Reasoning by Rewriting

CafeOBJ Team of JAIST

Sinaia School Lecture 3 Reasoning by Rewriting

1 / 39

Topics

- Introduction to the theory of term rewriting systems, which is a basis of the CafeOBJ execution
- How to write CafeOBJ specifications which satisfy two of the most important properties of TRS:
 - Termination
 - Confluence

Overview

- In the first half, we treat simple equational specifications which consist of
 - ordinary operators without any attribute and
 - equations without conditions
- In the last half, we discuss on rewriting for specifications including
 - operators with associative and commutative attributes and
 - conditional equations

Sinaia School Lecture 3 Reasoning by Rewriting 3 / 39

Term rewriting system

Term rewriting system

- The term rewriting system (TRS) gives us an efficient way to prove equations by regarding an equation as a left-to-right rewrite rule
- **Rewriting** is the replacement of a **redex** with the corresponding instance of the rhs
 - A redex is an instance of the lhs of an equation

Sinaia School Lecture 3 Reasoning by Rewriting

5 / 39

Equational reasoning by TRS

- A reduction is a process of rewriting from a given term to a normal form
 - A normal form is a term which cannot be rewritten
- Equational reasoning by TRS is done by reducing both sides of a given equation and comparing their normal forms

Sinaia School Lecture 3 Reasoning by Rewriting

Equational reasoning with EQL

• A built-in module EQL is useful to check joinability of given terms

A special predicate _=_ is defined for all sorts

```
NAT+ + EQL> red 0 + s 0 = s 0 + 0 .
[1]: ((0 + (s 0)) = ((s 0) + 0))
[2]: ((s (0 + 0)) = ((s 0) + 0))
[3]: ((s 0) = ((s 0) + 0))
[4]: ((s 0) = (s 0))
---> true
(true):Bool
```

SOUNDNESS: If s = t is reduced into true, it holds in all models

Sinaia School Lecture 3 Reasoning by Rewriting

7 / 39

Conditions of TRS

- Rewrite rules should satisfy the following conditions on variables
 - Any lhs should not be a variable
 - Such a rule, e.g. n = n + 0, causes an infinite loop

 $\underline{s \ 0} \longrightarrow \underline{s \ 0 + 0} \longrightarrow (s \ 0 + 0) + 0 \longrightarrow \dots$

- Any variable in rhs should appear in lhs
 - By such a rule, e.g. 0 = n * 0, a redex can be rewritten into infinitely many terms

Bad equations ignored

 CafeOBJ system uses only equations satisfying the variable conditions when reducing terms by the reduction command

Sinaia School Lecture 3 Reasoning by Rewriting

9 / 39

Properties of TRS

 TRS achieves only a partial equational reasoning, in general, because equations are directed

- e.g. b = c cannot be proved by TRS {a = b, a = c}

 However, TRS can prove any equation which can be deduced from the axiom E of SP if SP has the termination and confluence properties

Termination

Sinaia School Lecture 3 Reasoning by Rewriting 11 / 39

Definition of Termination

- A specification (a TRS or a set of equations) SP is terminating if and only if there is no infinite rewrite sequence t₀ --> t₁ --> t₂ --> ...
- Termination guarantees that any term has a normal form, and makes us possible to compute a normal form in finite times

Proving termination

- Termination is an undecidable property, i.e. no algorithm can decide termination of term rewriting systems
- Several sufficient conditions for termination have been proposed
- In this presentation, we give one way to write terminating specifications

Sinaia School Lecture 3 Reasoning by Rewriting

13 / 39

Hierarchical design

- A hierarchical design of a specification of an abstract data type SP consists of
 - Module BASIC-SP for functions' domain and range
 - Module SP-F₀ importing BASIC-SP for defining a function F₀
 - Module SP-F_{i+1} importing SP-F_i for defining a function F_{i+1} which is defined using a function F_k (k < i + 1)

BASIC-SP

- An operator in BASIC-SP is called a constructor
- Constructor terms denote elements of the domain
 - A constructor term is a term consisting of only constructors

Sinaia School Lecture 3 Reasoning by Rewriting

15 / 39

- SP- F_0 consists of a protecting import of BASIC-SP, an operator F_0 , and equations defining F_0
- Each rhs should be constructed from **variables**, constructors, and recursive calls
 - F(.,t,.) is a recursive call of F(.,t',.) iff t is a subterm of t'

```
mod! NAT+ {
  pr(BASIC-NAT)
  op _+_ : Nat Nat -> Nat
  vars M N : Nat
  eq N + 0 = N .
  eq M + s N = s (M + N) .
}
```

- SP-F_{i+1} consists of a protecting import of SP-F_i, an operator F_{i+1}, and equations defining F_{i+1}
- Each rhs should be constructed from variables, constructors, pre-defined functions F_k (k < i + 1), and recursive calls

```
mod! NAT* {
  pr(NAT+)
  op _*_ : Nat Nat -> Nat
  vars M N : Nat
  eq N * 0 = 0 .
  eq M * s N = M + (M * N).
}
```

```
mod! NAT-FACT {
    pr(NAT*)
    op fact_ : Nat -> Nat
    vars M N : Nat
    eq fact 0 = s 0 .
    eq fact (s N) = s N * (fact N) .
}
```

