
Automatic Generation of Model Checking

Scripts based on Environment Modeling

Kenro Yatake and Toshiaki Aoki

Japan Advanced Institute of Science and Technology,
1-1 Asahidai Nomi Ishikawa 923-1292, Japan

{k-yatake, toshiaki}@jaist.ac.jp

Abstract. When applying model checking to the design models of the
embedded systems, it is necessary to model not only the behavior of the
target system but also that of the environment interacting with the sys-
tem. In this paper, we present a method to model the environment and
to automatically generate all possible environments from the model. In
our method, we can flexibly model the structural variation of the envi-
ronment and the sequences of the function calls using a class model and
statechart models. We also present a tool to generate Promela scripts of
SPIN from the environment model. As a practical experiment, we applied
our tool to the verification of an OSEK/VDX RTOS design model.

1 Introduction

Recently, model checking is drawing attention as a technique to improve the
reliability of software systems [18]. Especially, they are widely applied to a ver-
ification of embedded systems. The major characteristics of embedded systems
is reactiveness. i.e., they operate by the stimulus from the environment. For
example, Real-Time Operating Systems (RTOS), which are embedded in most
of the complex embedded systems, operate by the service calls from the tasks
running on them. In order to apply model checking to such systems, it is nec-
essary to model not only the behavior of the target system but also that of the
environment.

The most typical approach to model an environment is to construct a pro-
cess which calls all the functions provided by the system non-deterministically.
Although it realizes an exhaustive check for all the possible execution sequences,
description of properties tends to become complicated because it needs extra
assumptions to filter out uninterested sequences from all the sequences. Further-
more, it is prone to suffer state explosion because all the sequences are checked
at a time. Another approach is to call specific sequences of functions depending
on the properties to check. For example, we limit the range of the function calls
to the normal execution sequences and check that certain properties hold in that
range. The advantage of this approach is that the property description becomes
simple and precise because the assumptions of the properties are implied by the
sequences themselves. This enables us to reflect our intention of verification more

clearly on the model. Furthermore, as the range is limited, we are more likely to
be able to avoid state explosion.

We consider the latter approach is more realistic because state explosion is
a critical problem in model checking. However, we must further consider the
structural variation of the environment. For example, the environment of an
RTOS consists of a multiple number of tasks and resources. There are also various
patterns in their priority values and function call relationships. Although we
need to check the system for all the environment variations, the number of the
variations is so large that we cannot construct them by hand.

To cope with this problem, we propose an environment modeling method
where we model the environment variations in a model called environment model
and automatically generate all possible environments from the model. To allow
the use in practice, we defined the environment model based on UML [10]. In a
class model, we can model the structural variation of the environment. In stat-
echart models, we can define the sequences of the function calls. Our method
is implemented as a tool called environment generator which inputs an envi-
ronment model and outputs environments as Promela scripts of SPIN. As a
practical experiment, we applied the tool to the verification of an RTOS design
model which is based on OSEK/VDX RTOS specification [11]. In this paper, we
explain the details of our method and the verification experiment of the RTOS
model.

This paper is organized as follows. In section 2, we explain the approach
of our method. In section 3, we explain the environment model. In section 4,
we explain the environment generation and the tool. In section 5, we show the
verification experiment. In section 6, we discuss the coverage and parallelization
of our method. In section 7, we give a conclusion and future work.

2 Approach

Let us explain how reactive systems are verified using an environment. Fig.1
shows an RTOS and its environment. The RTOS implements data structures
such as a task control blocks and a ready queue and provides functions such as
ActivateTask() and TerminateTask(). If these functions are called, the RTOS
schedules the tasks based on their priorities. To verify this behavior, we prepare
an environment, for example, consisting of two tasks T1 and T2 (T2’s priority is
higher than T1’s). This environment describes a sequence of function calls and
state transitions of the tasks expected by the calls. For example, if the function
ActivateTask() is called to T2, T2 is expected to become running. Then, if the
same function is called to T1, T1 is expected to become ready. To verify that
the RTOS satisfies this expectation, we apply model checking to the RTOS in
combination with the environment. Specifically, in each state of the environment,
we check the consistency between the environment state and the internal values
of the RTOS. For example, if T1 and T2 are ready and running, the ready
queue in the RTOS must contain the identifier of T1, and the variable turn

Fig. 1. Model checking with an environment

(representing the running task) must contain the identifier of T2. By checking
this consistency, we verify the behavior of the RTOS.

The problem of this approach is that this environment is only one of the cases
of the large number of environment variations. We need to verify the RTOS for
all the variations with respect to the structures such as the number of tasks and
resources, the patterns of the priority values and function call relationships. But
it is unrealistic to construct all of them by hand. One could think of constructing
a general environment with m tasks and n resources, but this is prone to suffer
state explosion.

