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Basic Notions for Term Rewrite Systems (TRSs)

Definition

TRS R is terminating if there is no infinite rewrite sequence t0 →R t2 →R · · ·

TRS R is confluent if

·

· ·
* *

·
* *

TRS is complete if it is terminating and confluent

complete TRS R is complete presentation of equational system E if ←→∗E =←→∗R

Fact

s ≈E t ⇐⇒ s↓R = t↓R if R is complete presentation of E
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Knuth-Bendix Completion Procedure (1970)

input: equational system E and reduction order >
output: complete presentation R of E ‘
R := ∅; C := E ;
while C 6= ∅ do

choose s ≈ t ∈ C;
C := C \ {s ≈ t};
normalize s and t to s′ and t′ with respect to R;
if s′ 6> t′ and s′ 6= t′ and t′ 6> s′ then failure; fi;
S := {s′ → t′, t′ → s′} ∩>;
C := C ∪ CP(R,S) ∪ CP(S,R) ∪ CP(S);
R := R∪ S

od
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E =


0 + x ≈ x

(−x) + x ≈ 0
(x+ y) + z ≈ x+ (y + z)



reduction order � COMPLETION

R =



0 + x → x −(−x) → x
x+ 0 → x x+ ((−x) + y) → y

(−x) + x → 0 (−x) + (x+ y) → y
x+ (−x) → 0 −(x+ y) → (−y) + (−x)

−0 → 0 (x+ y) + z → x+ (y + z)


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Goal: Complete Commuting Group Endomorphisms Automatically
consider equation system known as CGE2:

e + x ≈ x f(x+ y) ≈ f(x) + f(y)
i(x) + x ≈ e g(x+ y) ≈ g(x) + g(y)

(x+ y) + z ≈ x+ (y + z) f(x) + g(y) ≈ g(y) + f(x)

CGE2 admits 20-rule complete TRS (Stump and Löchner, 2006)
e + x→ x

x+ e→ x

i(x) + x→ e
x+ i(x)→ e

x+ (i(x) + y)→ y

i(x) + (x+ y)→ y

(x+ y) + z → x+ (y + z)

f(e)→ e
g(e)→ e
i(e)→ e

i(i(x))→ x

i(f(x))→ f(i(x))
i(g(x))→ g(i(x))

i(x+ y)→ i(y) + i(x)
f(x) + f(y)→ f(x+ y)
g(x) + g(y)→ g(x+ y)
f(x) + g(y)→ g(y) + f(x)

f(x) + (f(y) + z)→ f(x+ y) + z

g(x) + (g(y) + z)→ g(x+ y) + z

f(y) + (g(x) + z)→ g(x) + (f(y) + z)
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Modern Completion Tools

E =

{ e + x ≈ x f(x + y) ≈ f(x) + f(y)
i(x) + x ≈ e g(x + y) ≈ g(x) + g(y)

(x + y) + z ≈ x + (y + z) f(x) + g(y) ≈ ≈ g(y) + f(x)

}

termination tool/predicate COMPLETIONCOMPLETION

R =



e + x→ x
x + e→ x

i(x) + x→ e
x + i(x)→ e

x + (i(x) + y)→ y
i(x) + (x + y)→ y

(x + y) + z → x + (y + z)

f(e)→ e
g(e)→ e
i(e)→ e

i(i(x))→ x
i(f(x))→ f(i(x))
i(g(x))→ g(i(x))

i(x + y)→ i(y) + i(x)
f(x) + f(y)→ f(x + y)

g(x) + g(y)→ g(x + y)
f(x) + g(y)→ g(y) + f(x)

f(x) + (f(y) + z)→ f(x + y) + z
g(x) + (g(y) + z)→ g(x + y) + z
f(y) + (g(x) + z)→ g(x) + (f(y) + z)


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Completion Tools That Can Complete CGE2

Tools and Approaches

Slothrop Wehrman, Stump, and Westbrook, 2006
incremental completion with termination tools

mkbTT Winkler, Sato, Kurihara, and Middeldorp, 2010, 2013
multi-completion with termination tools

