Reasoning by Rewriting

CafeOBJ Team of JAIST

Topics

- Introduction to the theory of term rewriting systems, which is a basis of the CafeOBJ execution
- How to write CafeOBJ specifications which satisfy two of the most important properties of TRS:
- Termination
- Confluence

Overview

- In the first half, we treat simple equational specifications which consist of
- ordinary operators without any attribute and
- equations without conditions
- In the last half, we discuss on rewriting for specifications including
- operators with associative and commutative attributes and
- conditional equations

Term rewriting system

Term rewriting system

- The term rewriting system (TRS) gives us an efficient way to prove equations by regarding an equation as a left-to-right rewrite rule
- Rewriting is the replacement of a redex with the corresponding instance of the rhs
- A redex is an instance of the lhs of an equation
- e.g. \square
$s(0+s 0)-->s(s(0+0))$

Equational reasoning by TRS

- A reduction is a process of rewriting from a given term to a normal form
- A normal form is a term which cannot be rewritten
- Equational reasoning by TRS is done by reducing both sides of a given equation and comparing their normal forms

```
0+s 0 --> s (0 + 0) --> --> s 0
s 0+0 --> s 0
```


Equational reasoning with EQL

- A built-in module EQL is useful to check joinability of given terms

A special predicate _=_ is defined for all sorts

```
NAT+ + EQL> red 0 + s 0 = s 0 + 0.
[1]: ((0 + (s 0)) = ((s 0) + 0))
[2]: ((s (0 + 0)) = ((s 0) + 0))
[3]: ((s 0) = ((s 0) + 0))
[4]: ((s 0) = (s 0))
---> true
(true):Bool
```

SOUNDNESS:
If $s=t$ is reduced into true, it holds in all models

Conditions of TRS

- Rewrite rules should satisfy the following conditions on variables
- Any lhs should not be a variable
- Such a rule, e.g. $\mathrm{N}=\mathrm{N}+0$, causes an infinite loop

$$
\underline{s} 0-->\underline{s} 0+0-->(s \quad 0+0)+0-->\ldots
$$

- Any variable in rhs should appear in lhs
- By such a rule, e.g. $0=\mathrm{n}$ * 0, a redex can be rewritten into infinitely many terms

```
0 --> 0 * 0
0 --> s 0 * 0 ...
```


Bad equations ignored

- CafeOBJ system uses only equations satisfying the variable conditions when reducing terms by the reduction command

Properties of TRS

- TRS achieves only a partial equational reasoning, in general, because equations are directed
- e.g. b = c cannot be proved by $\operatorname{TRS}\{a=b, a=c\}$
- However, TRS can prove any equation which can be deduced from the axiom E of SP if SP has the termination and confluence properties

Termination

Definition of Termination

- A specification (a TRS or a set of equations) SP is terminating if and only if there is no infinite rewrite sequence $t_{0}-->t_{1}-->t_{2}$--> ...
- Termination guarantees that any term has a normal form, and makes us possible to compute a normal form in finite times

Proving termination

- Termination is an undecidable property, i.e. no algorithm can decide termination of term rewriting systems
- Several sufficient conditions for termination have been proposed
- In this presentation, we give one way to write terminating specifications

Hierarchical design

- A hierarchical design of a specification of an abstract data type SP consists of
- Module BASIC-SP for functions' domain and range
- Module SP-F ${ }_{0}$ importing BASIC-SP for defining a function F_{0}
- Module SP- $\mathrm{F}_{\mathrm{i}+1}$ importing SP- F_{i} for defining a function F_{i+1} which is defined using a function $F_{k}(k<i+1)$

BASIC-SP

- An operator in BASIC-SP is called a constructor
- Constructor terms denote elements of the domain
- A constructor term is a term consisting of only constructors

```
mod! BASIC-NAT {
    [Zero NzNat < Nat]
    op 0 : -> Zero
    op s_ : Nat -> NzNat
}
```

$0, \quad s \quad 0, \quad s \quad s \quad 0, \quad s \quad s \quad s \quad 0, \ldots$

SP-F0

- $\mathrm{SP}-\mathrm{F}_{0}$ consists of a protecting import of BASIC$S P$, an operator F_{0}, and equations defining F_{0}
- Each rhs should be constructed from variables, constructors, and recursive calls
$-F(., t,$.$) is a recursive call of F\left(., t^{\prime},.\right)$ iff t is a subterm of t^{\prime}

```
mod! NAT+ {
    pr(BASIC-NAT)
    op_+_ : Nat Nat -> Nat
    vars M N : Nat
    eq N + O = N .
    eq M + s N = s (M + N)
}
```


