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Topics 

•! Explain how to prove properties by the induction 

techniques with CafeOBJ 

–! Review: proof with an arbitrary element, etc 

–! Several examples: Nat, List 

–! Lemma discovery  
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Proof with an arbitrary element 

•! Review: Consider the following module 

PROOF-n + EQL> red s (0 + n) = 0 + s n . 

(true):Bool!

mod* PROOF-n { 

  pr(NAT*) 

  op n : -> Nat 

}!

This is a proof of  

“s(0 + n) = 0 + s n”  for any natural number n 
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•! Consider the denotation of PROOF-n 
–! includes a model of NAT* as it is (because of pr) 

–! NAT* denotes Natural numbers algebra N 

–! Constant n should be one of the elements of NNat 

–! For any natural number x, there exists a model M denoted by 
PROOF-n such that Mn = x 

PROOF-n> red s (0 + n) = 0 + s n . 

(true):Bool!

mod* PROOF-n { 

  pr(NAT*) 

  op n : -> Nat 

}!

This is a proof of s(0 + n) = 0 + s n  for any natural number n 

Soundness of the proof!
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Proof of Implication 

•! Consider the following module 

PROOF-i + EQL> red  x * s s 0 = (y * s s 0) + (y * s s 0) .  

(true):Bool!

mod* PROOF-i { 

  pr(NAT*) 

  ops x y : -> Nat 

  eq x = y&+ y . 

}!

This is a proof of  
x = s y implies x * s s 0 = (y * s s 0) + (y * s s 0) 
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Soundness of the implication proof!

•! Consider the denotation of PROOF-i 

–!  x and y are elements of N and satisfy x = s y in a model 

–! For any natural number x and y satisfying “x = y + 1”, there exists a 

model M denoted by PROOF-i such that Mx = x and My = y 

> red  x * s s 0  

     = (y * s s 0) +  

       (y * s s 0) .  

(true):Bool!

mod* PROOF-i { 

  pr(NAT*) 

  ops x y : -> Nat 

  eq x = s y . 

}!

This is a proof of  
x = s y implies x * s s 0 = (y * s s 0) + (y * s s 0) 



Sinaia School Lecture 4 Verification with Induction  (/33 

Proof score (in the board sense) 

•! We can make nameless module for a proof by 

opening a module 

PROOF-i + EQL> open NAT* + EQL 

%NAT* + EQL> ops x y : -> Nat . 

%NAT* + EQL> eq x = y + y . 

%NAT* + EQL> red  x * s s 0 = (y * s s 0) + (y * s s 0) . 

(true):Bool 

%NAT* + EQL> close 

PROOF-i + EQL> !

mod* PROOF-i { 

  pr(NAT*) 

  ops x y : -> Nat 

  eq x = s y .}!

open NAT* + EQL 

  ops x y : -> Nat . 

  eq x = y + y . 

  red  x * s s 0 = ...  

close! PROOF-i + EQL> red  ...!

proof score 
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Structural Induction 

•! Structural induction is a proof method for recursively-

defined data structures (like terms) 

–! To prove P(X) for all terms constructed by the set F of 
operators 

1.! [Induction Basis] Prove P(c) for each constant c in F 

2.! [Induction Step] For each function f in F whose arity is 

n,  

- Assume P(t1), P(t2), ..., P(tn),  

  and  

- Prove P( f(t1, t2, ..., tn) )  
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                                      Induction Step 
                                                Induction Hypothesis 

                                       Induction Basis 

Example 1: Left-identity of + 

•! The following is a proof score of that 0 is a left-

identity of + 

–! P(N) = “0 + N = N”  

–! Prove for all terms constructed by 0 and s_ 

mod! NAT+ {  ... 

  eq N + 0 = N . 

  eq M + s N = s(M + N) . 

}!

open NAT+ + EQL 

  red 0 + 0 = 0 .      

  op n : -> Nat . 

  eq 0 + n = n  .      

  red 0 + s n = s n .  

close!