KBCV Sternagel and Zankl, 2012
incremental 2-completion with termination tools

MaxcompDP Sato and Winkler, 2015
maximal completion with dependency pair method

Points

good: great termination proving power
bad: orientation of equations consumes considerable time
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Contents

Our Approach

simply use powerful reduction orders to complete CGE2

Rest of Talk

1 termination: semantic labeling as order extension

2 confluence: new critical pair criterion

3 completion: Sato and Winkler’s method and maximal completion
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Termination
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How To Prove Termination?

complete presentation of CGE2:

e + x→ x

x+ e→ x

i(x) + x→ e
x+ i(x)→ e

x+ (i(x) + y)→ y

i(x) + (x+ y)→ y

(x+ y) + z → x+ (y + z)

f(e)→ e
g(e)→ e
i(e)→ e

i(i(x))→ x

i(f(x))→ f(i(x))
i(g(x))→ g(i(x))

i(x+ y)→ i(y) + i(x)
f(x) + f(y)→ f(x+ y)
g(x) + g(y)→ g(x+ y)
f(x) + g(y)→ g(y) + f(x)

f(x) + (f(y) + z)→ f(x+ y) + z

g(x) + (g(y) + z)→ g(x+ y) + z

f(y) + (g(x) + z)→ g(x) + (f(y) + z)

it is not orientable by KBO, LPO, matrix interpretations, ...
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Semantic Labeling (Zantema 1995)

Definition (labeled terms)

letM be algebra, t term, and α assignment

lab(t, α) =


x if t is variable
fa(lab(t1, α), . . . , lab(tn, α)) if t = f(t1, . . . , tn) and f ] ∈ G
f(lab(t1, α), . . . , lab(tn, α)) if t = f(t1, . . . , tn) and f ] /∈ G

where, a = [α]M(f ](t1, . . . , tn))

Example

letM be algebra on N with gM(x) = 0, fM(x) = 1, f]M(x) = x, and α(x) = 2
labM(f(g(f(x))), α) = f0(g(f2(x)))

because [α]M(f](g(f(x)))) = 0 and [α]M(f](x)) = 2
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Semantic Labeling

let (M, >) be weakly monotone well-founded algebra

Definition

s >M t if [α]M(s) > [α]M(t) for all assignments α
Rlab = {lab(`, α)→ lab(r, α) | `→ r ∈ R and α is assignment}
Dec(>) = {fa(x1, . . . , xn)→ fb(x1, . . . , xn) | f ∈ F and a > b}

Theorem (Zantema 1995)

if R ⊆ >M then: R is terminating ⇐⇒ Rlab ∪ Dec(>) is terminating
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Termination Proof by Semantic Labeling
consider TRS R = {f(f(x))→ f(g(f(x)))}

1 weakly monotone well-founded algebraM on N with

fM(x) = 1 gM(x) = 0 f]M(x) = x

satisfies R ⊆ >M

2 termination of Rlab ∪ Dec(>)

f1(fa(x))→ f0(g(fa(x))) (a ∈ N)
fa(x)→ fb(x) (a, b ∈ N with a > b)

is shown by LPO with precedence: · · · � f2 � f1 � f0 � g

3 hence, R is terminating
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1 weakly monotone well-founded algebraM on N with

fM(x) = 1 gM(x) = 0 f]M(x) = x

satisfies R ⊆ >M

2 termination of Rlab ∪ Dec(>)

f1(fa(x))→ f0(g(fa(x))) (a ∈ N)
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Order Extension by Semantic Labeling

let (M, >) be weakly monotone well-founded algebra

let � be reduction order on labeled terms

Definition

s �M t if s >M t and lab(s, α) � lab(t, α) for all assignments α

Corollary

�M is reduction order if Dec(>) ⊆ �

Remark

�Mmpo is very similar to monotonic semantic path order
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Example of Order Extension �Mlpo

consider TRS
f(f(x))→ f(g(f(x)))