$S P-F_{i+1}$

- $S P-F_{i+1}$ consists of a protecting import of $S P-F_{i}$, an operator F_{i+1}, and equations defining F_{i+1}
- Each rhs should be constructed from variables, constructors, pre-defined functions $F_{k}(k<i+1)$, and recursive calls

```
mod! NAT*
    pr(NAT+)
    op _*_ : Nat Nat -> Nat
    vars M N : Nat
    eq N * 0 = 0.
    eq M*s N = M + (M*N).
}
```

```
mod! NAT-FACT {
    pr(NAT*)
    op fact_ : Nat -> Nat
    vars M N : Nat
    eq fact 0 = s 0 .
    eq fact (s N) = s N * (fact N)
```

\}

Recursive Path Order

- RPO is one of the most famous classic termination proof techniques
- By RPO, we can prove termination of specifications described according to the hierarchical design
- For a specification beyond the hierarchical design, you may find useful termination provers on Internet: AProVE, CiME, TTT, etc

Confluence

Definition of Confluence

- SP is confluent iff all divided terms are joinable, i.e., if $s-->* t$ and $s ~-->* ~ t h e n t ~-->* ~ u$ and t^{\prime}-->* u for some u
- -->* denotes zero or many rewrite steps


```
first((0 + s 0) + s s 0) --> 0 + s 0
first((0 + s 0) + s s 0)
--> first(0+(s 0 + s s 0)) --> 0
```


Termination and Confluence

- Confluence guarantees that a normal form is unique for any term
- Thus, for a terminating and confluent SP, any term has the unique normal form
- We obtain complete equational reasoning:
- Reduce both sides of a given equation
- Compare their normal forms
- The equation is deducible from the axiom if they are same
- It is not deducible if they are not

Branch

- It is trivial that SP without any branch is confluence
- Unfortunately, such a SP is rare because an operator with more than one arities can include more than one redexs
- (Assume $a-->b) f(b, a)<--f(\underline{a}, \underline{a}) \quad-->f(a, b)$
- Fortunately, such branches can be recovered by rewriting redexs of each other rewrite
- $f(b$,
a) $-->f(b$,
b) <-- f(a, b)
- What branches are troublesome?

Overlap

- Terms overlap iff a one's instance is an instance of the other's non-variable subterm
$-(X+Y)+Z$ is an instance of $X+Y$ of first $(X+Y)$
- A branch resulting from an overlap may not be recovered because a redex may disappear


```
first((0 + s 0) + s s 0) --> 0 + s 0
first((0 + s 0) + s s 0)
--> first(0 + (s 0 + s s 0)) --> 0
```

Sinaia School Lecture 3 Reasoning by Rewriting

Overlapping rewrite rules

- Rewrite rules overlap if their Ihss overlap
- SP overlaps if there are overlapping rewrite rules
- You can take two copies of one rewrite rule to check an overlap. For such cases, the overlap at the root position should be ignored
- e.g. a rewrite rule $\sim \sim x=x$ overlaps itself because $\sim \sim x$ is an instance of a subterm $\sim x$
- A unifier of two overlapping terms (s, t) is an instance of s which has a t's instance
- e.g. $\sim \sim \sim 0$ is a unifier of $(\sim \sim x, \sim \sim x)$

Critical Pair

- The most general unifier of overlapping rewrite rules has two direct descendant. Such a pair is called a critical pair

- The m.g.u. of $\sim \sim \mathrm{x}$ and ~ 0 is $\sim \sim 0$
- The CP of them is $(0, \sim 1)$ because $\sim \sim 0$--> 0 by the $1^{\text {st }}$ rule and $\sim \sim 0-->\sim 1$ by the $2^{\text {nd }}$ rule

Sufficient condition of Confluence

- Theorem (Knuth and Bendix 1970): If SP is terminating and all critical pairs are joinable, then SP is confluent

- bool-not has three CPs: $(\mathbf{0}, \sim 1),(1, \sim 0)$ and $(\sim \mathrm{X}, \sim \mathrm{X})$, and all those CPs are joinable, thus, it is confluent

Conditional Equations

Conditional equations

- CafeOBJ allows us to write a condition for an equation
- A condition is a term of Boolean sort Bool
- CafeOBJ modules import a built-in Boolean module BOOL implicitly, thus, you can use Boolean operators to write equations

Reduction by conditional equations

- A conditional equation is applied when the condition part is reduced into true

```
NAT-EVEN> red even s 0 .
-- reduce in NAT-EVEN : (even (s 0)):Bool
1>[1] apply trial #1
-- rule: ceq (even (s N:Nat)) = false if (even N)
    { N:Nat |-> 0 }
2>[1] rule: eq (even 0) = true
    {}
2<[1] (even 0) --> true
1>[2] match success #1
1<[2] (even (s 0)) --> false
(false):Bool
```


