Verification with Induction

CafeOBJ Team of JAIST
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Topics

» Explain how to prove properties by the induction
techniques with CafeOBJ
— Review: proof with an arbitrary element, etc
— Several examples: Nat, List
— Lemma discovery
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Proof with an arbitrary element

« Review: Consider the following module

mod* PROOF-n {
pr (NAT*)
op n : -> Nat
}
PROOF-n + EQL> red s (0O + n) = 0 + s n .

(true) :Bool

This is a proof of
“s(0 + n) =0 + s n” for any natural number n
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Soundness of the proof

» Consider the denotation of PROOF-n
— includes a model of NAT* as it is (because of pr)
- NAT* denotes Natural numbers algebra N
— Constant n should be one of the elements of N _,
— For any natural number x, there exists a model M denoted by
PROOF-n such that M_ = x

mod* PROOF-n ({
pr (NATY*)
op n : -> Nat
}

PROOF-n> red s (0 + n) = 0 + s n .
(true) :Bool

This is a proof of s(0 + n) =0 + s n for any natural number n
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Proof of Implication

» Consider the following module

ops x

}

mod* PROOF-1i {
pr (NAT*)

y : —> Nat

eq x =y + vy .

PROOF-1 + EQL> red x * s s 0 = (y * s s 0) + (y * s s 0)
(true) :Bool

This is a proof of

x = s y implies x * s s 0= (y * s s 0) + (y *s s 0)
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Soundness of the implication proof

Consider the denotation of PROOF-1
x and y are elements of N and satisfy x

s y inamodel

— For any natural number x and y satisfying “x = y + 17, there exists a
model M denoted by PROOF-1i such that M, =xand M, =y

mod* PROOF-i {
pr (NAT*)
ops X y :
eq x S

}

->
y .

Nat

This is a proof of

X

s y implies x * s s 0

>red x * s s 0
= (y * s s 0) +
(y * s s 0)
(true) :Bool
(y * s s 0) + (y * s s 0)
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Proof score (in the board sense)

« We can make nameless module for a proof by
opening a module

PROOF-i + EQL> open NAT* + EQL

$NAT* + EQL> ops x y : -> Nat .

SNAT* + EQL> eq x =y + y .

SNAT* + EQL> red x * s s 0 = (y * s s 0) + (y * s s 0)
(true) :Bool

$NAT* + EQL> close

PROOF-1 + EQL>

proof score mod* PROOF—1 {
open NAT* + EQL pr (NAT*)
ops x y : -> Nat . ops x y : —> Nat
eqx =y +y. eq x =5 Yy .}
red x * s s 0= ...
e PROOF-i + EQL> red
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Structural Induction

 Structural induction is a proof method for recursively-
defined data structures (like terms)

— To prove P(X) for all terms constructed by the set F of
operators

1. [Induction Basis] Prove P(c) for each constant cin F

2. [Induction Step] For each function fin F whose arity is
n,
- Assume P(t,), P(t,), ..., P(t,),
and
- Prove P(f(t, t,, ..., 1))
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Example 1: Left-identity of +

« The following is a proof score of that O is a left-
identity of +
-~ P(N)=“0 + N= N’
— Prove for all terms constructed by 0 and s

open NAT+ + EQL
red 0 + 0 =0 . Induction Basis
op n : -> Nat .
eq 0 +n=n . Induction Hypothesis
red 0 + s n=sn . Induction Step
close

CafeOBJ system returns true for mod! NAT+ {

both reductions for this proof score eq N + 0
eq M + s

}

= N .
N =

s(M + N)
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Trace of reduction

* You can see how I.H. is used in the proof

open NAT+ + EQL
red 0 + 0 = 0 .
op n : —-> Nat .
eq 0O+ n=n
red 0 + s n=sn .
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close

1>[1] rule: eg (M:Nat + (s N:Nat)) = (s (M + N))
{ M:Nat |-> 0, N:Nat |-> n }

[1]: 0O+ (s n) = s n-—>3s (0+n) =sn

1>[2] rule: eq (0 + n) = n {}

[2]: s (0O + n) = s n -——> s n=sn
1>[3] rule: eg (CUX = CUX) = true

{ CUX |-> (s n) }
[31]: s n = s n -——> true
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Wrong proof

* An arbitrary element in a induction proof score
should not be declared as a variable

open NAT+ + EQL
red O + 0 = 0 .

open NAT+ + EQL
red O + 0 = 0 .

var N : Nat . op n : —> Nat .
eq 0 + N =N eqg 0 + n=n
red 0 + s N = s N . red 0 + s n=s n .
close close
VN :Nat. [0+ N = N] O+n=n
Vn : Nat.
= VN :Nat. [0+s N =sN] =0+sn=sn

