
Sinaia School Lecture 3 Reasoning by Rewriting 1 / 39

Reasoning by Rewriting

CafeOBJ Team of JAIST

Sinaia School Lecture 3 Reasoning by Rewriting 2 / 39

Topics

•! Introduction to the theory of term rewriting

systems, which is a basis of the CafeOBJ

execution

•! How to write CafeOBJ specifications which

satisfy two of the most important properties of

TRS:

–!Termination

–!Confluence

Sinaia School Lecture 3 Reasoning by Rewriting 3 / 39

Overview

•! In the first half, we treat simple equational

specifications which consist of

–!ordinary operators without any attribute and

–!equations without conditions

•! In the last half, we discuss on rewriting for

specifications including

–!operators with associative and commutative attributes

and

–!conditional equations

Sinaia School Lecture 3 Reasoning by Rewriting 4 / 39

Term rewriting system

Sinaia School Lecture 3 Reasoning by Rewriting 5 / 39

Term rewriting system

•! The term rewriting system (TRS) gives us an

efficient way to prove equations by regarding an

equation as a left-to-right rewrite rule

•! Rewriting is the replacement of a redex with the

corresponding instance of the rhs

–!A redex is an instance of the lhs of an equation

–! e.g.

 eq N + 0 = N .

 eq M + s N = s (M + N) .

NAT+

s (0 + s 0) --> s (s (0 + 0))

Sinaia School Lecture 3 Reasoning by Rewriting 6 / 39

Equational reasoning by TRS

•! A reduction is a process of rewriting from a given

term to a normal form

–!A normal form is a term which cannot be rewritten

•! Equational reasoning by TRS is done by

reducing both sides of a given equation and

comparing their normal forms

 eq N + 0 = N .

 eq M + s N = s (M + N) .

NAT+

0 + s 0 --> s (0 + 0) --> --> s 0

s 0 + 0 --> s 0

Sinaia School Lecture 3 Reasoning by Rewriting 7 / 39

Equational reasoning with EQL

•! A built-in module EQL is useful to check

joinability of given terms

A special predicate _=_ is defined for all sorts

NAT+ + EQL> red 0 + s 0 = s 0 + 0 .

[1]: ((0 + (s 0)) = ((s 0) + 0))

[2]: ((s (0 + 0)) = ((s 0) + 0))

[3]: ((s 0) = ((s 0) + 0))

[4]: ((s 0) = (s 0))

---> true

(true):Bool

SOUNDNESS:

If s = t is reduced into true, it holds in all models

Sinaia School Lecture 3 Reasoning by Rewriting 8 / 39

Conditions of TRS

•! Rewrite rules should satisfy the following

conditions on variables

–!Any lhs should not be a variable

•! Such a rule, e.g. N = N + 0, causes an infinite loop

–!Any variable in rhs should appear in lhs

•! By such a rule, e.g. 0 = N * 0, a redex can be rewritten into

infinitely many terms

s 0 --> s 0 + 0 --> (s 0 + 0) + 0 --> ...

0 --> 0 * 0

0 --> s 0 * 0 ...

Sinaia School Lecture 3 Reasoning by Rewriting 9 / 39

Bad equations ignored

•! CafeOBJ system uses only equations satisfying

the variable conditions when reducing terms by

the reduction command

Sinaia School Lecture 3 Reasoning by Rewriting 10 / 39

Properties of TRS

•! TRS achieves only a partial equational

reasoning, in general, because equations are

directed

–!e.g. b = c cannot be proved by TRS {a = b, a = c}

•! However, TRS can prove any equation which

can be deduced from the axiom E of SP

if SP has the termination and confluence

properties

Sinaia School Lecture 3 Reasoning by Rewriting 11 / 39

Termination

Sinaia School Lecture 3 Reasoning by Rewriting 12 / 39

Definition of Termination

•! A specification (a TRS or a set of equations) SP

is terminating if and only if there is no infinite

rewrite sequence t0 --> t1 --> t2 --> ...