To cope with this problem, we introduce a model to describe the environment
variations and automatically generate all the environments from the model. Fig.
2 summarizes this idea. To verify the target system (RTOS design model), we
first construct an environment model. This model is based on UML in which all
possible environment structures are defined using parameters with ranges. Then,
we generate all the environment instances from the model using the environment
generator. All the generated instances, which are structurally different from each
other, cover all the variations of the environment. The environment generator
inputs an environment model as a text file and outputs the environments as
Promela scripts. Finally, we combine the target system with each environment
instance and conduct model checking using SPIN.

Our approach has the following advantages:

1. Easy syntax: The syntax of the environment model is based on UML which
is familiar to most of the software engineers. This lowers the hurdle for
introducing our method to the software development in practice.

2. Alleviation of state explosion problem: It alleviates the state explosion
problem by structurally dividing the whole environment into individual en-
vironment. As each environment can be checked in a relatively small state
space, we are likely to be able to check the whole environment without caus-
ing state explosion.

3. Structural difference analysis: When a bug is detected in model checking,
our method allows us to structurally analyze its source, i.e., we can identify
the structural boundary of the source of a bug by comparing the check
results. For example, when the two results “The case of 2 tasks and no
resources is correct” and “The case of 2 tasks and 1 resource is not correct”

Fig. 2. Environment modeling method

are obtained, we can presume that the resource handling function contains
a bug.

4. Generality: It can be generally applied to the verification of reactive sys-
tems. Our method is especially effective for the systems whose environment
has a lot of structural variations. Examples of such systems are operating
systems and middleware systems.

3 Environment models

In this section, we explain environment models with an example of RTOS. We
also present formal definitions in A.1.

3.1 Class model

Fig. 3 shows the class model of the environment for an RTOS. The class model
consists of a class representing a target system and classes representing its envi-
ronment. In the figure, the class RTOS is the target system and the two classes
Task and Resource are the environment classes.

The target class defines two kinds of functions as the interface with the
environment. The functions labeled with fun are trigger functions. They trigger
the state transition of the target system. For example, ActivateTask(tid,dtid)
is the function to activate the task of ID dtid (tid is the ID of the caller task).
The argument of a function is defined with a range like tid:1..M. representing
the variation of the arguments. The functions labeled with ref are reference
functions. They refer the internal values of the target system. They are used to
define assertions (explained later in this section).

The environment classes are defined with attributes, associations, and vari-
ables. They are labelled with attr, assoc, and var, respectively. An attribute
is defined with a range like pr:1..P representing the variation of the attribute
values. (pr is a priority of a task.) An association is also defined with a range
like res:0..N. representing the variation of the multiplicity, i.e., the number
of objects linked with an object. The associations from the target class to an

Fig. 3. The class model of an RTOS environment

environment class defines the number of objects which instantiate from the en-
vironment class. A variable is a data of an object which can be dynamically
changed along with state transitions. It is defined with a default value.

Invariants can be defined for environment classes. They are written in OCL
[22]. An invariant defines a constraint on the structure of objects. For example,
Task defines an invariant constraining the pattern of links from a task to re-
sources. This invariant reflects the description of the specification that a task
can only acquire the resources whose priorities are equal to or higher than that
of the task. The OCL expressions in our model is a subset of OCL containing
the set operations and the state reference operations.

Assertions are defined for environment classes. An assertion defines a pred-
icate which is checked in each state of objects. In an assertion, the internal
values of the target system can be accessed by reference functions to define the
consistency between the target system and the environment. For example, Task
defines an assertion to check if the variable turn in the RTOS is equal to the
identifier of the running task in the environment. It also checks that the runtime
priority of a task is the same in the RTOS and the environment. The reference
functions GetTurn() and GetTaskDpr() are used to obtain the value of turn
and the runtime priority of the task in the RTOS.

3.2 Statechart models

In statechart models, we define the state transitions of environment objects
expected for the function calls of the target system. Fig. 4 shows the statechart
models of Task and Resource. They describe the normal execution sequences of
RTOS. A transition occurs by the call of a trigger function. For example, the
transition (1) is caused by ActivateTask(). The expression in [] is a guard
condition described in OCL. In the model, typical expressions are defined as
functions like ExRun()=Task->exists(t|t@Run).

A set of synchronous transitions can be attached to a transition. By syn-
chronous transitions, we can define the transitions of other objects which occur
synchronously with the transition of the self object. For example, the transi-
tion (2) defines the synchronous transition Run->Rdy : GetRun(). This means:

Fig. 4. The statechart model of Task (top) and Resource (bottom)

“Along with the transition of the self object, the Task object obtained by the
OCL function GetRun() (the task which is in the state Run) transits from the
state Run to Rdy. Currently, asynchronous transitions are not supported.

An action can be attached to a transition. It is a sequence of statements
described in {} which are executed along with the transition. In an action,
variables of objects are updated. For example, the transition (3) defines an action
with two statements which update the variables dpr of a task (the runtime
priority), and tid of a resource (the task ID occupying the resource), respectively.

4 Generation of environments

In this section, we explain the environment generation with the example. As
shown in Fig. 5, it is done in three steps: (1) Generation of object graphs, (2)
composition of statechart models, and (3) translation into Promela scripts. We
also present formal algorithms for (1) and (2) in A.2 and A.3.