CafeOBJ system returns true for 

both reductions for this proof score 
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Trace of reduction 

•! You can see how I.H. is used in the proof 

1>[1] rule: eq (M:Nat + (s N:Nat)) = (s (M + N))  

    { M:Nat |-> 0, N:Nat |-> n } 

[1]: 0 + (s n) = s n ---> s (0 + n) = s n 

1>[2] rule: eq (0 + n) = n {} 

[2]: s (0 + n) = s n ---> s n = s n 

1>[3] rule: eq (CUX = CUX) = true 

    { CUX |-> (s n) } 

[3]: s n = s n ---> true!

open NAT+ + EQL 

  red 0 + 0 = 0 .      

  op n : -> Nat . 

  eq 0 + n = n  .      

  red 0 + s n = s n .  

close!
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Wrong proof 

•! An arbitrary element in a induction proof score 

should not be declared as a variable  

1>[1] rule: eq (0 + N) = N { N |-> s N } 

[1]: 0 + (s N) = s N ---> s N = s N 

[2]: s N:Nat = s N ---> true!

open NAT+ + EQL 

  red 0 + 0 = 0 .      

  var N : Nat . 

  eq 0 + N = N  .      

  red 0 + s N = s N .  

close!

open NAT+ + EQL 

  red 0 + 0 = 0 .      

  op n : -> Nat . 

  eq 0 + n = n  .      

  red 0 + s n = s n .  

close!
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Soundness of induction proof 

•! Sort Nat is defined in BASIC-NAT, which is declared as initial 

semantics ( mod! ) 

•! Thus, for any model M denoted by BASIC-NAT, for any element n 

in MNat, there is a term t constructed from 0 and s_ such that Mt = 

n   (no junk) 

•!  BASIC-NAT is protected, so it holds for NAT+ too 

•! Therefore, a proof of P(t) for all terms constructed from 0 and s_ 
implies a proof of P(t) for all terms of Sort Nat 

mod! BASIC-NAT{ 

  [Zero NzNat < Nat] 

  op 0 : -> Zero 

  op s_ : Nat -> NzNat 

} 

mod! NAT+ { 

  pr(BASIC-NAT) ... 

  eq N + 0 = N . 

  eq M + s N = s(M + N) . 

} 
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Adding proved equations 

•! If you succeed in proving P(x) for x in a sort S by the 

induction and the sort S is declared in an initial module 

and the module is protected, then you can declare 
P(X:S) without changing the denotation of the 

specification 

mod! NAT+ {  ... 

  vars M N : Nat 

  eq N + 0 = N . 

  eq M + s N = s(M + N) . 

} 

open NAT+ + EQL 

  red 0 + 0 = 0 .      
  op n : -> Nat . 

  eq 0 + n = n  .      
  red 0 + s n = s n .  

close!

mod! NAT+’ { ... 

  vars M N : Nat 

  eq N + 0 = N . 

  eq M + s N = s(M + N) . 

  eq 0 + N = N . 

} 

Prove 0 + N = N 

by induction 

The denotations of NAT+ and NAT+’ are same 
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Example 2: Commutativity of + 

•! Prove the addition operator to be commutative 

–! P(N) = “    M:Nat . M + N = N + M” 

–! When you have more than one variables in a property to 
be proved, you choose one of the variables as a target of 

the induction 

–! In this case M and N are symmetric  

                                             I.S. 
                                             I.H. 

                                             I.B. 

open NAT+ + EQL 

  var M : Nat 

  red M + 0 = 0 + M .      

  op n : -> Nat . 

  eq M + n = n + M .      

  red M + s n = s n + M .  

close!
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Proof failed 

•! You do not always succeed in Induction Proof 

The I.B. reduction does not return true  

%NAT+ + EQL>   red M + 0 = 0 + M .      

(M = (0 + M)):Bool!

                                             I.S. 
                                             I.H. 

                                             I.B. 

open NAT+ + EQL 

  var M : Nat 

  red M + 0 = 0 + M .      

  op n : -> Nat . 

  eq M + n = n + M .      

  red M + s n = s n + M .  

close!
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Find lemma 

•! To make a proof complete, some lemma is needed 

•! A suitable lemma may or may not be found from the 

result of the failed reduction 

We already proved this equation 

 (0 is the left-identity of +) 

%NAT+ + EQL>   red M + 0 = 0 + M .      

(M = (0 + M)):Bool!
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                                                   Lemma 

Adding proved lemma 

•! We can add a proved equation in a proof score 

                                             I.S. 
                                             I.H. 
                                             I.B. 

open NAT+ + EQL 

  vars M N : Nat . 

  eq 0 + N = N . 

  op n : -> Nat . 

  red M + 0 = 0 + M .      

  eq M + n = n + M .      

  red M + s n = s n + M .  

close!