1 take weakly monotone well-founded algebraM on N and LPO with:

· · · � f2 � f1 � f0 � g

2 �Mlpo is reduction order since Dec(>) ⊆ �lpo

3 f(f(x)) �Mlpo f(g(f(x))) because

f(f(x)) >M f(g(f(x))) f1(fa(x)) �lpo f0(g(fa(x))) (a ∈ N)

4 hence, TRS is terminating
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Termination of TRS for CGE2

e + x→ x

x+ e→ x

i(x) + x→ e
x+ i(x)→ e

x+ (i(x) + y)→ y

i(x) + (x+ y)→ y

(x+ y) + z → x+ (y + z)

f(e)→ e
g(e)→ e
i(e)→ e

i(i(x))→ x

i(f(x))→ f(i(x))
i(g(x))→ g(i(x))

i(x+ y)→ i(y) + i(x)
f(x) + f(y)→ f(x+ y)
g(x) + g(y)→ g(x+ y)
f(x) + g(y)→ g(y) + f(x)

f(x) + (f(y) + z)→ f(x+ y) + z

g(x) + (g(y) + z)→ g(x+ y) + z

f(y) + (g(x) + z)→ g(x) + (f(y) + z)

termination is shown by KBO extended by algebraM on N with

eM = 0 fM(x) = 0 gM(x) = 1 iM(x) = x x+M y = x+ y x+]
M y = x

w0 = w(g) = w(f) = w(e) = 1 w(i) = w(+a) = 0
i � f � · · · � +2 � +1 � +0 � e � g
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Experimental Results

1498 problems from Termination Problem Database (TPDB version 10.6)

ELPO and EKBO denote �Mlpo and �Mkbo respectively

fM(x1, . . . , xn) is of form a1x1 + · · · anxn + b with ai ∈ {0, 1} and b ∈ N

order constraints are solved by SMT solver Z3

LPO KBO ELPO EKBO ELPO+EKBO
# termination proofs 144 102 247 136 272
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Summary for Termination

Result

semantic labeling can be regarded as order extension

Facts

(basic) dependency pair method can be seen as simple semantic path order
(Dershowitz 2013)

usable rules can be captured by predictive labeling
(Hirokawa and Middeldorp 2006)

Open Question

what about dependency graphs?
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Confluence
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Confluence Quiz
Q: is following terminating TRS R confluent?

−0→ 0 x+ 0→ x

(−x) + x→ 0 (−x) + (−x)→ 0

A: confluence follows from joinability of 5 critical pairs:

(−0) + 0

0 + 0 0

ε

(−0) + 0

−0 0

ε

(−0) + 0

0 −0

ε

(−0) + (−0)

0 + (−0) 0

ε

(−0) + (−0)

(−0) + 0 0

ε
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Aim of This Part

Aim

reduce number of critical pairs for showing confluence of terminating TRSs

Outline

1 abstract confluence criterion

2 prime critical pair criterion

3 new critical pair criterion
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Rewrite Strategies

Definition

ARS B is rewrite strategy for ARS A if →B ⊆ →+
A and NF(A) = NF(B)

Fact

for every TRS R following relations are rewrite strategies

i−→R innermost rewriting
li−→R leftmost innermost rewriting
o−→R outermost rewriting
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Theorem

terminating ARS A is confluent if (and only if) B← · →A ⊆ ↓A for some strategy B

·

· ·

B A

·
A A
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Theorem

terminating ARS A is confluent if (and only if) B← · →A ⊆ ↓A for some strategy B

Proof.

by induction on a wrt →+
A

a

· ·
· ·

A A

A A

·
B

· ·
A

A

A

A

· ·

I.H.I.H.
A

A

A

A

·

I.H.