4.1 Generation of object graphs

Firstly, we generate all the possible object graphs from the class model. An
object graph is represented by a set of objects which instantiate from all the
classes. Each object holds the values of attributes and associations. The value
of an association is a set of objects with which the object links.

We generate object graphs based on a data structure called graph counter
which represents an object graph by a vector of natural numbers. By counting

Fig. 5. Environment generation

up the counter, we enumerate all the variation of object graphs. Let us con-
sider the example in Fig. 3 with M=2, N=1, P=2, and Q=2. The graph counter
for this model consists of 8 numbers. Each of them corresponds to T1.pr (the
task T1’s attribute pr), T1.tsk, T1.res, T2.pr, T2.tsk, T2.res, R1.pr and
R1.tsk, respectively. For example, the graph counter L=<2,3,1,1,4,2,2,3>

represents an object graph with T1.pr=2, T1.tsk=[T2], T1.res=[], T2.pr=1,
T2.tsk=[T1,T2], T2.res=[R1], R1.pr=2, and R1.tsk=[T1,T2]. L[1]=2 means
that the T1.pr’s value is the 2nd value of the pr’s domain {1,2}. Likewise,
L[2]=3 means that the T1.tsk’s value is the 3rd value of the tsk’s domain
{[],[T1],[T2],[T1,T2]}.

To enumerate all the graphs, we start with the initial counter <1,...,1> and
count it up repeatedly to <1,...,1,2>, and then, <1,...,1,3>. If L[8] reached
the maximum number 3 (R1.tsk’s domain is {[1],[2],[1,2]}), the next count
causes carry over. So, the next counter is {1,...,2,1}. We repeat counting
until the counter reaches the maximum value <2,4,2,2,4,2,2,3>. Along with
the counting, we translate the graph counter into an object graph and output it
if it satisfies invariants.

The computation time of this algorithm increases exponentially as the mul-
tiplicities of associations increase. However, the computation space is limited to
O((A+B)×C). (A,B,C is the number of attributes, associations, and objects.)

4.2 Composition of statechart models

Next, we compose the statechart models of all objects in each object graph.
The result of the composition is an LTS (Labelled Transition System) [6]. Fig.
6 shows an example of an object graph and its LTS. In the LTS, each state
contains the states and variables of all the objects. For example, in the initial
state (A), the tasks T1 and T2 are in the state Sus and the resource R1 is in
the state Fre. The variables dpr of T1 and T2 are 1 and 3, respectively. The
variable tid of R1 is 0.

Transitions in statechart models are added to the LTS if their guard condi-
tions are evaluated to true in the LTS state and the object graph. For example,
the transition from (A) to (B) by the function ActivateTask(0,1) (AT(0,1)) is
added because the guard condition of the transition (1) in Fig. 4 becomes true
for the object T1 and the action argument (0,1) in the state (A). If a transition
has synchronous transitions, synchronized objects are obtained by evaluating the

Fig. 6. An object graph and its LTS

OCL expression. The synchronized objects transit along with the transition of
the self object. For example, in the transition from (C) to (D) by the function
ReleaseResource(1,1) (RR(1,1)), along with the self object R1 transits from
Occ to Fre, the synchronized objects T1 and T2 transit from Run and Rdy to
Rdy and Run, respectively. This transition also updates the variables of T1 and
R1 by executing the corresponding action.

It could be possible to translate all the statechart models directly into Promela
and leave the composition to SPIN. However, we do not do so because the OCL
expressions attached with the transitions are hard to express directly in Promela.
So, we evaluate the OCL expressions and compose the statechart models at this
point.

4.3 Translation into Promela scripts

Finally, we translate each LTS into Promera script. A state of LTS contains the
states and variables of all objects. In Promela, the states of objects are repre-
sented by a label and the variables of objects are represented by the variables
of Promela. For example, Fig. 7 shows the Promela script corresponding to the
state (D) of the LTS in Fig. 6. In the script, the three states Rdy, Run, and Fre

of the three objects T1, T2, and R1 are represented by the label Rdy_Run_Fre.
The variables of the three objects are represented by the variables Task1.dpr,
Task2.dpr, and Resource1.tid. These variables are checked in the guard con-
ditions of the if-statement and updated appropriately after calling the functions
TerminateTask(2) and GetResource(2,1).

The assertion is checked at the beginning of the state. It is a conjunction of
the assertions of all the objects. (In this case, only the assertion of two tasks
are conjuncted as the assertion of the resource is true.) The three variables
ret_GetTurn, ret_GetTaskDpr_1, and ret_GetTaskDpr_2 represent the inter-
nal values of the RTOS which are obtained by the reference functions GetTurn(),
GetTaskState(1),GetTaskState(2), respectively. These variables are set to the
return values of the corresponding functions in the inline function set_ref() be-
fore the assertion check. Expressions in the assertions except for these variables
are evaluated during the composition of statechart models.

