--> I) Base case open INV red inv6(init,pair) . close --> II) Inductive cese --> 1) send1(s) --> fifo1(s) = empty, pair = < bit1(s),pac(next(s)) > open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions eq fifo1(s) = empty . eq pair = < bit1(s) , pac(next(s)) > . -- successor state eq s' = send1(s) . -- check red istep6 . close --> fifo1(s) = empty, ~(pair = < bit1(s),pac(next(s)) >) open ISTEP -- arbitrary values -- assumptions eq fifo1(s) = empty . eq (pair = < bit1(s) , pac(next(s)) >) = false . -- successor state eq s' = send1(s) . -- check red istep6 . close --> fifo1(s) = p,ps, p = pair open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions eq fifo1(s) = p,ps . eq p = pair . -- successor state eq s' = send1(s) . -- check red istep6 . close --> fifo1(s) = p,ps, ~(p = pair), pair \in ps open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions eq fifo1(s) = p,ps . eq (p = pair) = false . eq pair \in ps = true . -- successor state eq s' = send1(s) . -- check red istep6 . close --> fifo1(s) = p,ps, ~(p = pair), ~(pair \in ps), --> bit2(s) = fst(p), p = < bit1(s),pac(next(s)) >, --> pair \in put(ps,< bit1(s) , pac(next(s)) >) open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions eq fifo1(s) = p,ps . -- eq (p = pair) = false . eq (< bit1(s),pac(next(s)) > = pair) = false . -- eq pair \in ps = false . eq bit2(s) = fst(p) . eq p = < bit1(s),pac(next(s)) > . eq pair \in put(ps,< bit1(s) , pac(next(s)) >) = true . -- successor state eq s' = send1(s) . -- check red queue-lemma5(ps,pair,< bit1(s) , pac(next(s)) >) implies istep6 . close --> fifo1(s) = p,ps, ~(p = pair), ~(pair \in ps), --> bit2(s) = fst(p), p = < bit1(s),pac(next(s)) >, --> ~(pair \in put(ps,< bit1(s) , pac(next(s)) >)) open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions eq fifo1(s) = p,ps . -- eq (p = pair) = false . eq (< bit1(s),pac(next(s)) > = pair) = false . -- eq pair \in ps = false . eq bit2(s) = fst(p) . eq p = < bit1(s),pac(next(s)) > . eq pair \in put(ps,< bit1(s) , pac(next(s)) >) = false . -- successor state eq s' = send1(s) . -- check red istep6 . close --> fifo1(s) = p,ps, ~(p = pair), ~(pair \in ps), --> bit2(s) = fst(p), ~(p = < bit1(s),pac(next(s)) >) open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions eq fifo1(s) = p,ps . eq (p = pair) = false . eq pair \in ps = false . eq bit2(s) = fst(p) . eq (p = < bit1(s),pac(next(s)) >) = false . -- successor state eq s' = send1(s) . -- check red (pair-lemma1(p,< bit1(s),pac(next(s)) >) and inv3(s)) implies istep6 . close --> fifo1(s) = p,ps, ~(p = pair), ~(pair \in ps), --> ~(bit2(s) = fst(p)) open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions eq fifo1(s) = p,ps . eq (p = pair) = false . eq pair \in ps = false . eq (bit2(s) = fst(p)) = false . -- successor state eq s' = send1(s) . -- check red istep6 . close --> 2) rec1(s) --> c-rec1(s) open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions -- eq c-rec1(s) = true . eq fifo2(s) = b,bs . -- successor state eq s' = rec1(s) . -- check red istep6 . close --> ~c-rec1(s) open ISTEP -- arbitrary values -- assumptions eq c-rec1(s) = false . -- successor state eq s' = rec1(s) . -- check red istep6 . close --> 3) send2(s) open ISTEP -- arbitrary values -- assumptions -- successor state eq s' = send2(s) . -- check red istep6 . close --> 4) rec2(s) --> c-rec2(s), ps = empty