
Sinaia School Lecture 4 Verification with Induction !/33

Verification with Induction

CafeOBJ Team of JAIST

Sinaia School Lecture 4 Verification with Induction "/33

Topics

•! Explain how to prove properties by the induction

techniques with CafeOBJ

–! Review: proof with an arbitrary element, etc

–! Several examples: Nat, List

–! Lemma discovery

Sinaia School Lecture 4 Verification with Induction #/33

Proof with an arbitrary element

•! Review: Consider the following module

PROOF-n + EQL> red s (0 + n) = 0 + s n .

(true):Bool!

mod* PROOF-n {

 pr(NAT*)

 op n : -> Nat

}!

This is a proof of

“s(0 + n) = 0 + s n” for any natural number n

Sinaia School Lecture 4 Verification with Induction $/33

•! Consider the denotation of PROOF-n
–! includes a model of NAT* as it is (because of pr)

–! NAT* denotes Natural numbers algebra N

–! Constant n should be one of the elements of NNat

–! For any natural number x, there exists a model M denoted by
PROOF-n such that Mn = x

PROOF-n> red s (0 + n) = 0 + s n .

(true):Bool!

mod* PROOF-n {

 pr(NAT*)

 op n : -> Nat

}!

This is a proof of s(0 + n) = 0 + s n for any natural number n

Soundness of the proof!

Sinaia School Lecture 4 Verification with Induction %/33

Proof of Implication

•! Consider the following module

PROOF-i + EQL> red x * s s 0 = (y * s s 0) + (y * s s 0) .

(true):Bool!

mod* PROOF-i {

 pr(NAT*)

 ops x y : -> Nat

 eq x = y&+ y .

}!

This is a proof of
x = s y implies x * s s 0 = (y * s s 0) + (y * s s 0)

Sinaia School Lecture 4 Verification with Induction '/33

Soundness of the implication proof!

•! Consider the denotation of PROOF-i

–! x and y are elements of N and satisfy x = s y in a model

–! For any natural number x and y satisfying “x = y + 1”, there exists a

model M denoted by PROOF-i such that Mx = x and My = y

> red x * s s 0

 = (y * s s 0) +

 (y * s s 0) .

(true):Bool!

mod* PROOF-i {

 pr(NAT*)

 ops x y : -> Nat

 eq x = s y .

}!

This is a proof of
x = s y implies x * s s 0 = (y * s s 0) + (y * s s 0)

Sinaia School Lecture 4 Verification with Induction (/33

Proof score (in the board sense)

•! We can make nameless module for a proof by

opening a module

PROOF-i + EQL> open NAT* + EQL

%NAT* + EQL> ops x y : -> Nat .

%NAT* + EQL> eq x = y + y .

%NAT* + EQL> red x * s s 0 = (y * s s 0) + (y * s s 0) .

(true):Bool

%NAT* + EQL> close

PROOF-i + EQL> !

mod* PROOF-i {

 pr(NAT*)

 ops x y : -> Nat

 eq x = s y .}!

open NAT* + EQL

 ops x y : -> Nat .

 eq x = y + y .

 red x * s s 0 = ...

close! PROOF-i + EQL> red ...!

proof score

Sinaia School Lecture 4 Verification with Induction)/33

Structural Induction

•! Structural induction is a proof method for recursively-

defined data structures (like terms)

–! To prove P(X) for all terms constructed by the set F of
operators

1.! [Induction Basis] Prove P(c) for each constant c in F

2.! [Induction Step] For each function f in F whose arity is

n,

- Assume P(t1), P(t2), ..., P(tn),

 and

- Prove P(f(t1, t2, ..., tn))

Sinaia School Lecture 4 Verification with Induction */33

 Induction Step
 Induction Hypothesis

 Induction Basis

Example 1: Left-identity of +

•! The following is a proof score of that 0 is a left-

identity of +

–! P(N) = “0 + N = N”

–! Prove for all terms constructed by 0 and s_

mod! NAT+ { ...

 eq N + 0 = N .

 eq M + s N = s(M + N) .

}!

open NAT+ + EQL

 red 0 + 0 = 0 .

 op n : -> Nat .

 eq 0 + n = n .

 red 0 + s n = s n .

close!

CafeOBJ system returns true for

both reductions for this proof score

Sinaia School Lecture 4 Verification with Induction !+/33

Trace of reduction

•! You can see how I.H. is used in the proof

1>[1] rule: eq (M:Nat + (s N:Nat)) = (s (M + N))

 { M:Nat |-> 0, N:Nat |-> n }

[1]: 0 + (s n) = s n ---> s (0 + n) = s n

1>[2] rule: eq (0 + n) = n {}

[2]: s (0 + n) = s n ---> s n = s n

1>[3] rule: eq (CUX = CUX) = true

 { CUX |-> (s n) }

[3]: s n = s n ---> true!

open NAT+ + EQL

 red 0 + 0 = 0 .

 op n : -> Nat .

 eq 0 + n = n .

 red 0 + s n = s n .

close!