Termination of conditional equations

- To obtain a terminating conditional SP, not only rhs but a condition part should also be cared


```
INFINITE> red f(X:Elt) .
-- reduce in INFINITE : (f(X)):Bool
[Warning]:
Infinite loop? Evaluation of condition nests too deep,
terminates rewriting: f(X:Elt)
INFINITE>
```


Confluence of conditional equations

- In most cases, conditional SPs overlap because conditions are used to write case-splitting of a same pattern

- For confluence, each condition of a pattern should be separated from each other, i.e., if one is true, then the others should be false, for example,
- $P(X)$, not $P(X)$
- $X<5$, ($5<=X$ and $X<10$), $10<=X$

Associative Commutative Operators

Associative Commutative operators

- Equations of Associativity and Commutativity may cause non-termination and non-confluence
- They are recommended to be specified as operators attributes

- You do not need bracket for associative operators
- eq $N+0=N$ can be applied to $(N+0)$ since + is commutative.

```
NAT+AC> red 0 + (N:Nat) + 0 .
```

N:Nat

Specification of bags (multi-sets)

- From the subsort relation [Elt < Bag] and the associative operator (_ _), a sequence of Elt is a term of Bag

```
c in (a b c) = c in (a (c b))
    = cin ((c b) a)
    = c in (c (b a)
    = true
```


AC Rewriting

- One step AC (or A or C) Rewriting, denoted by $-->_{\mathrm{AC}}$, is defined as the composition $\left(=_{\mathrm{AC}} \mathrm{O}-->\right)$

```
c in (a b c) = co c in (a (c b))
=c
= A c in (c (b a)
--> true
```

When applying a rewrite rule to a term with AC operators, first compute all AC equivalent terms (it is finite), and if there is a redex, then rewrite it

```
a (b c), (a b) c, a (c b), (a c) b, b (a c), (b a)c, b (c a), (b c) a,
c (a b), (c a) b, c (b a), (c b) a
```


Termination of AC Rewriting

- Even if SP is terminating, adding AC attribute to some operator makes it non-terminating

BAG2

[Elt < Bag]
ops 0 1 : -> Elt
op _ _ : Bag Bag -> Bag \{ assoc comm \}
var E : Elt
eq (E E) $=01$.

```
0 (lll
    --> (lll
    = A
    --> 0 (lll
```


Confluence of AC Rewriting

- Even if SP is confluent, adding AC attribute to some operator makes it non-confluent


```
begin-with-0(0 1) --> true
begin-with-0(0 1) =cclobin-with-0(1 0) --> false
```


Summary

- For a given equation, [Reducible by rewriting] =>
[Deducible from E] => [Satisfied by any model], however,
- The opposite is not true in general
- Reducible <=> Deducible holds when it is terminating and confluent
- To obtain a terminating SP, describe it according to the hierarchical design with recursive definition
- To obtain a confluence SP, check all critical pairs are joinable

References

- F. Baader and T.Nipkow, Term Rewriting and all that, Cambridge Univ. Press, 1998.
- Introduction to TRS: Termination, Confluence
- E.Ohlebusch, Advanced topics in Term Rewriting, Springer, 2002.
- + Conditional TRS, Modularity
- Terese, Term Rewriting systems, Cambridge Univ. Press, 2003.
- + Strategy, Higher-order rewriting

- AProVE : http://aprove.informatik.rwth-aachen.de/

- System for automated termination, supports Conditional TRS, AC-TRS, etc

Extra topic

- Sufficient completeness

Sufficient completeness

- A function f is sufficiently complete if and only if for any constructors arguments t_{1}, \ldots, t_{n}, the term $f\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$ is equivalent to some constructor term t
- That is, $f\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)=\mathrm{t}$ can be deduced from the axiom

(s 0) +0 is un-defined

Sufficient condition of sufficient completeness

- SP is sufficiently complete if
- SP is terminating, and
- All function operators are reducible, that is, for any ground (variable-free) term which includes a function operator, it is reducible (= a redex exists)
- E.g.s (s (0 + (0 + s 0)))

- Because of the $1^{\text {st }}$ condition each term has its normal form, and
- Because of the $2^{\text {nd }}$ condition each normal form is constructed by constructors only

Into one module

- If all functions are defined sufficiently complete, they can be written into one module without changing its denotation
- Actually, specifications of data types are often described in one module including constructors and functions together

```
mod! NAT-fact{
    [Zero NzNat < Nat]
    op 0: -> Zero {constr}
    op s_ : Nat -> NzNat {constr}
    op _+_ : Nat Nat -> Nat
    op _*_ : Nat Nat -> Nat
    op fact_ : Nat -> Nat
```

vars M N : Nat
eq $N+0=N$
eq $M+s N=s(M+N)$.
eq $N * 0=0$
eq $M * s N=(M * N)+M$.
eq fact $0=s 0$.
eq fact $(s N)=(s N) *(f a c t N)$.