1>[1] rule: eq (0 + N)

[1]: O+ (s N) = s N --—>s N
[2]: s N:Nat = s N ---> true

N { N |-> s N }

= s N
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Soundness of induction proof
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 Sort Nat is defined in BASIC-NAT, which is declared as initial

semantics ( mod! )

* Thus, for any model M denoted by BASTIC-NAT, for any element n

in “ANat’
n (no junk)

* BASIC-NAT is protected, so it holds for NAT+ too

» Therefore, a proof of P(f) for all terms constructed from 0 and s_
implies a proof of P(f) for all terms of Sort Nat

there is a term t constructed from 0 and s_ such that M;=

mod! BASIC-NAT{
[Zero NzNat < Nat]
op 0 : -> Zero
op s : Nat -> NzNat

}

mod! NAT+ {

pr (BASIC-NAT)

eq N+ 0 =N .

eq M+ s N =s(M + N)
}
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Adding proved equations

 |If you succeed in proving P(x) for x in a sort S by the
induction and the sort S is declared in an initial module
and the module is protected, then you can declare
P(X:S) without changing the denotation of the

specification
mod! NAT+ { ... e = mod! NAT+’ { ...
vars M N : Nat e, vars M N : Nat
eq N+ 0 =N . { Prove0+N=N eqg N+ 0 =N .
eq M+ s N=s(M+ N) . by induction eqg M+ s N = s(M + N)
} eq 0 + N=N .
>'}

The denotations of NAT+ and NAT+’ are same
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Example 2: Commutativity of +

* Prove the addition operator to be commutative
— P(N)=“YM:Nat. M+N=N+ M’

— When you have more than one variables in a property to
be proved, you choose one of the variables as a target of
the induction

— In this case M and N are symmetric

open NAT+ + EQL
var M : Nat
redM+ 0=0+M . |.B.
op n : —-> Nat .
eqM+n=n+M . I.H.
red M+ sn=sn+M. |.S.
close
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Proof failed

* You do not always succeed in Induction Proof

open NAT+ + EQL
var M : Nat
redM+ 0=0+M . |
op n : —-> Nat .
eqM+n=n+M.
red M+ sn=sn+M.
close

oI

SNAT+ + EQL> red M+ 0 =0+ M.
(M = (0 + M)) :Bool

The |.B. reduction does not return true
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Find lemma

» To make a proof complete, some lemma is needed

« A suitable lemma may or may not be found from the
result of the failed reduction

SNAT+ + EQL> red M+ 0 =0+ M.
(M = (0 + M)) :Bool

We already proved this equation
(0 is the left-identity of +)
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Adding proved lemma

* We can add a proved equation in a proof score

open NAT+ + EQL

red M + s n =
close

vars M N : Nat .

eqg 0 + N =N .

op n : —-> Nat

red M+ 0 =0+ M .
eqM +n=n+ M.

s n+ M.

(true) :Bool

((s (n + M) =

SNAT+ + EQL> red M + 0

$NAT+ + EQL> red M + s n =

((s n) + M)) :Bool
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Lemma

|.B.

I.H.

[.S.

-0+ M . Thanks to Lemma,
|.B. succeeds,
s M. putl.S. does not

succeed
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Complete proof

» The result of the reduction of the Induction Step also

can be proved by the induction

SNAT+ + EQL> red M + s n =
((s (n + M)) =

sn+ M.
((s n) + M)) :Bool

[Pmdd%M+N=qM+M"

open NAT+ + EQL

var M : Nat

op n : —-> Nat .

red s M+ 0 =s(M + 0)

eqg sM+ n=s(M + n)

red s M+ s n=5s(M+ s n)
close

Lemma

I.B.
I.H.
I.S.

All reductions return true, and
The proof has been completed
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[ ProofofM+N=N+M" |
open NAT+ + EQL
vars M N : Nat
eq 0+ N=N .

eq sM+ N-=s(M + N)
op n : —-> Nat .
red M+ 0 =0+ M.

eq M+ n=n+ M.

red M+ sn=sn+ M.
close
NAT+
eq N + 0 =N .
eq M+ s N = s(M + N)
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Specification of lists

« The following parameterized module specifies lists
whose elements can be of any kind of sets

hwd:mod* TRIV { mod! BASIC-LIST (X :: TRIV) {
[ E1t ] [Empty NeList < List]
} op nil : -> Empty
op :: : Elt List -> Nelist
}

view t2n from TRIV to NAT{ sort Elt -> Nat }

BASIC-LIST(X <= t2n)> parse 0 :: 1 :: 2 :: nil .
(0 ¢ (1 = (2 :: nil))) :Nelist
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Concatenation of lists