•! Termination guarantees that any term has a

normal form, and makes us possible to compute

a normal form in finite times

 eq X + Y = Y + X .
NAT-COM

s 0 + 0 --> 0 + s 0 --> s 0 + 0 --> ...

Sinaia School Lecture 3 Reasoning by Rewriting 13 / 39

Proving termination

•! Termination is an undecidable property, i.e. no

algorithm can decide termination of term

rewriting systems

•! Several sufficient conditions for termination have

been proposed

•! In this presentation, we give one way to write

terminating specifications

Sinaia School Lecture 3 Reasoning by Rewriting 14 / 39

Hierarchical design

•! A hierarchical design of a

specification of an abstract data

type SP consists of
–! Module BASIC-SP for functions’ domain

and range

–! Module SP-F0 importing BASIC-SP for
defining a function F0

–! Module SP-Fi+1 importing SP-Fi for defining

a function Fi+1 which is defined using a

function Fk (k < i + 1)

mod! NAT+ {

 ...

}

mod! BASIC-NAT {

 ...

}

mod! NAT* {

 ...

}

Sinaia School Lecture 3 Reasoning by Rewriting 15 / 39

BASIC-SP

•! An operator in BASIC-SP is called a constructor

•! Constructor terms denote elements of the

domain

–!A constructor term is a term consisting of only

constructors

mod! BASIC-NAT {

 [Zero NzNat < Nat]

 op 0 : -> Zero

 op s_ : Nat -> NzNat

}

0, s 0, s s 0, s s s 0, ...

Sinaia School Lecture 3 Reasoning by Rewriting 16 / 39

SP-F0

•! SP-F0 consists of a protecting import of BASIC-

SP, an operator F0, and equations defining F0

•! Each rhs should be constructed from variables,

constructors, and recursive calls

–!F(.,t,.) is a recursive call of F(.,t’,.) iff t is a subterm of t’

mod! NAT+ {

 pr(BASIC-NAT)

 op _+_ : Nat Nat -> Nat

 vars M N : Nat

 eq N + 0 = N .

 eq M + s N = s (M + N) .

}

Sinaia School Lecture 3 Reasoning by Rewriting 17 / 39

SP-Fi+1

•! SP-Fi+1 consists of a protecting import of SP-Fi, an

operator Fi+1, and equations defining Fi+1

•! Each rhs should be constructed from variables,

constructors, pre-defined functions Fk (k < i + 1),

and recursive calls

mod! NAT* {

 pr(NAT+)

 op _*_ : Nat Nat -> Nat

 vars M N : Nat

 eq N * 0 = 0 .

 eq M * s N = M + (M * N).

}

mod! NAT-FACT {

 pr(NAT*)

 op fact_ : Nat -> Nat

 vars M N : Nat

 eq fact 0 = s 0 .

 eq fact (s N) = s N * (fact N) .

}

Sinaia School Lecture 3 Reasoning by Rewriting 18 / 39

Recursive Path Order

•! RPO is one of the most famous classic

termination proof techniques

–!By RPO, we can prove termination of specifications

described according to the hierarchical design

•! For a specification beyond the hierarchical

design, you may find useful termination provers

on Internet: AProVE, CiME, TTT, etc

Sinaia School Lecture 3 Reasoning by Rewriting 19 / 39

Confluence

Sinaia School Lecture 3 Reasoning by Rewriting 20 / 39

Definition of Confluence

•! SP is confluent iff all divided terms are joinable,

i.e., if s -->* t and s -->* t’ then t -->* u

and t’ -->* u for some u
–! -->* denotes zero or many rewrite steps

* *

* *

s

t t’

u

 eq (X + Y) + Z = X +(Y + Z) .

 eq first(X + Y) = X .

