪U(Pm) tn = u , (4)

where t0 ∈ T ]
b and ti ∈ T ]

c for all i > 1. It su�ces to estimate `j for all
j = 1, . . . ,m suitably. Let j be arbitrary, but �xed. Consider the subderivation
D′ of (4) where m is replaced by j. Clearly D′ is contained in the following
derivation:

t→∗P1∪···∪Pi−1∪U(P1)∪···∪U(Pj−1)
· →`j

Pj/U(P1)∪···∪U(Pj)
t`j

Hence Lemma 17 is applicable, thus `j 6 dl(t,→Pj/P1∪···∪Pj−1∪U(P1)∪···∪U(Pj)).
As U(P1) ∪ · · · ∪ U(Pj) ⊆ U(P1 ∪ · · · ∪ Pj) we conclude `j 6 L(t) and obtain
` = `1 + `2 + · · ·+ `m 6 K · L(t).

Above we argued that any connected component in P/≡ is a tree. Clearly the

number of nodes in this tree is less than AK−1
A−1 and an arbitrary derivation can

at most be based on AK−1
A−1 -many di�erent paths. As the length of a derivation

D based on a speci�c path can be estimated by K · L(t), we conclude that the
length of an arbitrary derivation is less than AK−1

A−1 · K · L(t) 6 AK · K · L(t).
This completes the proof of the theorem. ut

Theorem 23 together with Proposition 9 form a suitable analog of Theo-
rem 13: Let P be the set of weak or weak innermost dependency pairs. Suppose
for every path (P1, . . . ,Pm) in P there exist an SLI Am compatible with the us-
able rules of

⋃m
i=1 Pi. Assume the existence of a safe and G-collapsible reduction

pairs (&m,�m) such that U(
⋃m

i=1 Pi)∪
⋃m−1

i=1 Pi is compatible with &m and Pm

compatible with �m. Then for any t ∈ Tb the derivation height dl(t, (i)−→) with
respect to (innermost) rewriting is linearly bounded in G(t],�m) and |t|.

Corollary 24. Let R be a TRS, let P be the set of weak (innermost) dependency
pairs, and let G denote the weak (innermost) dependency graph. Suppose for
every path (P1, . . . ,Pm) in G/≡ there exist an SLI Am and linear (quadratic)
restricted interpretations Bm such that (>Bm

, >Bm
) forms a safe reduction pair

with (i) U(P1∪· · ·∪Pm) ⊆ >Am
(ii) P1∪· · ·∪Pm−1∪U(P1∪· · ·∪Pm) ⊆ >Bm

,
and (iii) Pm ⊆ >Bm . Then the runtime complexity of a TRS R is linear or
quadratic, respectively.

Proof. Observe that the assumptions imply that any basic term t ∈ Tb is termi-
nating with respect to R: Any in�nite derivation with respect to R starting in
t can be translated into an in�nite derivation with respect to U(R) ∪ P (see [1,
Lemma 16]). Moreover, as the number of paths in G/≡ is �nite, there exists a
component Pi that represents an in�nite rewrite sequence. This is a contradic-
tion. Without loss of generality, we assume P = WDP(P) and G = WDG(P).
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Notice that the reduction pair (>Bm
, >Bm

) is safe and collapsible. Hence for
all m, the length of any →Pm/S -rewrite sequence is less than pm(|t|), where
pm denotes a linear (or quadratic) polynomial, depending on |t| only. (Here
S = P1∪· · ·∪Pm−1∪U(P1∪· · ·∪Pm).) In analogy to the operator L, we de�ne
M(t) := max{dl(t,→Pm∪S) | (P1, . . . ,Pm) is a path in G/≡ such that P1 ∈ Src}.
An application of Proposition 9 yields M(t) = O(pm(|t|)). Following the pattern
of the proof of the Theorem, we establish the existence of a polynomial p such
that dl(t,→P∪U(P)) 6 p(|t|) holds for any basic term t. Finally, the corollary
follows by an application of Proposition 8. ut

As mentioned above, in the dependency graph re�nement for termination
analysis it su�ces to guarantee for each cycle C that there exists no C-minimal
rewrite sequences. For that one only needs to �nd a reduction pair (&,�) such
that R ⊆ &, C ⊆ & and C ∩ � 6= ∅. Thus, considering Theorem 23 it is tempting
to think that it should su�ce to replace strongly connected components by cycles
and the stronger conditions should apply. However this intuition is deceiving as
shown by the next example.

Example 25. Consider the TRS R of f(s(x), 0) → f(x, s(x)) and f(x, s(y)) →
f(x, y). WDP(R) consists of 1: f](s(x), 0) → f](x, s(x)) and 2: f](x, s(y)) →
f](x, y), and the weak dependency graph WDG(R) contains two cycles {1, 2}
and {2}. There are two linear restricted interpretations A and B such that
{1, 2} ⊆ >A ∪ >A, {1} ⊆ >A, and {1} ⊆ >B. Here, however, we must not
conclude linear runtime complexity, because the runtime complexity of R is at
least quadratic.