Rdy_Run_Fre:

set_ref();

assert ((ret_GetTaskDpr_1==1) && /* Task1 */

(ret_GetTurn==2 && ret_GetTaskDpr_2==3)); /* Task2 */

if

:: Task1.dpr==1 && Task2.dpr==3 && Resource1.tid==0 -> TerminateTask(2);

Task1_var.dpr=1; Task2.dpr=3; Resource1.tid=0; goto Run_Sus_Fre;

:: Task1.dpr==1 && Task2.dpr==3 && Resource1.tid==0 -> GetResource(2,1);

Task1.dpr=1; Task2.dpr=4; Resource1.tid=2; goto Rdy_Run_Occ;

fi;

Fig. 7. Promela script corresponding the state (D) in Fig. 6

4.4 Environment generator

We implemented the environment generator as a command line tool which inputs
an environment model as a text file and outputs all the environments as Promela
files. This tool can be applied generally to any systems as long as we observe the
interface between the environment model and the target system. (The Promela
script of the target system must contain the inline functions corresponding to
the trigger functions and reference functions in the environment model.) Fig.
8 shows the architecture of the tool. It mainly consists of three components
realizing the three steps of the environment generation: the graph generator,
the state composer, and the Promela translator. It also has the invariant filter
for checking invariants for object graphs, and the OCL evaluator for evaluating
OCL expressions.

5 Experiment

As an application of our method to a practical system, we conducted an experi-
ment to verify that an RTOS design model conforms to the OSEK/VDX RTOS
specification. The design model is implemented in Promela (about 1800 lines)
following the approach in [1]. It is implemented as a set of inline functions for
the functions ActivateTask, TerminateTask, and so on. For the verification,
we constructed the environment model based on the specification. We have pre-
sented this model partially in Fig. 3 and Fig. 4. We generated the environments
by the environment generator and conducted model checking for some of them
in SPIN.

5.1 Environment generation

Table. 1 shows the number of generated environments from the model in Fig. 3
with the constants M, N, P, and Q set to 4, i.e., tasks and resources are created up
to 4 and both of them can take priorities up to 4. We generated environments by
moving the number of tasks and resources from 1 to 4. In the Table. 1, T is the

Fig. 8. Architecture of the environment generator

number of tasks and R is the number of resources. Actually, the specification does
not limit the number of tasks and resources and it allows the number of priorities
up to 16. In our model, however, we limited the maximum number of objects
and priorities to 4 so that the environment generation can be completed within
a reasonable time. Even in this limited range, we can capture the important
behavior of the RTOS. (See Section 6.)

An important problem when constructing an environment model is to pre-
vent generation of isomorphic environments. An example of a pair of isomorphic
environments is: (1) an environment of tasks T1 and T2 with priorities 1 and 2,
and (2) an environment of tasks T1 and T2 with priorities 2 and 1. Since the
identifiers of tasks do not affect the behavior of the RTOS, this pair of environ-
ments brings the same result in model checking. In our method, we can reduce
such isomorphic environments by making use of invariants. In the example, the
following invariant can be added to the class Task:

Task->forall(t|self.id<t.id implies self.pr<t.pr)

It specifies that the priorities of tasks increases monotonically with the increase
of identifiers. By this invariant, we can remove the environment (2). The same
kind of invariant can be added to the class Resource. By removing isomorphic
environments, we can drastically reduce the number of generated environments.
In the cases of two tasks and two resources, we can reduce the number from 850
to 95 (88.8% reduction). In our method, it is the responsibility of users to add
appropriate invariants to reduce isomorphic environments.

Currently, the computation time of the generation algorithm grows expo-
nentially with the number of associations. To make it more scalable, we need
to compute the set of object graphs, which satisfy invariants, directly from the
class model. To realize this, we are currently considering the use of SAT and
SMT solvers [16, 4].

5.2 Model checking

We conducted model checking on some of the generated environments. We se-
lected a representative environment from each case in Table. 1. For example,

R/T 1 2 3 4

0 4 (0.0s) 6 (0.0s) 4 (0.1s) 1 (0.2s)

1 10 (0.1s) 40 (0.3s) 55 (1.5s) 26 (3.5s)

2 10 (0.2s) 95 (1.5s) 245 (15.7s) 196 (99.5s)

3 5 (0.2s) 100 (6.8s) 425 (169.2s) N/A

4 1 (1.0s) 39 (66.3s) N/A N/A

Table 1. The number of generated environments (CPU:2.4GHz, Memory:4.0GB)

for the 95 cases in T=2 and R=2, we selected the case No. 95/2=47. Table. 2
shows the results of model checking. As well as the check results (“©” for no
errors and “×” for at least one error), it shows the structures of object graphs,
consumed time and memories. (Times include the compilation time and the ver-
ification time.) As the memory consumption indicates, we were able to check
all the cases without causing state explosion. This is thanks to the structural
decomposition of the environment. If we naively conduct model checking with a
non-deterministic environment, we cannot even check the environment of up to
2 tasks and 2 resources causing state explosion with 4.0 Gbyte of memory.