A A
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Prime Critical Pairs

Notation

S←o ε−→R is set of critical pairs originating from S← ·
ε−→R

Theorem (Kapur, Musser and Narendran, 1988)

terminating TRS R is confluent if and only if R
i←−o ε−→R ⊆ ↓R

Proof.
i−→R is rewrite strategy, and R

i←− · ε−→R ⊆ ↓R holds
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Example for Prime Critical Pair Criterion
consider terminating TRS R:

−0→ 0 x+ 0→ x

(−x) + x→ 0 (−x) + (−x)→ 0

confluence follows from joinability of 3 prime critical pairs:

(−0) + 0

0 + 0 0

i ε

(−0) + 0

−0 0

¬i ε

(−0) + 0

0 −0

¬i ε

(−0) + (−0)

0 + (−0) 0

i ε

(−0) + (−0)

(−0) + 0 0

i ε
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Leftmost Innermost Critical Pairs (New)

Theorem

terminating TRS R is confluent if and only if R
li←−o ε−→R ⊆ ↓R

Proof.
li−→R is rewrite strategy and R

li←− · ε−→R ⊆ ↓R
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Confluence of 20-rule TRS for CGE2

e + x→ x

x+ e→ x

i(x) + x→ e
x+ i(x)→ e

x+ (i(x) + y)→ y

i(x) + (x+ y)→ y

(x+ y) + z → x+ (y + z)

f(e)→ e
g(e)→ e
i(e)→ e

i(i(x))→ x

i(f(x))→ f(i(x))
i(g(x))→ g(i(x))

i(x+ y)→ i(y) + i(x)
f(x) + f(y)→ f(x+ y)
g(x) + g(y)→ g(x+ y)
f(x) + g(y)→ g(y) + f(x)

f(x) + (f(y) + z)→ f(x+ y) + z

g(x) + (g(y) + z)→ g(x+ y) + z

f(y) + (g(x) + z)→ g(x) + (f(y) + z)

TRS is confluent, as all leftmost innermost critical pairs are joinable

Note

TRS admits 115 critical peaks
18 critical peaks are discarded by prime / leftmost innermost critical pairs
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Outermost Strategy Cannot be Used

consider terminating TRS
f(f(x))→ a

TRS is not confluent because critical pair
f(f(f(x)))

f(a) a

¬o ε

is not joinable

o←−o ε−→ is empty
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Summary for Confluence

Results

OK innermost critical pairs = prime critical pairs

OK leftmost innermost critical pairs

OK rightmost innermost critical pairs

NG outermost critical pairs
NG leftmost outermost critical pairs

Future Work

any other useful strategy?
to make variants for ordered rewriting, AC rewriting, ...

Completion and Reduction Orders 31/86



Summary for Confluence

Results

OK innermost critical pairs = prime critical pairs

OK leftmost innermost critical pairs

OK rightmost innermost critical pairs

NG outermost critical pairs
NG leftmost outermost critical pairs

Future Work

any other useful strategy?
to make variants for ordered rewriting, AC rewriting, ...

Completion and Reduction Orders 31/86



Summary for Confluence

Results

OK innermost critical pairs = prime critical pairs

OK leftmost innermost critical pairs

OK rightmost innermost critical pairs

NG outermost critical pairs
NG leftmost outermost critical pairs

Future Work

any other useful strategy?
to make variants for ordered rewriting, AC rewriting, ...

Completion and Reduction Orders 31/86



Summary for Confluence

Results

OK innermost critical pairs = prime critical pairs

OK leftmost innermost critical pairs

OK rightmost innermost critical pairs

NG outermost critical pairs
NG leftmost outermost critical pairs

Future Work

any other useful strategy?
to make variants for ordered rewriting, AC rewriting, ...

Completion and Reduction Orders 31/86



Summary for Confluence

Results

OK innermost critical pairs = prime critical pairs

OK leftmost innermost critical pairs

OK rightmost innermost critical pairs

NG outermost critical pairs

NG leftmost outermost critical pairs

Future Work

any other useful strategy?
to make variants for ordered rewriting, AC rewriting, ...