« Specify a concatenation function of lists

mod! LIST-@ {
pr (BASIC-LIST)
op _@_: List List -> List
var E : Elt .
vars L1 L2 : List

eq nil @ L1 = L1 .
eq (E :: L1) @ L2 =E :: (L1 @ L2)
}

LIST-@ (X <= t2n)> red (0 :: 1 :: nil) @ (2 :: 3 :: nil)
[1]: ((0 =:: (1 :: nil)) @ (2 =2 (3 :: nil)))
[2]1: (O ((1 =2 nil) @ (2 =2 (3 =2 nil))) )
[3]: (O (1 (nil @ (2 :: (3 :: nil))) )
-—=> (0 (1 (2 :: (3 :: nil))))
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Example 3: Ass

» Prove the associativity of @
(A@B) @C =A@ (B

ociativity of @

@ C)

— Which variable should we apply the induction to?

PL)=A@B)@L=A@B@L)

PL)=(L@B@C=L@(B@C)

open LIST-Q@ + EQL .

close

vars B C : List

op 1 : -> List .

var E : El1t .

red (nil @ B) @ C =nil @ (B Q@ C) .
eq (1 @ B) @ C 1@ (B@cC) .

red ((E :: 1) @ B) @ C

(E :: 1) @ (BQ@QC) .

eq nil @ L1
eq (E ::

il

Ll) @ L2 = E ::

(L1 @ L2) .
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Adding associativity

be declared as an attribute

The commutative law and the associative law should

of the operator

— Remind of the lecture on the term rewriting system

mod! LIST-@-assoc {
pr (LIST-Q)
eq (A:List @ B:List
}

) @ C:List A @ (B @ C)

mod! LIST-@-assoc {
pr (LIST-Q)
op @

}

: List List -> List {assoc}
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Reverse function

« Specify a reverse function

mod! LIST-rev {

pr (LIST-@-assoc)

op rev  : List -> List

var E : Elt . wvar L : List .

eq rev nil = nil .

eqrev (E :: L) = (rev L) @ (E :: nil)
LIST-rev(X <= t2n)> red rev (0 :: 1 :: 2 :: nil)
(2 :: (1 :: (0O :: nil))) :NelList
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rev IS naive

» Computation of rev is not so efficient

— For example, rev [0,1, ..
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., h-1, n] is first reduced into

[N @ [n-1] @ ... @ [1] @ [0] and then the concatenation of
the singleton lists is reduced by the equation on @

— Here, [0,1,...,n] is an abbreviation of (0 :: 1:: ... :: n::nil)
1: rev [0, 1, 2]
2: (rev [1, 2]) @ [O0] rev is O(n?)
3: (rev [2]) @ [1] @ [O]
4: (rev nil) @ [2] @ [1] @ [0] . .
5. nile [2] € [1] € [0] Foran.mputllstwhose |
6: [2] @ [1] @ [O] length is n, rev computes it
7: 2 (nil @ [1] e [0]) by (n+1)(n+2) / 2 rewrite
ol o i mine o)) steps
. b b ni
10: 2 1is 0] (1+2+ ...+ (n+1) +(n+2))
=2 1 0 :: nil
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Smart reverse

« The following improved reverse function takes a list to
be reversed and the empty list, and returns the

reversed list

— The reversed list is made one by one in the second
argument of revi

vars L1 L2

mod! LIST-revi {
pr (BASIC-LIST)
op revi : List List -> List

var E : Elt
eq revi(nil, L2) = L2 .
eq revi((E ::

: List

Ll), L2) = revi(Ll, (E :: L2))
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Trace of revi

« For an input list whose length is n, the improved
reverse computes it by n + 1 rewrite steps ( O(n) )

LIST-revi (X <= t2n)>

red revi(0 :: 1 :: 2 ::
[1]1: revi( (O :: (1 ::
[2]: revi( (1 :: (2 ::
[3]: revi( (2 :: (3 ::
[4]: revi( (3 :: (4 ::
[5]: revi( (4 :: (5 ::
[6] revi( (5 :: nil)
[7] revi( nil , (5 ::
(5 2 (4 ¢ (3 :: (2 ::

(0.000 sec for parse,

3 :: 4 ::5 :: nil ,nil)):List
(2 :: (3 :: (4 :: (5 :: nil)))))) , nil )
(3 :: (4 :: (5 :: nil))))) , (0 :: nil) )
(4 :: (5 :: nil)))) , (1L :: (0O :: nil)) )
(5 :: nil))) , (2 :: (1 :: (0 :: nil))) )
nil)) , (3 :: (2 :: (1L :: (0 :: nil)))) )
, (4 :: (3 :: (2 :: (1 :: (0 :: nil))))) )
(4 :: (3 :: (2 :: (L :: (0 :: nil))))))
(1 :: (O :: nil)))))) :Nelist