Sinaia School Lecture 4 Verification with Induction !!/33

Wrong proof

•! An arbitrary element in a induction proof score

should not be declared as a variable

1>[1] rule: eq (0 + N) = N { N |-> s N }

[1]: 0 + (s N) = s N ---> s N = s N

[2]: s N:Nat = s N ---> true!

open NAT+ + EQL

 red 0 + 0 = 0 .

 var N : Nat .

 eq 0 + N = N .

 red 0 + s N = s N .

close!

open NAT+ + EQL

 red 0 + 0 = 0 .

 op n : -> Nat .

 eq 0 + n = n .

 red 0 + s n = s n .

close!

Sinaia School Lecture 4 Verification with Induction !"/33

Soundness of induction proof

•! Sort Nat is defined in BASIC-NAT, which is declared as initial

semantics (mod!)

•! Thus, for any model M denoted by BASIC-NAT, for any element n

in MNat, there is a term t constructed from 0 and s_ such that Mt =

n (no junk)

•! BASIC-NAT is protected, so it holds for NAT+ too

•! Therefore, a proof of P(t) for all terms constructed from 0 and s_
implies a proof of P(t) for all terms of Sort Nat

mod! BASIC-NAT{

 [Zero NzNat < Nat]

 op 0 : -> Zero

 op s_ : Nat -> NzNat

}

mod! NAT+ {

 pr(BASIC-NAT) ...

 eq N + 0 = N .

 eq M + s N = s(M + N) .

}

Sinaia School Lecture 4 Verification with Induction !#/33

Adding proved equations

•! If you succeed in proving P(x) for x in a sort S by the

induction and the sort S is declared in an initial module

and the module is protected, then you can declare
P(X:S) without changing the denotation of the

specification

mod! NAT+ { ...

 vars M N : Nat

 eq N + 0 = N .

 eq M + s N = s(M + N) .

}

open NAT+ + EQL

 red 0 + 0 = 0 .
 op n : -> Nat .

 eq 0 + n = n .
 red 0 + s n = s n .

close!

mod! NAT+’ { ...

 vars M N : Nat

 eq N + 0 = N .

 eq M + s N = s(M + N) .

 eq 0 + N = N .

}

Prove 0 + N = N

by induction

The denotations of NAT+ and NAT+’ are same

Sinaia School Lecture 4 Verification with Induction !$/33

Example 2: Commutativity of +

•! Prove the addition operator to be commutative

–! P(N) = “ M:Nat . M + N = N + M”

–! When you have more than one variables in a property to
be proved, you choose one of the variables as a target of

the induction

–! In this case M and N are symmetric

 I.S.
 I.H.

 I.B.

open NAT+ + EQL

 var M : Nat

 red M + 0 = 0 + M .

 op n : -> Nat .

 eq M + n = n + M .

 red M + s n = s n + M .

close!

Sinaia School Lecture 4 Verification with Induction !%/33

Proof failed

•! You do not always succeed in Induction Proof

The I.B. reduction does not return true

%NAT+ + EQL> red M + 0 = 0 + M .

(M = (0 + M)):Bool!

 I.S.
 I.H.

 I.B.

open NAT+ + EQL

 var M : Nat

 red M + 0 = 0 + M .

 op n : -> Nat .

 eq M + n = n + M .

 red M + s n = s n + M .

close!

Sinaia School Lecture 4 Verification with Induction !'/33

Find lemma

•! To make a proof complete, some lemma is needed

•! A suitable lemma may or may not be found from the

result of the failed reduction

We already proved this equation

 (0 is the left-identity of +)

%NAT+ + EQL> red M + 0 = 0 + M .

(M = (0 + M)):Bool!

Sinaia School Lecture 4 Verification with Induction !(/33

 Lemma

Adding proved lemma

•! We can add a proved equation in a proof score

 I.S.
 I.H.
 I.B.

open NAT+ + EQL

 vars M N : Nat .

 eq 0 + N = N .

 op n : -> Nat .

 red M + 0 = 0 + M .

 eq M + n = n + M .

 red M + s n = s n + M .

close!

%NAT+ + EQL> red M + 0 = 0 + M .

(true):Bool

%NAT+ + EQL> red M + s n = s n + M .

((s (n + M)) = ((s n) + M)):Bool!

Thanks to Lemma,

I.B. succeeds,

but I.S. does not
succeed

Sinaia School Lecture 4 Verification with Induction !)/33

I.S.

I.H.

I.B.

Complete proof
•! The result of the reduction of the Induction Step also

can be proved by the induction

 eq N + 0 = N .

 eq M + s N = s(M + N) .

open NAT+ + EQL

 var M : Nat

 op n : -> Nat .

 red s M + 0 = s(M + 0) .

 eq s M + n = s(M + n) .

 red s M + s n = s(M + s n) .

close!