Among 17 cases, 6 cases were unsuccessful. All the failures were caused by
assertion violations. Specifically, the runtime priority of a task was inconsistent
between the environment and the RTOS. In our method, we can make use of the
table to conduct difference analysis to find the source of a bug. By overlooking
the table, we can see that the check fails only if there are at least two tasks.
With a closer look, we can notice that the check fails only if there is at least one
task which is linked with more than one resources. Based on this information,
we can presume that the resource handling of the RTOS is incorrect, especially
when a task tries to acquire more than one resources.

By examining the counter example traces output by SPIN, we found that
the bug was contained in the function GetResource(). It is a function called
from a task when the task acquires a resource. Correctly, the function must
raise the runtime priority of the task to the resource priority only when the
runtime priority is lower than the resource priority. (This mechanism is called
ceiling priority protocol.) But the function changed the runtime priority every
time the task acquires a resource regardless of the resource priority. This bug
caused the inconsistency of the runtime priority between the environment and
the RTOS. (For example, if T1 first acquires R1 of priority 4 and then acquires
R2 of priority 3, the environment expect the runtime priority of T1 to be 4. In
the RTOS, however, it was incorrectly changed to 3.) This inconsistency occurs
only when a task tries to acquire more than one resources. This result coincides
with our presumption based on the difference analysis.

When model checking in SPIN, it is not always easy to pinpoint the source of
the bug only from the information of the counter example traces. Our method,
however, can provide additional information as a form of a table by which we
can conduct difference analysis based on graph structures. This is one of the

T,R No. Task.pr Task.res Resource.pr Result Time Memory
T1 T2 T3 T4 T1 T2 T3 T4 R1 R2 R3 R4 (sec) (Mbyte)

1,0 2 2 [] © 3.3 2.70

1,1 5 2 [1] 3 © 3.4 2.70

1,2 5 1 [1,2] 1 4 × 3.6 2.79

1,3 2 1 [1,2,3] 1 2 4 × 4.0 2.89

1,4 1 1 [1,2,3,4] 1 2 3 4 × 5.2 3.09

2,0 3 2 3 [] [] © 3.6 2.89

2,1 20 3 4 [1] [] 4 © 3.7 2.89

2,2 47 2 3 [1] [2] 2 4 © 4.0 3.09

2,3 50 1 3 [1,2,3] [3] 1 3 4 × 5.8 3.38

2,4 19 1 2 [1,2,3,4] [2,3] 1 2 3 4 × 10.4 3.77

3,0 2 1 2 4 [] [] © 4.2 3.09

3,1 27 1 2 4 [1] [1] [] 2 © 4.9 3.58

3,2 122 1 2 3 [1] [] [2] 1 3 © 5.3 3.87

3,3 212 1 2 3 [2] [1] [3] 2 3 4 © 6.3 4.36

4,0 1 1 2 3 4 [] [] [] [] © 5.6 4.06

4,1 13 1 2 3 4 [1] [] [1] [] 3 © 7.8 5.53

4,2 98 1 2 3 4 [1] [1] [1,2] [] 3 4 × 11.1 4.26
Table 2. Results of model checking

advantages of our method to structurally decompose the whole environment
into individuals.

6 Discussion

Our method, where a limited range of environment is constructed, stands in
contrast to the usual method where a non-deterministic environment is filtered
by LTL formula. As we stated in introduction, there is a trade-off between the
two methods, i.e., the usual method has an advantage in the coverage of veri-
fication, while our method has an advantage in the simplicity and precision of
property description and avoidance of state explosion problem. Our method be-
comes more advantageous for the verification of the systems whose environment
has a lot of structural variations. RTOS is a good example of such systems. If
the environment has wider structural variations, it can be separated more finely
into individuals. As a result, we are more likely to avoid state explosion and
more benefit from the structural difference analysis.

To improve the coverage, we need to extend the variation of the environment
model as much as possible depending on the computation time of environment
generation and model checking. But as it is hard to cover all the cases, we need
some criteria as to how far we should extend the variation of the environment
model. In our experience, crucial errors concerning the behavioral logic of the
system can be discovered even with a small number of objects, and the errors
newly discovered by increasing the number of objects are only those concerning

system boundaries (such as generating objects which exceeds the limit of an
array). So, one of the criteria should be to clarify the important properties of
the system and cover at least the variations which can observe the satisfaction
of the properties. For example, the important properties about the behavioral
logic of RTOS are: (1) Without resources, the task of higher priority must be
executed before that of lower priority, (2) If a task occupies multiple resources,
its runtime priority is set to the maximum priority of the resources, (3) With
resources, the task of higher runtime priority must be executed before that of
lower runtime priority. To check these properties, we need at least 2 tasks and 2
resources, i.e., (1) requires 2 tasks, (2) requires 1 tasks and 2 resources, and (3)
requires 2 tasks and 2 resources. In this way, we need to clarify the necessary
minimum of the variations depending on the properties to check and define the
parameter ranges sufficiently wide to cover the variations.