NAT-ASSOC

first((0 + s 0) + s s 0) --> 0 + s 0

first((0 + s 0) + s s 0)

--> first(0 + (s 0 + s s 0)) --> 0

Sinaia School Lecture 3 Reasoning by Rewriting 21 / 39

Termination and Confluence

•! Confluence guarantees that a normal form is

unique for any term

•! Thus, for a terminating and confluent SP, any

term has the unique normal form

•! We obtain complete equational reasoning:

–!Reduce both sides of a given equation

–!Compare their normal forms

•! The equation is deducible from the axiom if they are same

•! It is not deducible if they are not

Sinaia School Lecture 3 Reasoning by Rewriting 22 / 39

Branch

•! It is trivial that SP without any branch is confluence

•! Unfortunately, such a SP is rare because an operator

with more than one arities can include more than one

redexs

–! (Assume a --> b) f(b, a) <-- f(a, a) --> f(a, b)

•! Fortunately, such branches can be recovered by

rewriting redexs of each other rewrite

–! f(b, a) --> f(b, b) <-- f(a, b)

•! What branches are troublesome?

Sinaia School Lecture 3 Reasoning by Rewriting 23 / 39

Overlap

•! Terms overlap iff a one’s instance is an instance

of the other’s non-variable subterm

–! (X + Y) + Z is an instance of X + Y of first(X + Y)

–!A branch resulting from an overlap may not be

recovered because a redex may disappear

 eq (X + Y) + Z = X +(Y + Z) .

 eq first(X + Y) = X .

NAT-ASSOC

first((0 + s 0) + s s 0) --> 0 + s 0

first((0 + s 0) + s s 0)

--> first(0 + (s 0 + s s 0)) --> 0

Sinaia School Lecture 3 Reasoning by Rewriting 24 / 39

Overlapping rewrite rules

•! Rewrite rules overlap if their lhss overlap

•! SP overlaps if there are overlapping rewrite rules

–!You can take two copies of one rewrite rule to check
an overlap. For such cases, the overlap at the root
position should be ignored

–!e.g. a rewrite rule ~ ~ X = X overlaps itself because
~ ~ X is an instance of a subterm ~ X

•! A unifier of two overlapping terms (s, t) is an
instance of s which has a t’s instance
–!e.g. ~ ~ ~ 0 is a unifier of (~ ~ X, ~ ~ X)

Sinaia School Lecture 3 Reasoning by Rewriting 25 / 39

Critical Pair

•! The most general unifier of overlapping rewrite

rules has two direct descendant. Such a pair is

called a critical pair

–!The m.g.u. of ~ ~ X and ~ 0 is ~ ~ 0

–!The CP of them is (0, ~1) because ~ ~ 0 --> 0 by

the 1st rule and ~ ~ 0 --> ~ 1 by the 2nd rule

 eq ~ ~ X = X .

 eq ~ 0 = 1 .

 eq ~ 1 = 0 .

BOOL-NOT

Sinaia School Lecture 3 Reasoning by Rewriting 26 / 39

Sufficient condition of Confluence

•! Theorem (Knuth and Bendix 1970): If SP is

terminating and all critical pairs are joinable, then

SP is confluent

–! BOOL-NOT has three CPs: (0, ~1), (1, ~0) and (~ X, ~X), and

all those CPs are joinable, thus, it is confluent

 eq ~ ~ X = X .

 eq ~ 0 = 1 .

 eq ~ 1 = 0 .

BOOL-NOT

Sinaia School Lecture 3 Reasoning by Rewriting 27 / 39

Conditional Equations

Sinaia School Lecture 3 Reasoning by Rewriting 28 / 39

Conditional equations

•! CafeOBJ allows us to write a condition for an

equation

–!A condition is a term of Boolean sort Bool

–!CafeOBJ modules import a built-in Boolean module

BOOL implicitly, thus, you can use Boolean operators

to write equations

 eq even 0 = true .

 ceq even(s N) = false if even N .

 ceq even(s N) = true if not (even N) .

NAT-EVEN

Sinaia School Lecture 3 Reasoning by Rewriting 29 / 39

Reduction by conditional equations

•! A conditional equation is applied when the

condition part is reduced into true

NAT-EVEN> red even s 0 .

