--> I) Base case open INV red inv5(init,bit) . close --> II) Inductive cese --> 1) send1(s) open ISTEP -- arbitrary values -- assumptions -- successor state eq s' = send1(s) . -- check red istep5 . close --> 2) rec1(s) --> c-rec1(s), bs = empty open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions -- eq c-rec1(s) = true . eq fifo2(s) = b,bs . -- eq bs = empty . -- successor state eq s' = rec1(s) . -- check red istep5 . close --> c-rec1(s), bs = b1,bs1, bit1(s) = b, ~(bit = b) open ISTEP -- arbitrary values ops b b1 : -> Bool . ops bs bs1 : -> BFifo . -- assumptions -- eq c-rec1(s) = true . eq fifo2(s) = b,bs . -- eq bs = b1,bs1 . eq bit1(s) = b . eq (bit = b) = false . -- successor state eq s' = rec1(s) . -- check red istep5 . close --> c-rec1(s), bs = b1,bs1, bit1(s) = b, bit = b open ISTEP -- arbitrary values ops b b1 : -> Bool . ops bs bs1 : -> BFifo . -- assumptions -- eq c-rec1(s) = true . eq fifo2(s) = b,bs . -- eq bs = b1,bs1 . eq bit1(s) = b . eq bit = b . -- successor state eq s' = rec1(s) . -- check red istep5 . close --> c-rec1(s), bs = b1,bs1, ~(bit1(s) = b), bit = b open ISTEP -- arbitrary values ops b b1 : -> Bool . ops bs bs1 : -> BFifo . -- assumptions -- eq c-rec1(s) = true . eq fifo2(s) = b,bs . -- eq bs = b1,bs1 . eq (bit1(s) = b) = false . eq bit = b . -- successor state eq s' = rec1(s) . -- check red istep5 . close --> c-rec1(s), bs = b1,bs1, ~(bit1(s) = b), ~(bit = b) open ISTEP -- arbitrary values ops b b1 : -> Bool . ops bs bs1 : -> BFifo . -- assumptions -- eq c-rec1(s) = true . eq fifo2(s) = b,bs . -- eq bs = b1,bs1 . eq (bit1(s) = b) = false . eq (bit = b) = false . -- successor state eq s' = rec1(s) . -- check red inv4(s,bit) implies istep5 . close --> ~c-rec1(s) open ISTEP -- arbitrary values -- assumptions eq c-rec1(s) = false . -- successor state eq s' = rec1(s) . -- check red istep5 . close --> 3) send2(s) --> fifo2(s) = empty, bit2(s) = bit open ISTEP -- arbitrary values -- assumptions eq fifo2(s) = empty . eq bit2(s) = bit . -- successor state eq s' = send2(s) . -- check red istep5 . close --> fifo2(s) = empty, ~(bit2(s) = bit) open ISTEP -- arbitrary values -- assumptions eq fifo2(s) = empty . eq (bit2(s) = bit) = false . -- successor state eq s' = send2(s) . -- check red istep5 . close --> fifo2(s) = b,bs, b = bit open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions eq fifo2(s) = b,bs . eq b = bit . -- successor state eq s' = send2(s) . -- check red istep5 . close --> fifo2(s) = b,bs, ~(b = bit), bit \in bs open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions eq fifo2(s) = b,bs . eq (b = bit) = false . eq bit \in bs = true . -- successor state eq s' = send2(s) . -- check red istep5 . close --> fifo2(s) = b,bs, ~(b = bit), ~(bit \in bs), bit2(s) = bit open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions eq fifo2(s) = b,bs . eq (b = bit) = false . eq bit \in bs = false . eq bit2(s) = bit . -- successor state eq s' = send2(s) . -- check red inv2(s) implies istep5 . close --> fifo2(s) = b,bs, ~(b = bit), ~(bit \in bs), ~(bit2(s) = bit), --> bit \in put(bs,bit2(s)) open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions eq fifo2(s) = b,bs . eq (b = bit) = false . eq bit \in bs = false . eq (bit2(s) = bit) = false . eq bit \in put(bs,bit2(s)) = true . -- successor state eq s' = send2(s) . -- check red queue-lemma5(bs,bit,bit2(s)) implies istep5 . close --> fifo2(s) = b,bs, ~(b = bit), ~(bit \in bs), ~(bit2(s) = bit), --> ~(bit \in put(bs,bit2(s))) open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions eq fifo2(s) = b,bs . eq (b = bit) = false . eq bit \in bs = false . eq (bit2(s) = bit) = false . eq bit \in put(bs,bit2(s)) = false . -- successor state eq s' = send2(s) . -- check red istep5 . close --> 4) rec2(s) --> c-rec2(s), bit2(s) = fst(p), bit1(s) = fst(p) open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions -- eq c-rec2(s) = true . eq fifo1(s) = p,ps . -- eq bit2(s) = fst(p) . eq bit1(s) = fst(p) . -- successor state eq s' = rec2(s) . -- check red istep5 . close --> c-rec2(s), bit2(s) = fst(p), ~(bit1(s) = fst(p)) open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions -- eq c-rec2(s) = true . eq fifo1(s) = p,ps . -- eq bit2(s) = fst(p) . eq (bit1(s) = fst(p)) = false . -- successor state eq s' = rec2(s) . -- check red inv3(s) implies istep5 . close --> c-rec2(s), ~(bit2(s) = fst(p)) open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions -- eq c-rec2(s) = true . eq fifo1(s) = p,ps . -- eq (bit2(s) = fst(p)) = false . -- successor state eq s' = rec2(s) . -- check red istep5 . close --> ~c-rec2(s) open ISTEP -- arbitrary values -- assumptions eq c-rec2(s) = false . -- successor state eq s' = rec2(s) . -- check red istep5 . close --> 5) drop1(s) --> c-drop1(s) open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions -- eq c-drop1(s) = true . eq fifo1(s) = p,ps . -- successor state eq s' = drop1(s) . -- check red istep5 . close --> ~c-drop1(s) open ISTEP -- arbitrary values -- assumptions eq c-drop1(s) = false . -- successor state eq s' = drop1(s) . -- check red istep5 . close --> 6) dup1(s) --> c-dup1(s) open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions -- eq c-dup1(s) = true . eq fifo1(s) = p,ps . -- successor state eq s' = dup1(s) . -- check red istep5 . close --> ~c-dup1(s) open ISTEP -- arbitrary values -- assumptions eq c-dup1(s) = false . -- successor state eq s' = dup1(s) . -- check red istep5 . close --> 7) drop2(s) --> c-drop2(s), bs = empty open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions -- eq c-drop2(s) = true . eq fifo2(s) = b,bs . -- eq bs = empty . -- successor state eq s' = drop2(s) . -- check red istep5 . close --> c-drop2(s), bs = b1,bs1, b1 = bit, b1 = bit open ISTEP -- arbitrary values ops b b1 : -> Bool . ops bs bs1 : -> BFifo . -- assumptions -- eq c-drop2(s) = true . eq fifo2(s) = b,bs . -- eq bs = b1,bs1 . eq b1 = bit . eq b = bit . -- successor state eq s' = drop2(s) . -- check red istep5 . close --> c-drop2(s), bs = b1,bs1, b1 = bit, ~(b1 = bit) open ISTEP -- arbitrary values ops b b1 : -> Bool . ops bs bs1 : -> BFifo . -- assumptions -- eq c-drop2(s) = true . eq fifo2(s) = b,bs . -- eq bs = b1,bs1 . eq b1 = bit . eq (b = bit) = false . -- successor state eq s' = drop2(s) . -- check red istep5 . close --> c-drop2(s), bs = b1,bs1, ~(b1 = bit), b1 = bit open ISTEP -- arbitrary values ops b b1 : -> Bool . ops bs bs1 : -> BFifo . -- assumptions -- eq c-drop2(s) = true . eq fifo2(s) = b,bs . -- eq bs = b1,bs1 . eq (b1 = bit) = false . eq b = bit . -- successor state eq s' = drop2(s) . -- check red istep5 . close --> c-drop2(s), bs = b1,bs1, ~(b1 = bit), ~(b1 = bit) open ISTEP -- arbitrary values ops b b1 : -> Bool . ops bs bs1 : -> BFifo . -- assumptions -- eq c-drop2(s) = true . eq fifo2(s) = b,bs . -- eq bs = b1,bs1 . eq (b1 = bit) = false . eq (b = bit) = false . -- successor state eq s' = drop2(s) . -- check red istep5 . close --> ~c-drop2(s) open ISTEP -- arbitrary values -- assumptions eq c-drop2(s) = false . -- successor state eq s' = drop2(s) . -- check red istep5 . close --> 8) dup2(s) --> c-dup2(s), bit = b open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions -- eq c-dup2(s) = true . eq fifo2(s) = b,bs . -- eq bit = b . -- successor state eq s' = dup2(s) . -- check red istep5 . close --> c-dup2(s), ~(bit = b) open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions -- eq c-dup2(s) = true . eq fifo2(s) = b,bs . -- eq (bit = b) = false . -- successor state eq s' = dup2(s) . -- check red istep5 . close --> ~c-dup2(s) open ISTEP -- arbitrary values -- assumptions eq c-dup2(s) = false . -- successor state eq s' = dup2(s) . -- check red istep5 . close --> QED