For behavioral coverage, we further need to conduct verification of abnormal
execution and interrupt handling. To verify interrupt handling, we need to ex-
tend the environment model so that it can deal with multiple processes since
interleavings occur between the executions of tasks and the interrupt handler.

Another advantage of our method is that it has a potential for parallelizing
model checking. Since all the environments are structurally different from each
other, they can be checked independently of others. So, it is effective to check all
the cases parallelly by distributing them on a PC cluster. To realize this, we need
to address two problems. The first one is load-balancing, i.e., how to distribute all
the environments equally to each PC. For this problem, we consider it effective
to distribute them based on the length of Promela files. This is because most
of the time for checking an environment is occupied by the compilation of the
Promela file of the environment. The second one is data-mining, i.e., how to
retrieve useful information from the large amounts of check results. For this,
we consider it effective to make use of a relational database. By storing the
results in the database, we can retrieve necessary information by issuing query
on environment structures.

7 Related work

Many work propose methods to verify UML models in SPIN by translating stat-
echart models into Promela [19, 9, 14].Our method also applies model checking
to statechart models, but our motivation is totally different from these works in
that we are using statechart models for describing environments, not the target
system itself.

O. Tkachuk, et al. [20] proposes Bandera Environment Generator (BEG)
which automatically generates the environment for the verification of Java pro-
grams in Bandera. It has been applied to commercial software [21] and has also
used as the core tool for the environment generator for web application domain
[17]. In BEG, the environment is generated from the specifications of the envi-
ronment written by the user, called environment assumptions, or by analyzing
the programs which implements the environment. The environment assump-

tions are described as the sequences of the method calls in the form of regular
expressions. This approach corresponds to describing a single instance of the
environment model in our method. In our method, we can describe a set of the
instances as a class model and automatically generate all the possible instances
based on the variations in the model.

P. Parizek, et al. [12] proposes a method to verify Java components by Java
PathFinder (JPF) and a protocol checker. The protocols of the components are
defined by ADL (Architecture Description Language) from which the environ-
ment for the components is constructed. This method allows to describe the
environment structure by ADL. Compared to this work, our method further
describe the variation of the structure using the parameters in the class model.

J. Penix, et al. [15, 13] verifies the time partitioning of DEOS RTOS by SPIN.
M. Dwyer et al. [5] verifies partial systems described in Ada by translating them
into SPIN. In these works, environments are obtained by filtering a universal en-
vironment with assumptions described in LTL. This approach is effective when
the assumptions can be described simply, but shows weakness when describing
precise behavior of environments due to the accumulation of complex LTL as-
sumptions. Compared to these works, we describe the specific behavior of an
environment from the beginning using statechart models instead of incremen-
tally refining the universal environment by assumptions. The use of statechart
models facilitates the description of environments because the abstraction level
is lifted to the familiar level for users.

C. Boyapati et al. [3] developed the Korat tool to automatically generate test
cases for unit-testing Java methods. To test a method, it automatically generates
all the structural variations of the input object based on the pre-condition. Then
the method is tested against the post-condition for all the generated inputs. Our
work is close to this work in that the test environment (input) is automatically
generated. But our work is more suited for the integration or system-wide testing
where the correctness of a system is checked against a sequence of function calls
described in statechart models.

Concerning parallel model checking, there are many techniques based on
multi-cores [7, 8] and clusters [2]. Compared to these techniques where the search
algorithm is parallelized, our method can be parallelized based on separation of
data, i.e., we can divide the whole environment into individuals by changing its
data settings.

8 Conclusion

In this paper, we presented a method for modeling and generating environments
for model checking embedded systems. We presented a tool to automatically
generate Promela/SPIN scripts from the environment model. As an application
to a practical system, we conducted a verification of an OSEK/VDX RTOS de-
sign model. In the experiment, we were able to generate sufficient variations
of environments efficiently for checking important properties of RTOS. We also
confirmed the effectiveness of difference analysis based on the environment struc-

tures. Future work is to develop a distributed parallel model checking framework
based on our method.

References

1. Toshiaki Aoki. Model Checking Multi-Task Software on Real-Time Operating
Systems. In ISORC, pages 551–555. IEEE Computer Society, 2008.

2. Jǐŕı Barnat, Luboš Brim, and Petr Ročkai. DiVinE 2.0: High-Performance Model
Checking. In 2009 International Workshop on High Performance Computational
Systems Biology (HiBi 2009), pages 31–32. IEEE Computer Society Press, 2009.

3. Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: automated
testing based on Java predicates. In ISSTA, pages 123–133, 2002.

4. Leonardo Mendonça de Moura, Bruno Dutertre, and Natarajan Shankar. A Tu-
torial on Satisfiability Modulo Theories. In Werner Damm and Holger Hermanns,
editors, CAV, volume 4590 of Lecture Notes in Computer Science, pages 20–36.
Springer, 2007.

5. Matthew B. Dwyer and Corina S. Pasareanu. Filter-Based Model Checking of
Partial Systems. In SIGSOFT FSE, pages 189–202, 1998.