Sinaia School Lecture 3 Reasoning by Rewriting

17 / 39

Recursive Path Order

- RPO is one of the most famous classic termination proof techniques
 - By RPO, we can prove termination of specifications described according to the hierarchical design
- For a specification beyond the hierarchical design, you may find useful termination provers on Internet: AProVE, CiME, TTT, etc

Confluence

Sinaia School Lecture 3 Reasoning by Rewriting 19 / 39

Definition of Confluence

- SP is confluent iff all divided terms are joinable,
 i.e., if s -->* t and s -->* t' then t -->* u
 and t' -->* u for some u
 - -->* denotes zero or many rewrite steps

Termination and Confluence

- Confluence guarantees that a normal form is unique for any term
- Thus, for a terminating and confluent SP, any term has the unique normal form
- We obtain complete equational reasoning:
 - Reduce both sides of a given equation
 - Compare their normal forms
 - The equation is deducible from the axiom if they are same
 - It is not deducible if they are not

Sinaia School Lecture 3 Reasoning by Rewriting 21 / 39

Branch

- It is trivial that SP without any branch is confluence
- Unfortunately, such a SP is rare because an operator with more than one arities can include more than one redexs

- (Assume a --> b) $f(b, a) \leftarrow f(\underline{a}, \underline{a}) \rightarrow f(a, b)$

• Fortunately, such branches can be recovered by rewriting redexs of each other rewrite

- $f(b, \underline{a}) \longrightarrow f(b, b) <-- f(\underline{a}, b)$

• What branches are troublesome?

Overlap

- Terms overlap iff a one's instance is an instance of the other's non-variable subterm
 - -(X + Y) + Z is an instance of X + Y of first(X + Y)
 - A branch resulting from an overlap may not be recovered because a redex may disappear

Overlapping rewrite rules

- · Rewrite rules overlap if their lhss overlap
- SP overlaps if there are overlapping rewrite rules
 - You can take two copies of one rewrite rule to check an overlap. For such cases, the overlap at the root position should be ignored
 - e.g. a rewrite rule ~ ~ x = x overlaps itself because
 ~ x is an instance of a subterm ~ x
- A unifier of two overlapping terms (s, t) is an instance of s which has a t's instance

- e.g. ~ ~ ~ o is a unifier of (~ ~ x, ~ ~ x)

Critical Pair

• The most general unifier of overlapping rewrite rules has two direct descendant. Such a pair is called a critical pair

BOOL-NOT
eq ~
$$\sim$$
 X = X .
eq ~ 0 = 1 .
eq ~ 1 = 0 .

- The m.g.u. of ~ ~ \mathbf{x} and ~ 0 is ~ ~ 0
- The CP of them is (0, ~1) because ~ ~ 0 --> 0 by the 1st rule and ~ ~ 0 --> ~ 1 by the 2nd rule

Sinaia School Lecture 3 Reasoning by Rewriting 25 / 39

Sufficient condition of Confluence

 Theorem (Knuth and Bendix 1970): If SP is terminating and all critical pairs are joinable, then SP is confluent

- вооц-мот has three CPs: (0, ~1), (1, ~0) and (~ X, ~X), and all those CPs are joinable, thus, it is confluent

Conditional Equations

Sinaia School Lecture 3 Reasoning by Rewriting 27 / 39

Conditional equations

- CafeOBJ allows us to write a condition for an equation
 - A condition is a term of Boolean sort Bool
 - CafeOBJ modules import a built-in Boolean module
 BOOL implicitly, thus, you can use Boolean operators
 to write equations

Reduction by conditional equations

 A conditional equation is applied when the condition part is reduced into true

NAT-EVEN> red even s 0 . reduce in NAT-EVEN : (even (s 0)):Bool	
<pre>1>[1] apply trial #1 rule: ceq (even (s N:Nat)) = false if (even N) { N:Nat -> 0 }</pre>	Try to apply the cond. equation
<pre>2>[1] rule: eq (even 0) = true {} 2<[1] (even 0)> true</pre>	The condition part is reduced into true
<pre>1>[2] match success #1 1<[2] (even (s 0))> false</pre>	Apply the equation part
(false):Bool	

Sinaia School Lecture 3 Reasoning by Rewriting

Termination of conditional equations

• To obtain a terminating conditional SP, not only rhs but a condition part should also be cared

```
INFINITE> red f(X:Elt) .
-- reduce in INFINITE : (f(X)):Bool
[Warning]:
Infinite loop? Evaluation of condition nests too deep,
terminates rewriting: f(X:Elt)
INFINITE>
```

29/39

Confluence of conditional equations

 In most cases, conditional SPs overlap because conditions are used to write case-splitting of a same pattern