5 Conclusion

In this section we provide (experimental) evidence on the applicability of the
technique for complexity analysis established in this paper. We brie�y consider
the e�cient implementation of the techniques provided by Theorem 23 and
Corollary 24. Firstly, in order to approximate (weak) dependency graphs, we
adapted (innermost) dependency graph estimations using the functions TCAP
(ICAP) [14]. Secondly, note that a graph including n nodes may contain an expo-
nential number of paths. However, to apply Corollary 24 it is su�cient to handle
only paths in the following set. Notice that this set contains at most n2 paths.

{(P1, . . . ,Pk) | (P1, . . . ,Pm) is a maximal path and k 6 m} ,

Example 26 (continued from Example 16). For WDG(R)/≡ the above set con-
sists of 8 paths: ({13}), ({13}, {11}), ({13}, {12}), ({15}), ({15}, {14}), ({17}),
({18, 19, 20}), and ({18, 19, 20}, {16}). In the following we only consider the last
three paths, since all other paths are similarly handled.

� Consider ({17}). Note U({17}) = ∅. By taking an arbitrary SLI A and the

linear restricted interpretation B with gcd]
B(x, y) = x and sB(x) = x+ 1, we

have ∅ ⊆ >A, ∅ ⊆ >B, and {17} ⊆ >B.
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Table 1. Results for Linear Runtime Complexities
full rewriting innermost rewriting

direct Prop.8 Prop.10 Cor.24 Prop.8 Prop.10 Cor.24

success 139 138 119 137 143 128 147
(161) (179) (170) (189)

15 21 18 52 21 21 65

failure 1535 1518 1560 1510 1511 1551 1499
1789 3185 152 1690 3214 214 1625

timeout 5 23 0 32 25 0 33

� Consider ({18, 19, 20}). Note U({18, 19, 20}) = {1, . . . , 5}. By taking the SLI
A and the linear restricted interpretation B with 0A = trueA = falseA = 0,
sA(x) = x+1, x−A y = x 6A y = x+y+1; 0B = trueB = falseB = x 6B y =
0, sB(x) = x+2, x−By = x, gcd]

B(x, y) = x+y+1, and ifgcd
]
B(x, y, z) = y+z,

we obtain {1, . . . , 5} ⊆ >A, {1, . . . , 5} ⊆ >B, and {18, 19, 20} ⊆ >B.
� Consider ({18, 19, 20}, {16}). Note U({16}) = ∅. By taking the same A and
also B, we have {1, . . . , 5} ⊆ >A, {1, . . . , 5, 18, 19, 20} ⊆ >B, and {16} ⊆ >B.

Thus, all path constraints are handled by linear restricted interpretations. Hence,
the runtime complexity function of R is linear.

Moreover, to deal e�ciently with polynomial interpretations, the issuing con-
straints are encoded in propositional logic in a similar spirit as in [16]. Assign-
ments are found by employing a state-of-the-art SAT solver, in our case MiniSat7.
Furthermore, SLIs are handled by linear programming. Based on these ideas we
implemented a complexity analyser. As suitable test bed we used the rewrite sys-
tems in the Termination Problem Data Base version 4.0.8 The presented tests
were performed single-threaded on a 1.50 GHz Intel® Core� Duo Processor
L2300 and 1.5 GB of memory. For each system we used a timeout of 60 seconds.
In interpreting de�ned and dependency pair symbols, we restrict the search to
polynomials in the range {0, 1, . . . , 5}. Table 1 (2) shows the experimental results
for linear (quadratic) runtime complexities based on linear (quadratic) restricted
interpretations.9 Text written in italics below the number of successes or failures
indicates total time (in seconds) of success cases or failure cases, respectively.10

The columns marked �Prop. 10� and �Cor. 24� refer to the applicability of the
respective results. For sake of comparison, in the parentheses we indicate the
number of successes by the method of the column or by Proposition 8.

In concluding, we observe that the experimental data shows that the here
introduced dependency graph re�nement for complexity analysis extends the
analytic power of the methods introduced in [1]. Notice the signi�cant di�erence
between those TRSs that can be handled by Propositions 8, 10 in contrast to
those that can be handled either by Proposition 8 or by Corollary 24. Moreover
observe the gain in power in relation to direct methods, compare also [3,4].

7 http://minisat.se/.
8 See http://www.lri.fr/~marche/tpdb/.
9 For full experimental evidence see http://www.jaist.ac.jp/~hirokawa/08b/.

10 Sum of numbers in each column may be less than 1679 because of stack over�ow.
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Table 2. Results for Quadratic Runtime Complexities

full rewriting innermost rewriting

direct Prop.8 Prop.10 Cor.24 Prop.8 Prop.10 Cor.24

success 179 172 125 141 172 126 146
(191) (210) (192) (213)

623 732 295 616 725 278 787

failure 745 699 1499 1434 699 1496 1431
4431 4522 1128 2883 4536 1062 2856

timeout 753 807 55 104 807 57 102
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