6. J. Magee et al. Concurrency: State models & Java programs. Wiley, 1999.
7. Gerard J. Holzmann and Dragan Bosnacki. The Design of a Multicore Extension

of the SPIN Model Checker. IEEE Trans. Software Eng., 33(10):659–674, 2007.
8. Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm Verification. In ASE,

pages 1–6. IEEE, 2008.
9. Johan Lilius and Ivan Paltor. vUML: A tool for verifying UML models. In ASE,

pages 255–258, 1999.
10. OMG. Unified Modeling Language. http://www.uml.org/, 1989.
11. OSEK/VDX. OSEK/VDX Operating System Specification 2.2.3.

http://portal.osek-vdx.org/, 2005.
12. Pavel Parizek and Frantisek Plasil. Partial Verification of Software Components:

Heuristics for Environment Construction. In EUROMICRO-SEAA, pages 75–82.
IEEE Computer Society, 2007.

13. Corina S. Pasareanu. DEOS Kernel: Environment Modeling using LTL Assump-
tions. Nasa ames technical report nasa-arc-ic-2000-196, NASA Ames Research
Center, 2000.

14. Patrizio Pelliccione, Paola Inverardi, and Henry Muccini. CHARMY: A Framework
for Designing and Verifying Architectural Specifications. IEEE Trans. Software
Eng., 35(3):325–346, 2009.

15. John Penix, Willem Visser, Seungjoon Park, Corina S. Pasareanu, Eric Engstrom,
Aaron Larson, and Nicholas Weininger. Verifying Time Partitioning in the DEOS
Scheduling Kernel. Formal Methods in System Design, 26(2):103–135, 2005.

16. Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in
SAT-based formal verification. STTT, 7(2):156–173, 2005.

17. Sreeranga P. Rajan, Oksana Tkachuk, Mukul R. Prasad, Indradeep Ghosh, Nitin
Goel, and Tadahiro Uehara. WEAVE: WEb Applications Validation Environment.
In ICSE Companion, pages 101–111. IEEE, 2009.

18. Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Comput.
Surv., 41(4), 2009.

19. Timm Schäfer, Alexander Knapp, and Stephan Merz. Model checking UML state
machines and collaborations. Electr. Notes Theor. Comput. Sci., 55(3), 2001.

20. Oksana Tkachuk, Matthew B. Dwyer, and Corina S. Pasareanu. Automated Envi-
ronment Generation for Software Model Checking. In ASE, pages 116–129. IEEE
Computer Society, 2003.

21. Oksana Tkachuk and Sreeranga P. Rajan. Application of automated environment
generation to commercial software. In Lori L. Pollock and Mauro Pezzè, editors,
ISSTA, pages 203–214. ACM, 2006.

22. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison-Wesley, 1999.

A Formal definitions and algorithms

A.1 Environment model

Definition 1 (Environment model). An environment model EM is defined
as:

EM = (I, C,S)

I is a target system. C = {C1, C2, ...} is the set of classes. S = {SC1, SC2, ...} is
the set of statechart models.

Definition 2 (Target system). The target system I is defined as:

I = (Fun, Ref, Arg)

The sets Fun and Ref are the set of trigger functions and reference functions,
respectively. The mapping Arg : F×2V al relates a function to the domain (varia-
tion) of its argument. (For simplicity, we present the definition where a function
has only one argument.) The set V al is the set of values.

Definition 3 (Classes). The class Ci ∈ C is defined as:

Ci = (Xi, Yi, Vi, Sizei, Domi, Defi, Invi, Assri)

The sets Xi and Yi are the sets of attributes and associations, respectively. We
define the union Xi∪Yi as Ui = {ui1, ui2, ...}, and call them members of the class
Ci. The set Vi = {vi1, vi2, ...} is the set of variables. Sizei ∈ N is the number
of objects which instantiate from the class. The mapping Domi : Ui → 2V al

relates a member to the set of values which represents the domain (variation)
of the member. We represent each element in Domi(uij) as dijk(k = 1, ...). The
mapping Defi : Vi → V al relates a variable to its default value. We represent
each element in Defi(vij) as eij. The expression Invi, Assri ∈ Exp are an
invariant and an assertion. Exp is the set of expressions (V al ⊂ Exp).

In this definition, we omit the definition of multiplicities of associations. The
variation of links for an association is directly defined by Domi.

Definition 4 (Statechart models). Let S be the set of states. For the class
Ci, the statechart model SCi is defined as:

SCi = (Si, s0i, Ai, Ti)

The set Si ⊂ S is the set of states. The state s0i ∈ Si is the initial state. The
set Ai is a set of actions. The set Ti is the set of transitions. For a transition
(s1, s2, g, f, a, st) ∈ Ti, s1, s2 ∈ Si are the source and destination states, respec-
tively. g ∈ Exp is a guard condition. f ∈ Fun is a trigger function. a ∈ Ai is
an action. st is the set of synchronous transitions. For a synchronous transi-
tion (t1, t2, x) ∈ st, t1, t2 ∈ S are the source and destination states, respectively.
x ∈ Exp is the expression representing the synchronized objects.