- For confluence, each condition of a pattern should be separated from each other, i.e., if one is true, then the others should be false, for example,
 - P(X), not P(X)
 - X < 5, ((5 <= X and X < 10), 10 <= X

Sinaia School Lecture 3 Reasoning by Rewriting 31 / 39

Associative Commutative Operators

Associative Commutative operators

- Equations of Associativity and Commutativity may cause non-termination and non-confluence
- They are recommended to be specified as operators attributes

- You do not need bracket for associative operators
- eq N + 0 = N can be applied to (N + 0) since + is commutative.

```
NAT+AC> red 0 + (N:Nat) + 0 .
N:Nat
```

```
33 / 39
```

Specification of bags (multi-sets)

From the subsort relation [Elt < ваg] and the associative operator (__), a sequence of Elt is a term of ваg

c in (a b c) = c in (a (c b)) = c in ((c b) a) = c in (c (b a) = true

AC Rewriting

 One step AC (or A or C) Rewriting, denoted by -->_{ac}, is defined as the composition (=_{AC} o -->)

c in (a b c)
$$=_c$$
 c in (a (c b))
 $=_c$ c in ((c b) a)
 $=_A$ c in (c (b a)
 $-->$ true

When applying a rewrite rule to a term with AC operators, first compute all AC equivalent terms (it is finite), and if there is a redex, then rewrite it

a (b c), (a b) c, a (c b), (a c) b, b (a c), (b a) c, b (c a), (b c) a, c (a b), (c a) b, c (b a), (c b) a

Sinaia School Lecture 3 Reasoning by Rewriting

35 / 39

Termination of AC Rewriting

• Even if SP is terminating, adding AC attribute to some operator makes it non-terminating

```
BAG2
[Elt < Bag]
ops 0 1 : -> Elt
op _ _ : Bag Bag -> Bag { assoc comm }
var E : Elt
eq (E E) = 0 1 .
```

36 / 39

Confluence of AC Rewriting

• Even if SP is confluent, adding AC attribute to some operator makes it non-confluent

begin-with-0(0 1) =_c begin-with-0(1 0) --> false

Sinaia School Lecture 3 Reasoning by Rewriting

37 / 39

Summary

- For a given equation, [Reducible by rewriting] =>
 [Deducible from E] => [Satisfied by any model], however,
 - The opposite is not true in general
 - Reducible <=> Deducible holds when it is terminating and confluent
- To obtain a terminating SP, describe it according to the hierarchical design with recursive definition
- To obtain a confluence SP, check all critical pairs are joinable

References

- F. Baader and T.Nipkow, **Term Rewriting and all that**, Cambridge Univ. Press, 1998.
 - Introduction to TRS: Termination, Confluence
- E.Ohlebusch, Advanced topics in Term Rewriting, Springer, 2002.
 - + Conditional TRS, Modularity
- Terese, **Term Rewriting systems**, Cambridge Univ. Press, 2003.
 - + Strategy, Higher-order rewriting
- AProVE : <u>http://aprove.informatik.rwth-aachen.de/</u>
 - System for automated termination, supports Conditional TRS, AC-TRS, etc

Sinaia School Lecture 3 Reasoning by Rewriting

39 / 39

Extra topic

Sufficient completeness

Sufficient completeness

 A function f is sufficiently complete if and only if for any constructors arguments t₁,...,t_n, the term f(t₁,...,t_n) is equivalent to some constructor term t

- That is, $f(t_1,...,t_n) = t$ can be deduced from the axiom

(s 0) + 0 is un-defined

Sinaia School Lecture 4 Verification with Induction

41 / 39

Sufficient condition of sufficient completeness

- SP is sufficiently complete if
 - SP is terminating, and
 - All function operators are reducible, that is, for any ground (variable-free) term which includes a function operator, it is reducible (= a redex exists)
 - E.g. s (s (0 + (0 + s 0)))

 $\begin{array}{c} \text{NAT+} \\ \text{eq N + 0 = N} \\ \text{eq M + s N = s (M + N)} \\ \end{array}$

- Because of the 1st condition each term has its normal form, and
- Because of the 2nd condition each normal form is constructed by constructors only

Into one module

- If all functions are defined sufficiently complete, they can be written into one module without changing its denotation
 - Actually, specifications of data types are often described in one module including constructors and functions together

```
mod! NAT-fact{
  [Zero NzNat < Nat]
  op 0 : -> Zero {constr}
  op s_ : Nat -> NzNat {constr}
  op _+_ : Nat Nat -> Nat
  op fact_ : Nat -> Nat
        Sinaia School Lee
        Sinaia School Lee
        mod! NAT-fact{
        [Zero NzNat < Nat]
        vars M N : Nat
        eq N + 0 = N .
        eq M + s N = s(M + N) .
        eq M * s N = (M * N) + M .
        eq fact 0 = s 0 .
        eq fact (s N) = (s N) * (fact N) .
    }
</pre>
```