Completion and Reduction Orders 31/86



Summary for Confluence

Results

OK innermost critical pairs = prime critical pairs

OK leftmost innermost critical pairs

OK rightmost innermost critical pairs

NG outermost critical pairs
NG leftmost outermost critical pairs

Future Work

any other useful strategy?
to make variants for ordered rewriting, AC rewriting, ...

Completion and Reduction Orders 31/86



Summary for Confluence

Results

OK innermost critical pairs = prime critical pairs

OK leftmost innermost critical pairs

OK rightmost innermost critical pairs

NG outermost critical pairs
NG leftmost outermost critical pairs

Future Work

any other useful strategy?
to make variants for ordered rewriting, AC rewriting, ...

Completion and Reduction Orders 31/86



Completion

Completion and Reduction Orders 32/86



Knuth-Bendix Completion (1970)

equational system E

COMPLETION

reduction order >

complete presentation R
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Knuth-Bendix Completion Procedure (1970)

input: equational system E and reduction order >
output: complete presentation R of E ‘
R := ∅; C := E ;
while C 6= ∅ do

choose s ≈ t ∈ C;
C := C \ {s ≈ t};
normalize s and t to s′ and t′ with respect to R;
if s′ 6> t′ and s′ 6= t′ and t′ 6> s′ then failure; fi;
S := {s′ → t′, t′ → s′} ∩>;
C := C ∪ CP(R,S) ∪ CP(S,R) ∪ CP(S);
R := R∪ S

od
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Definition (abstract completion, Bachmair, Dershowitz and Hsiang, 1986)

delete E ] {s ≈ s},R
E ,R

E ] {s ≈ t},R
E ,R∪ {s→ t}

if s > t

orient
E ] {s ≈ t},R
E ,R∪ {t→ s}

if t > s

collapse E ,R] {t→ s}
E ∪ {u ≈ s},R

if t −→
R

u

deduce E ,R
E ∪ {s ≈ t},R

if s←−
R
· −→

R
t

E ] {s ≈ t},R
E ∪ {u ≈ t},R

if s −→
R

u

simplify
E ] {s ≈ t},R
E ∪ {s ≈ u},R

if t −→
R

u

compose E ,R] {s→ t}
E ,R∪ {s→ u}

if t −→
R

u

Theorem

Rn is complete presentation of E0 if
(E0,R0) ` · · · ` (En,Rn) with R0 = En = ∅ and CP(R) ⊆ E0 ∪ · · · ∪ En
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u

deduce E ,R
E ∪ {s ≈ t},R

if s←−
R
· −→

R
t

E ] {s ≈ t},R
E ∪ {u ≈ t},R

if s −→
R

u

simplify

E ] {s ≈ t},R
E ∪ {s ≈ u},R

if t −→
R

u

compose E ,R] {s→ t}
E ,R∪ {s→ u}

if t −→
R

u

Theorem

Rn is complete presentation of E0 if
(E0,R0) ` · · · ` (En,Rn) with R0 = En = ∅ and CP(R) ⊆ E0 ∪ · · · ∪ En
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use LPO with + � s � p to complete:

s(x) + y ≈ s(x+ y)
s(p(x)) ≈ x
p(s(x)) ≈ x

x+ y ≈ s(p(x) + y)
p(x+ y) ≈ p(x) + y

complete TRS

p(s(p(x)))

x

s(p(s(x)))

x

s(p(x)) + y

x + y s(p(x) + y)≈

s(p(s(x) + y))

s(x + y) s(x) + y

p(s(p(x) + y))

p(x + y) p(x) + y≈

p(s(x)) + y

x + y p(s(x) + y)

p(s(x + y))

s(p(x) + y)

s(p(x + y)) x + y
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Completion with Inter-Reduction

TRS

s(x) + y → s(x+ y)

s(p(x))→ x

p(s(x))→ x

s(p(x) + y)→ x+ y

p(x) + y → p(x+ y)

is complete but not reduced
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Canonical TRSs