A.2 Generation of object graphs

Definition 5 (Object graphs). Let Oi = {oi1, oi2, ...} be the set of objects
which instantiate from the class ci (|Oi| = Size(ci)). Let G be the set of object
graphs. An object graph G ∈ G is defined as:

G = {gijk|i = 1..|C|, j = 1..|Oi|, k = 1..|Uij |}

The value gijk represents the value of the member uik of the object oij .

The set of object graphs G is computed as follows. Firstly, we define the

graph counter Z = 〈z1, z2, ...〉 as a vector of length M =
∑|C|

i=1
(|Oi| × |Ui|).

The correspondence between object members and graph counter elements are
defined by the function Pos(i, j, k) = (

∑i−1

n=1
|On| × |Un|) + |Ui| × (j − 1) + k. If

Pos(i, j, k) = p, zp corresponds to the member uijk. For each zi, we define its
maximum value as Maxi. If Pos(i, j, k) = p, Maxp is equal to |Dom(uik)|.

Then, we define a function GetGraph which generates an object graph from
the graph counter.

GetGraph(Z) = (G, Z ′)

where

Gijk = dijm (m = L[Pos(i, j, k)], i = 1..|C|, j = 1..|Oi|, k = 1..|Ui|)

Z ′ =











〈z1, ..., zM + 1〉 if zM < MaxM

〈z1, ..., zi + 1, 1, ..., 1〉 if zi < Maxi, zj = Maxj (j = i + 1..M)

〈1, ..., 1〉 if zi = Maxi (i = 1..M)

G and Z ′ are the generated object graph and the next graph counter, respec-
tively. The last case of Z ′ means that the counter returns to 〈1, ..., 1〉 when it
reaches maximum. By this, we know the end of counting.

Finally, the set G is obtained the following algorithm. In the algorithm, the
mapping EvalG[o] : Exp → V al relates an expression to a value which is ob-
tained by evaluating the expression in the context of a graph G and an object
o.

1. Let G = {} and Z = 〈1, ..., 1〉.
2. Let (G, Z) = GetGraph(Z)
3. If G satisfies invariants, i.e., EvalG[oij](Invi) is a value representing true for

all i and j, let G = {G} ∪ G.
4. If Z 6= 〈1, ..., 1〉, goto 2.

A.3 Composition of statecharts

Definition 6 (Labelled transition systems). An LTS L is defined as:

L = (P, p0, Q, R, B)

The set P = {p0, p1...} is a set of composite states. In a composite state p, the
state of the object oij and the value of the variable vijk are defined as p[i, j, 0]
and p[i, j, k], respectively. (Note that k = 1...) The state p0 is the initial state.
The set Q is the set of labels. For a label (f, w) ∈ Q, f and w are a trigger
function and its argument, respectively. The set R is the set of transitions. For
a transition r = (t1, t2, q) ∈ R, t1, t2, and q are a source state, a destination
states, and a label, respectively. The set B = {b0, b1, ...} is the set of assertions.
Each bi is the assertion defined for the state pi.

For an object graph G, an LTS L is computed by the following algorithm. In
the algorithm, the mapping EvalG[o][p][w] : Exp → V al relates an expression
to a value which is obtained by evaluating the expression in the context of a
graph G, a state p, an object o, and an argument w. The mapping AEvalG[o][p] :
Exp → Exp relates an assertion to an expression which is obtained by evaluating
the assertion in the context of a graph G, a state p, and an object o. (The
result expression may contain reference functions.) The mapping ExecG[o][p][w] :
A× V → V al relates an action and a variable to the value of the variable which
is obtained by evaluating the action in the context of a graph G, a state p, and
an argument w. For simplicity, we present the algorithm for the case where the
expression of a synchronous transition always evaluates to a single object.

1. Let P = Q = B = {}.
2. Define the initial state p0 such that p0[i, j, 0] = s0i and p0[i, j, k] = Defi(yik).
3. Let p = p0 and Pi = {p0} (p is a temporal variable).
4. For each object oij , for each transition (pij0, s, g, f, a, st) ∈ Ti, and for each

argument w ∈ Arg(f), do the following steps.

(a) If the guard condition g is true, i.e., the expression EvalG[oij][p][w](g)
is a value representing true, create a new state q with q[m, n, 0] defined
as follows:
– If m = i and n = j, then s.
– If there exists a synchronous transition (x, t1, t2) ∈ st such that the

target object x is omn, i.e., the expression EvalG[oij][p][w](x) is a
value representing omn and p[m, n, 0] = t1, then t2.

– Otherwise, p[m, n, 0].
For all cases, q[m, n, l] is defined as the value ExecG(omn, a, vml).

(b) Let Q = {(f, w)} ∪ Q and R = {(p, q, (f, w))} ∪ R.
(c) If q 6∈ P , let P = {q} ∪ P and p = q, and go to 4.

5. For each pi ∈ P , let bi =
∧

j,k AEvalG[ojk][pi](Assrj) and B = {bi} ∪ B.