-- reduce in NAT-EVEN : (even (s 0)):Bool

1>[1] apply trial #1

-- rule: ceq (even (s N:Nat)) = false if (even N)

 { N:Nat |-> 0 }

2>[1] rule: eq (even 0) = true

 {}

2<[1] (even 0) --> true

1>[2] match success #1

1<[2] (even (s 0)) --> false

(false):Bool

Try to apply

the cond. equation

The condition part is

reduced into true

Apply the equation part

Sinaia School Lecture 3 Reasoning by Rewriting 30 / 39

Termination of conditional equations

•! To obtain a terminating conditional SP, not only

rhs but a condition part should also be cared

 ceq even(s N) = false if even N .

 ceq even(s N) = true if not (even N) .

NAT-EVEN

 ceq f(X) = true if f(X) .
INFINITE

INFINITE> red f(X:Elt) .

-- reduce in INFINITE : (f(X)):Bool

[Warning]:

Infinite loop? Evaluation of condition nests too deep,

terminates rewriting: f(X:Elt)

INFINITE>

Sinaia School Lecture 3 Reasoning by Rewriting 31 / 39

Confluence of conditional equations

•! In most cases, conditional SPs overlap because
conditions are used to write case-splitting of a
same pattern

–!For confluence, each condition of a pattern should be
separated from each other, i.e., if one is true, then the
others should be false, for example,

•! P(X), not P(X)

•! X < 5, ((5 <= X and X < 10), 10 <= X

 ceq even(s N) = false if even N .

 ceq even(s N) = true if not (even N) .

NAT-EVEN

Sinaia School Lecture 3 Reasoning by Rewriting 32 / 39

Associative Commutative Operators

Sinaia School Lecture 3 Reasoning by Rewriting 33 / 39

Associative Commutative operators

•! Equations of Associativity and Commutativity may cause

non-termination and non-confluence

•! They are recommended to be specified as operators

attributes

 op _+_ : Nat Nat -> Nat { assoc comm }

NAT+AC

 eq X + Y = Y + X .

 eq (X + Y) + Z = X + (Y + Z) .

- You do not need bracket for associative operators

- eq N + 0 = N can be applied to (N + 0) since + is commutative.

NAT+AC> red 0 + (N:Nat) + 0 .

N:Nat

Sinaia School Lecture 3 Reasoning by Rewriting 34 / 39

Specification of bags (multi-sets)

•! From the subsort relation [Elt < Bag] and the associative

operator (_ _), a sequence of Elt is a term of Bag

 [Elt < Bag]

 ops a b c : -> Elt

 op _ _ : Bag Bag -> Bag { assoc comm }

 op _in_ : Elt Bag -> Bool

 var E : Elt var B : Bag

 eq E in (E B) = true .

BAG

c in (a b c) = c in (a (c b))

 = c in ((c b) a)

 = c in (c (b a)

 = true

Sinaia School Lecture 3 Reasoning by Rewriting 35 / 39

AC Rewriting

•! One step AC (or A or C) Rewriting, denoted by

-->AC, is defined as the composition (=AC o -->)

c in (a b c) =C c in (a (c b))

 =C c in ((c b) a)

 =A c in (c (b a)

 --> true

When applying a rewrite rule to a term with AC operators,

first compute all AC equivalent terms (it is finite), and if there

is a redex, then rewrite it

a (b c), (a b) c, a (c b), (a c) b, b (a c), (b a) c, b (c a), (b c) a,

c (a b), (c a) b, c (b a), (c b) a

Sinaia School Lecture 3 Reasoning by Rewriting 36 / 39

Termination of AC Rewriting

•! Even if SP is terminating, adding AC attribute to

some operator makes it non-terminating

 [Elt < Bag]

 ops 0 1 : -> Elt

 op _ _ : Bag Bag -> Bag { assoc comm }

 var E : Elt

 eq (E E) = 0 1 .