Definition

TRS R is reduced if for every rule `→ r ∈ R
r ∈ NF(R) and ` ∈ NF(R \ {`→ r}) (modulo renaming)

complete TRS is canonical if it is reduced

Theorem (Ballantyne 1980?; Métivier, 1983)

canonical presentations R and S of E are identical if
R ⊆ � and S ⊆ � for some reduction order �
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Definition (abstract completion, Bachmair, Dershowitz and Hsiang, 1986)

delete E ] {s ≈ s},R
E ,R

E ] {s ≈ t},R
E ,R∪ {s→ t}

if s > t

orient
E ] {s ≈ t},R
E ,R∪ {t→ s}

if t > s

collapse E ,R] {t→ s}
E ∪ {u ≈ s},R

if t −→
R

u

deduce E ,R
E ∪ {s ≈ t},R

if s←−
R
· −→

R
t

E ] {s ≈ t},R
E ∪ {u ≈ t},R

if s −→
R

u

simplify
E ] {s ≈ t},R
E ∪ {s ≈ u},R

if t −→
R

u

compose E ,R] {s→ t}
E ,R∪ {s→ u}

if t −→
R

u

Theorem

Rn is complete presentation of E0 if
(E0,R0) ` · · · ` (En,Rn) with R0 = En = ∅ and CP(R) ⊆ E0 ∪ · · · ∪ En
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Completion with Inter-Reduction

s(x) + y → s(x+ y)

s(p(x))→ x

p(s(x))→ x

s(p(x) + y)→ x+ y

p(x) + y → p(x+ y)

canonical TRS
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When To Find Suitable Reduction Order?

E =

 0 + x ≈ x
(−x) + x ≈ 0

(x+ y) + z ≈ x+ (y + z)



LPO with − � + � 0 COMPLETION

R =


0 + x → x −(−x) → x
x+ 0 → x x+ ((−x) + y) → y

(−x) + x → 0 (−x) + (x+ y) → y
x+ (−x) → 0 −(x+ y) → (−y) + (−x)

−0 → 0 (x+ y) + z → x+ (y + z)


difficult to find suitable reduction order before performing completion
why not find suitable reduction order during completion?
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Quiz: Orient Some Equations to Construct Complete Presentation

s(x) + y ≈ s(x+ y)
s(p(x)) ≈ x
p(s(x)) ≈ x

s(p(x) + y) ≈ s(x+ y)
x+ y ≈ s(p(x) + y)

p(x+ y) ≈ p(x) + y

p((s(x) + y) + z ≈ (x+ y) + z

NB. these are valid equations of {s(x) + y ≈ s(x+ y), s(p(x)) ≈ x, p(s(x)) ≈ x}
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Quiz: Orient Some Equations to Construct Complete Presentation

s(x) + y → s(x+ y)
s(p(x))→ x

p(s(x))→ x

s(p(x) + y) ≈ s(x+ y)
x+ y ≈ s(p(x) + y)

p(x+ y)← p(x) + y

p((s(x) + y) + z ≈ (x+ y) + z
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Sato and Winkler’s Method
Problem

input: equational system E and decidable class RO of reduction orders
output: complete presentation R of E such that

R ⊆ (E ∪ E−1) ∩ � for some � in RO

Heuristics (Sato and Winkler, 2015)

choose pair (R,�) that minimizes |R| subject to

R ⊆ (E ∪ E−1) ∩ �, and
all nontrivial equations s ≈ t in E are reducible, i.e. s /∈ NF(R) or t /∈ NF(R)

Rationale

attempts to find canonical (i.e. reduced complete) TRS
redundant equations in E increase accuracy of the method
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New Procedure: Maximal Completion with Inter-Reduction

equational system E

SATO–WINKLER METHOD

complete presentation R

generating equations

E ,�

E ∪R
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equational system E

SATO–WINKLER METHOD

complete presentation R

COMPLETION
E ,�

E ∪R

Completion and Reduction Orders 46/86



Maximal Completion with Inter-Reduction
let O(E) be result of Sato and Winkler’s method
let ψ(E ,�) be result of deduce-free completion on (E ,∅) with respect to �

Idea

find canonical presentation by SW method O, generating equations by completion ψ

Definition

ϕ(E) =
{
R if R is complete for E
ϕ(E ∪ S(E)) otherwise

where, (P,�) = O(E), (E ′,R) = ψ(E ,�), and S(E) is subset of E ′ ∪R ∪ CP(R)↓R

Theorem

ϕ(E) is complete TRS for E if ϕ(E) is defined

Completion and Reduction Orders 47/86



Maximal Completion with Inter-Reduction
let O(E) be result of Sato and Winkler’s method
let ψ(E ,�) be result of deduce-free completion on (E ,∅) with respect to �

Idea

find canonical presentation by SW method O, generating equations by completion ψ

Definition

ϕ(E) =
{
R if R is complete for E
ϕ(E ∪ S(E)) otherwise

where, (P,�) = O(E), (E ′,R) = ψ(E ,�), and S(E) is subset of E ′ ∪R ∪ CP(R)↓R

Theorem

ϕ(E) is complete TRS for E if ϕ(E) is defined

Completion and Reduction Orders 47/86



Maximal Completion with Inter-Reduction
let O(E) be result of Sato and Winkler’s method
let ψ(E ,�) be result of deduce-free completion on (E ,∅) with respect to �

Idea

find canonical presentation by SW method O, generating equations by completion ψ

Definition

ϕ(E) =
{
R if R is complete for E
ϕ(E ∪ S(E)) otherwise

where, (P,�) = O(E), (E ′,R) = ψ(E ,�), and S(E) is subset of E ′ ∪R ∪ CP(R)↓R

Theorem

ϕ(E) is complete TRS for E if ϕ(E) is defined
Completion and Reduction Orders 47/86



Example 1: Peano Arithmetic

E =


s(x) + y ≈ s(x+ y)
s(p(x)) ≈ x
p(s(x)) ≈ x



SATO–WINKLER METHOD COMPLETION
E ,�

E ∪R

R =


s(x) + y → s(x+ y)
s(p(x)) → x
p(s(x)) → x

p(x) + y → p(x+ y)


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Example 2: Commuting Group Endomorphisms (CGE2)

E =

{
e + x ≈ x f(x+ y) ≈ f(x) + f(y)

i(x) + x ≈ e g(x+ y) ≈ g(x) + g(y)
(x+ y) + z ≈ x+ (y + z) f(x) + g(y) ≈ ≈ g(y) + f(x)

}

SATO–WINKLER METHOD COMPLETION

E,�

E ∪R

R =



e + x→ x

x+ e→ x

i(x) + x→ e
x+ i(x)→ e

x+ (i(x) + y)→ y

i(x) + (x+ y)→ y

(x+ y) + z → x+ (y + z)

f(e)→ e
g(e)→ e
i(e)→ e

i(i(x))→ x

i(f(x))→ f(i(x))
i(g(x))→ g(i(x))

i(x+ y)→ i(y) + i(x)
f(x) + f(y)→ f(x+ y)

g(x) + g(y)→ g(x+ y)
f(x) + g(y)→ g(y) + f(x)

f(x) + (f(y) + z)→ f(x+ y) + z

g(x) + (g(y) + z)→ g(x+ y) + z

f(y) + (g(x) + z)→ g(x) + (f(y) + z)


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Experimental Results

115 completion problems (taken from problem set of mkbTT)
600 seconds timeout
minimization problems are solved by MaxSMT (Z3)

orders (tool) LPO KBO ELPO EKBO ELPO+EKBO KBCV MaxcompDP
# completed 82 83 86 86 96 86 97
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Conclusion

Presented Techniques

termination: order extension based on semantic labeling
confluence: characterization by rewrite strategies
completion: maximal completion with inter-reduction

= Sato and Winkler’s method + standard completion

Future Work

ordered completion
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