%NAT+ + EQL> red M + 0 = 0 + M .      

(true):Bool 

%NAT+ + EQL> red M + s n = s n + M .  

((s (n + M)) = ((s n) + M)):Bool!

Thanks to Lemma, 

I.B. succeeds, 

but I.S. does not 
succeed 
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I.S. 

I.H. 

I.B. 

Complete proof 
•! The result of the reduction of the Induction Step also 

can be proved by the induction 

    eq N + 0 = N . 

    eq M + s N = s(M + N) . 

open NAT+ + EQL 

 var M : Nat 

 op n : -> Nat . 

 red s M + 0 = s(M + 0) .      

 eq s M + n = s(M + n) .      

 red s M + s n = s(M + s n) .      

close!

Lemma 

open NAT+ + EQL 

  vars M N : Nat 

  eq 0 + N = N . 

  eq s M + N = s(M + N) . 

  op n : -> Nat . 

  red M + 0 = 0 + M .      

  eq M + n = n + M .      

  red M + s n = s n + M .  

close 

All reductions return true, and 

The proof has been completed 

Proof of “s M + N = s(M + N)”!

 NAT+!

Proof of “M + N = N + M”!

%NAT+ + EQL> red M + s n = s n + M .  

((s (n + M)) = ((s n) + M)):Bool!
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Specification of lists 

•! The following parameterized module specifies lists 

whose elements can be of any kind of sets 

hwd:mod* TRIV { 

 [ Elt ]  

} 

mod! BASIC-LIST(X :: TRIV) { 

  [Empty NeList < List] 

  op nil : -> Empty 

  op _::_ : Elt List -> NeList 

} 

BASIC-LIST(X <= t2n)> parse 0 :: 1 :: 2 :: nil . 

(0 :: (1 :: (2 :: nil))):NeList 

view t2n from TRIV to NAT{ sort Elt -> Nat } 
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Concatenation of lists 

•! Specify a concatenation function of lists 

mod! LIST-@ { 

  pr(BASIC-LIST) 

  op _@_ : List List -> List 

  var E : Elt .   

  vars L1 L2 : List . 

  eq       nil @ L1 = L1 . 

  eq (E :: L1) @ L2 = E :: (L1 @ L2) . 

} 

LIST-@(X <= t2n)> red (0 :: 1 :: nil) @ (2 :: 3 :: nil) . 

[1]: ((0 :: (1 :: nil)) @ (2 :: (3 :: nil))) 

[2]: (0 :: ((1 :: nil) @ (2 :: (3 :: nil))) ) 

[3]: (0 :: (1 :: (nil @ (2 :: (3 :: nil))) )) 

---> (0 :: (1 :: (2 :: (3 :: nil))))!
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Example 3: Associativity of @ 

•! Prove the associativity of @  

–!  (A @ B) @ C = A @ (B @ C) 

–! Which variable should we apply the induction to? 

     eq nil @ L1 = L1 . 

     eq (E :: L1) @ L2 = E :: (L1 @ L2) . 

 LIST-@!

open LIST-@ + EQL . 

  vars A B : List 

  op l : -> List . 

  var E : Elt . 

  red (A @ B) @ nil = A @ (B @ nil) . 

  eq (A @ B) @ l = A @ (B @ l) . 

  red (A @ B) @ (E :: l)  

               = A @ (B @ (E :: l)) . 

close !

open LIST-@ + EQL . 

  vars B C : List 

  op l : -> List . 

  var E : Elt . 

  red (nil @ B) @ C = nil @ (B @ C) . 

  eq (l @ B) @ C = l @ (B @ C) . 

  red ((E :: l) @ B) @ C  

               = (E :: l) @ (B @ C) . 

close !

P(L) = (A @ B) @ L = A @ (B @ L) P(L) = (L @ B) @ C = L @ (B @ C) 
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Adding associativity 

•! The commutative law and the associative law should 

be declared as an attribute of the operator 

–! Remind of the lecture on the term rewriting system 

mod! LIST-@-assoc { 

  pr(LIST-@) 

  op _@_ : List List -> List {assoc} 

}!

mod! LIST-@-assoc { 

  pr(LIST-@) 

  eq (A:List @ B:List) @ C:List = A @ (B @ C) . 