7 rewrites (0.000 sec), 13 matches)
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Example 4. rev = revi

* Prove that the naive reverse and the smart reverse
denote a same function

- revi(L, nil) = rev L

-— PROVE revi (L, nil) = rev L
open LIST-rev + LIST-revi + EQL

var E : Elt

op 1 : -> List
red revi(nil, nil) = rev nil |.B.
eq revi(l, nil) = rev 1 I.H.
red revi(E :: 1, nil) = rev (E [.S.
1)
close
SLIST-...> red revi(nil, nil) = rev nil
(true) :Bool
$LIST-...> red revi(E :: 1, nil) = rev (E :: 1)
(revi(l,(E :: nil)) = ((rev 1) @ (E :: nil))) :Bool
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Lemma discovery failed

« If you take the result of the failed reduction itself as a
lemma, it fails again and again

SLIST-...> red revi(E :: 1, nil) = rev (E :: 1)
revi(l, (E :: nil)) = ((rev 1) @ (E :: nil))) :Bool
-— PROVE revi(l, E :: nil) = (rev 1) @ (E :: nil)
open LIST-rev + LIST-revi + EQL .

red revi(F :: 1, E :: nil)= (rev (F :: 1)) @ (E :: nil)
close
$SLIST-...> red ...
(revi(l,(F :: (E :: nil))) = ((rev 1) @ (F :: (E :: nil)))) :Bool
-— PROVE revi(l, F :: E :: nil) = (rev 1) @ (F :: E :: nil)
open LIST-rev + LIST-revi + EQL .
red revi(G :: 1, F :: E :: nil)= (rev (G :: 1)) @ (F :: E :: nil)
close
$LIST-...> red ...
(revi(l,(G :: (F :: (E :: nil)))) = ((rev 1) @ (G :: (F :: (E :: nil))))) :Bool
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Generalization

revi(l, G :: F :: E :: nil) = (rev 1) @ (G :

: F :: E ::

nil)

» From the result of the last reduction, you may think of

a generalized equation

— The second argumentG :: F :: E :: nil of reviinlhs
is same as the second argument of @ in rhs

— Thus, revi (L, L’) = (rev L) @ L’ may hold, which
is a generalization of revi (L, nil) = rev L
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Prove a generalized equation

» The proof score of revi (L, L") = (rev L)

@ L’

returns true

open LIST-rev + LIST-revi + EQL .

var B : Elt .

var L' : List .

op 1 : -> List .

red (rev nil) @ L' = revi(nil, L")

eq revi(l, L') = (rev 1) @ L'

red (rev (E :: 1)) @ L' = revi(E :: 1, L")

close
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Proof completed

« Adding the lemma (the generalized equation) makes

the proof score succeed

open LIST-rev + LIST-revi + EQL .

var E : Elt .

vars L L' : List

eq revi(L, L') = (rev L) @ L'

op 1 : -> List .

red revi(nil, nil) = rev nil .

eq revi(l, nil) = rev 1 .

red revi(E :: 1, nil) = rev (E :: 1)
close

Sinaia School Lecture 4 Verification with Induction

Comments are important
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* In this material, although we did not write comments

in our examples because of a space limitation,

comments are heavily recommended to be added to

specifications and proof scores

-- Proof of revi(L, nil) = rev L
open LIST-rev + LIST-revi + EQL .

-- Declare Lemma

eq revi(L:List, L‘:List) = (rev L) @ L'

op 1 : -> List .

--> Prove Induction Base

red revi(nil, nil) = rev nil .

-- Declare Induction Hypothesis

eq revi(l, nil) = rev 1 .

--> Prove Induction Step

red revi(E:E1t :: 1, nil) = rev (E :: 1)
close

-- Declare an arbitrary element for Induction
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Summary

Showed several induction proofs

» To make a proof score of induction

— Decide which variable you apply the induction

— Check the target sort is declared in an initial module and the
module is protected

— Declare a constant as an arbitrary element
— Reduce I.B. for all constants of the sort
— Declare |.H. by the constant declared as an arbitrary element
— Reduce I.S. for all (non-constant) constructors of the sort
— Find, prove, and declare lemma if the proof score failed
» The result of reduction, or a generalization

Sinaia School Lecture 4 Verification with Induction 33/33

TRS revised

In the description stage with rapid-prototyping, we
may obtain specifications which satisfy termination,
confluence, etc

In the verification stage, we may not obtain such
good properties because equations (rewrite rules) are
added in proof scores

— Especially you may get non-confluence TRS

— When getting non-confluence TRS, the precedence of
equations may be important

* Equations in the latest module are precedent
» Upper equations are precedent in a same module
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