BAG2

0 (0 1) =A (0 0) 1

 --> (0 1) 1

 =A 0 (1 1)

 --> 0 (0 1) ...

Sinaia School Lecture 3 Reasoning by Rewriting 37 / 39

Confluence of AC Rewriting

•! Even if SP is confluent, adding AC attribute to

some operator makes it non-confluent

 ops 0 1 : -> Elt

 op begin-with-0 : Bag -> Bool

 op _ _ : Bag Bag -> Bag { assoc comm }

 var B : Bag

 eq begin-with-0(0 B) = true .

 eq begin-with-0(1 B) = false .

BAG3

begin-with-0(0 1) --> true

begin-with-0(0 1) =C begin-with-0(1 0) --> false

Sinaia School Lecture 3 Reasoning by Rewriting 38 / 39

Summary

•! For a given equation, [Reducible by rewriting] =>

[Deducible from E] => [Satisfied by any model], however,

–!The opposite is not true in general

–!Reducible <=> Deducible holds when it is terminating

and confluent

•! To obtain a terminating SP, describe it according to the

hierarchical design with recursive definition

•! To obtain a confluence SP, check all critical pairs are

joinable

Sinaia School Lecture 3 Reasoning by Rewriting 39 / 39

References

•! F. Baader and T.Nipkow, Term Rewriting and all that,

Cambridge Univ. Press, 1998.

–! Introduction to TRS: Termination, Confluence

•! E.Ohlebusch, Advanced topics in Term Rewriting,

Springer, 2002.

–! + Conditional TRS, Modularity

•! Terese, Term Rewriting systems, Cambridge Univ.

Press, 2003.

–! + Strategy, Higher-order rewriting

•! AProVE : http://aprove.informatik.rwth-aachen.de/

–! System for automated termination, supports Conditional TRS,

AC-TRS, etc

Extra topic!

•! Sufficient completeness

Sinaia School Lecture 3 Reasoning by Rewriting 40 / 39

Sufficient completeness!

•! A function f is sufficiently complete if and only

if for any constructors arguments t1,…,tn, the

term f(t1,…,tn) is equivalent to some constructor

term t

–!That is, f(t1,…,tn) = t can be deduced from the axiom !

Sinaia School Lecture 4 Verification with Induction !" / 39

 eq N + 0 = N .

 eq M + s N = s (M + N) .

NAT+
 eq 0 + N = N .

 eq M + s N = s (M + N) .

NAT+x

(s 0) + 0 is un-defined!

Sufficient condition of sufficient

completeness!

•! SP is sufficiently complete if

–!SP is terminating, and

–!All function operators are reducible, that is, for any

ground (variable-free) term which includes a function

operator, it is reducible (= a redex exists)

–!E.g. s (s (0 + (0 + s 0)))

–!Because of the 1st condition each term has its normal

form, and

–!Because of the 2nd condition each normal form is

constructed by constructors only
Sinaia School Lecture 3 Reasoning by Rewriting 42 / 39

 eq N + 0 = N .

 eq M + s N = s (M + N) .

NAT+

Into one module!

•! If all functions are defined sufficiently complete,

they can be written into one module without

changing its denotation

–!Actually, specifications of data types are often

described in one module including constructors and

functions together!

Sinaia School Lecture 4 Verification with Induction !# / 39

mod! NAT-fact{

 [Zero NzNat < Nat]

 op 0 : -> Zero {constr}

 op s_ : Nat -> NzNat {constr}

 op _+_ : Nat Nat -> Nat

 op _*_ : Nat Nat -> Nat

 op fact_ : Nat -> Nat

vars M N : Nat

 eq N + 0 = N .

 eq M + s N = s(M + N) .

 eq N * 0 = 0 .

 eq M * s N = (M * N) + M .

 eq fact 0 = s 0 .

 eq fact (s N) = (s N) * (fact N) .

}

Sinaia School Lecture 3 Reasoning by Rewriting 44 / 39