}!
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Reverse function 

•! Specify a reverse function 

mod! LIST-rev { 

  pr(LIST-@-assoc) 

  op rev _ : List -> List 

  var E : Elt .  var L : List . 

  eq rev nil = nil . 

  eq rev (E :: L) = (rev L) @ (E :: nil) . 

} 

LIST-rev(X <= t2n)> red rev (0 :: 1 :: 2 :: nil) . 

(2 :: (1 :: (0 :: nil))):NeList!
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rev is naive 

•! Computation of rev is not so efficient 

–! For example, rev [0,1, ..., n-1, n] is first reduced into           

[n] @ [n-1] @ ... @ [1] @ [0] and then the concatenation of 

the singleton lists is reduced by the equation on @ 

–! Here, [0,1,...,n] is an abbreviation of (0 :: 1 :: ... :: n :: nil) 

1:  rev [0, 1, 2] 

2:  (rev [1, 2]) @ [0] 

3:  (rev [2]) @ [1] @ [0] 

4:  (rev nil) @ [2] @ [1] @ [0] 

5:  nil @ [2] @ [1] @ [0] 

6:  [2] @ [1] @ [0] 

7:  2 :: (nil @ [1] @ [0]) 

8:  2 :: ([1] @ [0]) 

9:  2 :: 1 :: (nil @ [0]) 

10: 2 :: 1:: [0]  

  = 2 :: 1 :: 0 :: nil!

rev is O(n2)  

For an input list whose 

length is n, rev computes it 

by (n+1)(n+2) / 2 rewrite 

steps 

(1 + 2 + ... + (n+1) + (n+2) ) 
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Smart reverse 

•! The following improved reverse function takes a list to 

be reversed and the empty list, and returns the 

reversed list 

–! The reversed list is made one by one in the second 

argument of revi  

mod! LIST-revi { 

  pr(BASIC-LIST) 

  op revi : List List -> List 

  vars L1 L2 : List 

  var E : Elt    

  eq revi(nil, L2) = L2 . 

  eq revi((E :: L1), L2) = revi(L1, (E :: L2)) . 

} 
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Trace of revi 

•! For an input list whose length is n, the improved 

reverse computes it by n + 1 rewrite steps ( O(n) ) 

LIST-revi(X <= t2n)>  

red revi(0 :: 1 :: 2 :: 3 :: 4 :: 5 :: nil ,nil)):List 

[1]: revi( (0 :: (1 :: (2 :: (3 :: (4 :: (5 :: nil)))))) , nil ) 

[2]: revi( (1 :: (2 :: (3 :: (4 :: (5 :: nil))))) , (0 :: nil) ) 

[3]: revi( (2 :: (3 :: (4 :: (5 :: nil)))) , (1 :: (0 :: nil)) ) 

[4]: revi( (3 :: (4 :: (5 :: nil))) , (2 :: (1 :: (0 :: nil))) ) 

[5]: revi( (4 :: (5 :: nil)) , (3 :: (2 :: (1 :: (0 :: nil)))) ) 

[6]: revi( (5 :: nil) , (4 :: (3 :: (2 :: (1 :: (0 :: nil))))) ) 

[7]: revi( nil , (5 :: (4 :: (3 :: (2 :: (1 :: (0 :: nil)))))) ) 

(5 :: (4 :: (3 :: (2 :: (1 :: (0 :: nil)))))):NeList 

(0.000 sec for parse, 7 rewrites(0.000 sec), 13 matches)!



Sinaia School Lecture 4 Verification with Induction  "(/33 

Example 4:  rev = revi 

•! Prove that the naive reverse and the smart reverse 

denote a same function 

–! revi(L, nil) = rev L 

                                                                    I.S. 
                                                                    I.H. 
                                                                     I.B. 

-- PROVE revi (L, nil) = rev L 

open LIST-rev + LIST-revi + EQL . 

 var E : Elt . 

 op l : -> List . 

 red revi(nil, nil) = rev nil .   

 eq revi(l, nil) = rev l .  

 red revi(E :: l, nil) = rev (E :: 

l) . 

close!

%LIST-...> red revi(nil, nil) = rev nil . 