open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions -- eq c-rec2(s) = true . eq fifo1(s) = p,ps . -- eq ps = empty . -- successor state eq s' = rec2(s) . -- check red istep6 . close --> c-rec2(s), ps = p1,ps1, p1 = pair open ISTEP -- arbitrary values ops p p1 : -> BPPair . ops ps ps1 : -> PFifo . -- assumptions -- eq c-rec2(s) = true . eq fifo1(s) = p,ps . -- eq ps = p1,ps1 . eq p1 = pair . -- successor state eq s' = rec2(s) . -- check red istep6 . close --> c-rec2(s), ps = p1,ps1, ~(p1 = pair), --> ~(pair \in ps1) open ISTEP -- arbitrary values ops p p1 : -> BPPair . ops ps ps1 : -> PFifo . -- assumptions -- eq c-rec2(s) = true . eq fifo1(s) = p,ps . -- eq ps = p1,ps1 . eq (p1 = pair) = false . eq pair \in ps1 = false . -- successor state eq s' = rec2(s) . -- check red istep6 . close --> c-rec2(s), ps = p1,ps1, ~(p1 = pair), --> pair \in ps1, p = pair open ISTEP -- arbitrary values ops p p1 : -> BPPair . ops ps ps1 : -> PFifo . -- assumptions -- eq c-rec2(s) = true . eq fifo1(s) = p,ps . -- eq ps = p1,ps1 . eq (p1 = pair) = false . eq pair \in ps1 = true . eq p = pair . -- successor state eq s' = rec2(s) . -- check red inv9(s,p,p1,pair,empty,ps1) implies istep6 . close --> c-rec2(s), ps = p1,ps1, ~(p1 = pair), --> pair \in ps1, ~(p = pair), p = p1, bit2(s) = fst(p1) open ISTEP -- arbitrary values ops p p1 : -> BPPair . ops ps ps1 : -> PFifo . -- assumptions -- eq c-rec2(s) = true . eq fifo1(s) = p,ps . -- eq ps = p1,ps1 . eq (p1 = pair) = false . eq pair \in ps1 = true . eq (p = pair) = false . eq p = p1 . eq bit2(s) = fst(p1) . -- successor state eq s' = rec2(s) . -- check red istep6 . close --> c-rec2(s), ps = p1,ps1, ~(p1 = pair), --> pair \in ps1, ~(p = pair), p = p1, ~(bit2(s) = fst(p1)) open ISTEP -- arbitrary values ops p p1 : -> BPPair . ops ps ps1 : -> PFifo . -- assumptions -- eq c-rec2(s) = true . eq fifo1(s) = p,ps . -- eq ps = p1,ps1 . eq (p1 = pair) = false . eq pair \in ps1 = true . eq (p = pair) = false . eq p = p1 . eq (bit2(s) = fst(p1)) = false . -- successor state eq s' = rec2(s) . -- check red istep6 . close --> c-rec2(s), ps = p1,ps1, ~(p1 = pair), --> pair \in ps1, ~(p = pair), ~(p = p1) open ISTEP -- arbitrary values ops p p1 : -> BPPair . ops ps ps1 : -> PFifo . -- assumptions -- eq c-rec2(s) = true . eq fifo1(s) = p,ps . -- eq ps = p1,ps1 . eq (p1 = pair) = false . eq pair \in ps1 = true . eq (p = pair) = false . eq (p = p1) = false . -- successor state eq s' = rec2(s) . -- check red inv9(s,p,p1,pair,empty,ps1) implies istep6 . close --> ~c-rec2(s) open ISTEP -- arbitrary values -- assumptions eq c-rec2(s) = false . -- successor state eq s' = rec2(s) . -- check red istep6 . close --> 5) drop1(s) --> c-drop1(s), ps = empty open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions -- eq c-drop1(s) = true . eq fifo1(s) = p,ps . -- eq ps = empty . -- successor state eq s' = drop1(s) . -- check red istep6 . close --> c-drop1(s), ps = p1,ps1, p1 = pair open ISTEP -- arbitrary values ops p p1 : -> BPPair . ops ps ps1 : -> PFifo . -- assumptions -- eq c-drop1(s) = true . eq fifo1(s) = p,ps . -- eq ps = p1,ps1 . -- eq p1 = pair . -- successor state eq s' = drop1(s) . -- check red istep6 . close --> c-drop1(s), ps = p1,ps1, ~(p1 = pair), --> ~(pair \in ps1) open ISTEP -- arbitrary values ops p p1 : -> BPPair . ops ps ps1 : -> PFifo . -- assumptions -- eq c-drop1(s) = true . eq fifo1(s) = p,ps . -- eq ps = p1,ps1 . eq (p1 = pair) = false . eq pair \in ps1 = false . -- successor state eq s' = drop1(s) . -- check red istep6 . close --> c-drop1(s), ps = p1,ps1, ~(p1 = pair), --> pair \in ps1, p = pair open ISTEP -- arbitrary values ops p p1 : -> BPPair . ops ps ps1 : -> PFifo . -- assumptions -- eq c-drop1(s) = true . eq fifo1(s) = p,ps . -- eq ps = p1,ps1 . eq (p1 = pair) = false . eq pair \in ps1 = true . eq p = pair . -- successor state eq s' = drop1(s) . -- check red inv9(s,p,p1,pair,empty,ps1) implies istep6 . close --> c-drop1(s), ps = p1,ps1, ~(p1 = pair), --> pair \in ps1, ~(p = pair), p = p1, bit2(s) = fst(p1) open ISTEP -- arbitrary values ops p p1 : -> BPPair . ops ps ps1 : -> PFifo . -- assumptions -- eq c-drop1(s) = true . eq fifo1(s) = p,ps . -- eq ps = p1,ps1 . eq (p1 = pair) = false . eq pair \in ps1 = true . eq (p = pair) = false . eq p = p1 . eq bit2(s) = fst(p1) . -- successor state eq s' = drop1(s) . -- check red istep6 . close --> c-drop1(s), ps = p1,ps1, ~(p1 = pair), --> pair \in ps1, ~(p = pair), p = p1, ~(bit2(s) = fst(p1)) open ISTEP -- arbitrary values ops p p1 : -> BPPair . ops ps ps1 : -> PFifo . -- assumptions -- eq c-drop1(s) = true . eq fifo1(s) = p,ps . -- eq ps = p1,ps1 . eq (p1 = pair) = false . eq pair \in ps1 = true . eq (p = pair) = false . eq p = p1 . eq (bit2(s) = fst(p1)) = false . -- successor state eq s' = drop1(s) . -- check red istep6 . close --> c-drop1(s), ps = p1,ps1, ~(p1 = pair), --> pair \in ps1, ~(p = pair), ~(p = p1) open ISTEP -- arbitrary values ops p p1 : -> BPPair . ops ps ps1 : -> PFifo . -- assumptions -- eq c-drop1(s) = true . eq fifo1(s) = p,ps . -- eq ps = p1,ps1 . eq (p1 = pair) = false . eq pair \in ps1 = true . eq (p = pair) = false . eq (p = p1) = false . -- successor state eq s' = drop1(s) . -- check red inv9(s,p,p1,pair,empty,ps1) implies istep6 . close --> ~c-drop1(s) open ISTEP -- arbitrary values -- assumptions eq c-drop1(s) = false . -- successor state eq s' = drop1(s) . -- check red istep6 . close --> 6) dup1(s) --> c-dup1(s), pair = p open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions -- eq c-dup1(s) = true . eq fifo1(s) = p,ps . -- eq pair = p . -- successor state eq s' = dup1(s) . -- check red istep6 . close --> c-dup1(s), ~(pair = p) open ISTEP -- arbitrary values op p : -> BPPair . op ps : -> PFifo . -- assumptions -- eq c-dup1(s) = true . eq fifo1(s) = p,ps . -- eq (pair = p) = false . -- successor state eq s' = dup1(s) . -- check red istep6 . close --> ~c-dup1(s) open ISTEP -- arbitrary values -- assumptions eq c-dup1(s) = false . -- successor state eq s' = dup1(s) . -- check red istep6 . close --> 7) drop2(s) --> c-drop2(s) open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions -- eq c-drop2(s) = true . eq fifo2(s) = b,bs . -- successor state eq s' = drop2(s) . -- check red istep6 . close --> ~c-drop2(s) open ISTEP -- arbitrary values -- assumptions eq c-drop2(s) = false . -- successor state eq s' = drop2(s) . -- check red istep6 . close --> 8) dup2(s) --> c-dup2(s) open ISTEP -- arbitrary values op b : -> Bool . op bs : -> BFifo . -- assumptions -- eq c-dup2(s) = true . eq fifo2(s) = b,bs . -- successor state eq s' = dup2(s) . -- check red istep6 . close --> ~c-dup2(s) open ISTEP -- arbitrary values -- assumptions eq c-dup2(s) = false . -- successor state eq s' = dup2(s) . -- check red istep6 . close --> QED