(true):Bool 

%LIST-...> red revi(E :: l, nil) = rev (E :: l) 

(revi(l,(E :: nil)) = ((rev l) @ (E :: nil))):Bool!
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Lemma discovery failed 

•! If you take the result of the failed reduction itself as a 

lemma, it fails again and again 

%LIST-...> red revi(E :: l, nil) = rev (E :: l) 

(revi(l,(E :: nil)) = ((rev l) @ (E :: nil))):Bool!

-- PROVE revi(l, E :: nil) = (rev l) @ (E :: nil) 

open LIST-rev + LIST-revi + EQL . 

 ... 

  red revi(F :: l, E :: nil)= (rev (F :: l)) @ (E :: nil) .   

close!

%LIST-...> red ... 

(revi(l,(F :: (E :: nil))) = ((rev l) @ (F :: (E :: nil)))):Bool!

-- PROVE revi(l, F :: E :: nil) = (rev l) @ (F :: E :: nil) 

open LIST-rev + LIST-revi + EQL . 

 ... 

 red revi(G :: l, F :: E :: nil)= (rev (G :: l)) @ (F :: E :: nil) .   

close!

 %LIST-...> red ... 

(revi(l,(G :: (F :: (E :: nil)))) = ((rev l) @ (G :: (F :: (E :: nil))))):Bool!
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Generalization 

•! From the result of the last reduction, you may think of 

a generalized equation 

–! The second argument G :: F :: E :: nil of revi in lhs 
is same as the second argument of @ in rhs 

–! Thus, revi(L, L’) = (rev L) @ L’ may hold, which 

is a generalization of revi(L, nil) = rev L 

revi(l, G :: F :: E :: nil) = (rev l) @ (G :: F :: E :: nil)!
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Prove a generalized equation 

•! The proof score of revi(L, L’) = (rev L) @ L’ 

returns true 

open LIST-rev + LIST-revi + EQL . 

 var E : Elt . 

 var L' : List . 

 op l : -> List . 

 red (rev nil) @ L' = revi(nil, L') .   

 eq revi(l, L')  = (rev l) @ L' . 

 red (rev (E :: l)) @ L' = revi(E :: l, L') . 

close!
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Proof completed 

•! Adding the lemma (the generalized equation) makes 

the proof score succeed  

open LIST-rev + LIST-revi + EQL . 

 var E : Elt . 

 vars L L' : List 

 eq revi(L, L')  = (rev L) @ L' . 

 op l : -> List . 

 red revi(nil, nil) = rev nil .   

 eq revi(l, nil) = rev l .  

 red revi(E :: l, nil) = rev (E :: l) . 

close!
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Comments are important 

•! In this material, although we did not write comments 

in our examples because of a space limitation, 

comments are heavily recommended to be added to 
specifications and proof scores 

-- Proof of revi(L, nil) = rev L 

open LIST-rev + LIST-revi + EQL . 

 -- Declare Lemma 

 eq revi(L:List, L‘:List)  = (rev L) @ L' . 

 -- Declare an arbitrary element for Induction 

 op l : -> List . 

 --> Prove Induction Base 

 red revi(nil, nil) = rev nil .   

 -- Declare Induction Hypothesis 

 eq revi(l, nil) = rev l .  

 --> Prove Induction Step 

 red revi(E:Elt :: l, nil) = rev (E :: l) . 

close!
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Summary 

•! Showed several induction proofs 

•! To make a proof score of induction 

–! Decide which variable you apply the induction 

–! Check the target sort is declared in an initial module and the 

module is protected 

–! Declare a constant as an arbitrary element 

–! Reduce I.B. for all constants of the sort 

–! Declare I.H. by the constant declared as an arbitrary element 

–! Reduce I.S. for all (non-constant) constructors of the sort 

–! Find, prove, and declare lemma if the proof score failed 

•! The result of reduction, or a generalization 

TRS revised!

•! In the description stage with rapid-prototyping, we 

may obtain specifications which satisfy termination, 

confluence, etc 

•! In the verification stage, we may not obtain such 

good properties because equations (rewrite rules) are 

added in proof scores 

–! Especially you may get non-confluence TRS 

–! When getting non-confluence TRS, the precedence of 

equations may be important 

•! Equations in the latest module are precedent  

•! Upper equations are precedent in a same module!
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