Lemma

open NAT+ + EQL

 vars M N : Nat

 eq 0 + N = N .

 eq s M + N = s(M + N) .

 op n : -> Nat .

 red M + 0 = 0 + M .

 eq M + n = n + M .

 red M + s n = s n + M .

close

All reductions return true, and

The proof has been completed

Proof of “s M + N = s(M + N)”!

 NAT+!

Proof of “M + N = N + M”!

%NAT+ + EQL> red M + s n = s n + M .

((s (n + M)) = ((s n) + M)):Bool!

Sinaia School Lecture 4 Verification with Induction !*/33

Specification of lists

•! The following parameterized module specifies lists

whose elements can be of any kind of sets

hwd:mod* TRIV {

 [Elt]

}

mod! BASIC-LIST(X :: TRIV) {

 [Empty NeList < List]

 op nil : -> Empty

 op _::_ : Elt List -> NeList

}

BASIC-LIST(X <= t2n)> parse 0 :: 1 :: 2 :: nil .

(0 :: (1 :: (2 :: nil))):NeList

view t2n from TRIV to NAT{ sort Elt -> Nat }

Sinaia School Lecture 4 Verification with Induction "+/33

Concatenation of lists

•! Specify a concatenation function of lists

mod! LIST-@ {

 pr(BASIC-LIST)

 op _@_ : List List -> List

 var E : Elt .

 vars L1 L2 : List .

 eq nil @ L1 = L1 .

 eq (E :: L1) @ L2 = E :: (L1 @ L2) .

}

LIST-@(X <= t2n)> red (0 :: 1 :: nil) @ (2 :: 3 :: nil) .

[1]: ((0 :: (1 :: nil)) @ (2 :: (3 :: nil)))

[2]: (0 :: ((1 :: nil) @ (2 :: (3 :: nil))))

[3]: (0 :: (1 :: (nil @ (2 :: (3 :: nil)))))

---> (0 :: (1 :: (2 :: (3 :: nil))))!

Sinaia School Lecture 4 Verification with Induction "!/33

Example 3: Associativity of @

•! Prove the associativity of @

–! (A @ B) @ C = A @ (B @ C)

–! Which variable should we apply the induction to?

 eq nil @ L1 = L1 .

 eq (E :: L1) @ L2 = E :: (L1 @ L2) .

 LIST-@!

open LIST-@ + EQL .

 vars A B : List

 op l : -> List .

 var E : Elt .

 red (A @ B) @ nil = A @ (B @ nil) .

 eq (A @ B) @ l = A @ (B @ l) .

 red (A @ B) @ (E :: l)

 = A @ (B @ (E :: l)) .

close !

open LIST-@ + EQL .

 vars B C : List

 op l : -> List .

 var E : Elt .

 red (nil @ B) @ C = nil @ (B @ C) .

 eq (l @ B) @ C = l @ (B @ C) .

 red ((E :: l) @ B) @ C

 = (E :: l) @ (B @ C) .

close !

P(L) = (A @ B) @ L = A @ (B @ L) P(L) = (L @ B) @ C = L @ (B @ C)

Sinaia School Lecture 4 Verification with Induction ""/33

Adding associativity

•! The commutative law and the associative law should

be declared as an attribute of the operator

–! Remind of the lecture on the term rewriting system

mod! LIST-@-assoc {

 pr(LIST-@)

 op _@_ : List List -> List {assoc}

}!

mod! LIST-@-assoc {

 pr(LIST-@)

 eq (A:List @ B:List) @ C:List = A @ (B @ C) .

}!

Sinaia School Lecture 4 Verification with Induction "#/33

Reverse function

•! Specify a reverse function

mod! LIST-rev {

 pr(LIST-@-assoc)

 op rev _ : List -> List

 var E : Elt . var L : List .

 eq rev nil = nil .

 eq rev (E :: L) = (rev L) @ (E :: nil) .

}

LIST-rev(X <= t2n)> red rev (0 :: 1 :: 2 :: nil) .

(2 :: (1 :: (0 :: nil))):NeList!

Sinaia School Lecture 4 Verification with Induction "$/33

rev is naive

•! Computation of rev is not so efficient

–! For example, rev [0,1, ..., n-1, n] is first reduced into

[n] @ [n-1] @ ... @ [1] @ [0] and then the concatenation of

the singleton lists is reduced by the equation on @

–! Here, [0,1,...,n] is an abbreviation of (0 :: 1 :: ... :: n :: nil)

1: rev [0, 1, 2]

2: (rev [1, 2]) @ [0]

3: (rev [2]) @ [1] @ [0]

4: (rev nil) @ [2] @ [1] @ [0]

5: nil @ [2] @ [1] @ [0]

6: [2] @ [1] @ [0]

7: 2 :: (nil @ [1] @ [0])

8: 2 :: ([1] @ [0])

9: 2 :: 1 :: (nil @ [0])

10: 2 :: 1:: [0]

 = 2 :: 1 :: 0 :: nil!

rev is O(n2)

For an input list whose

length is n, rev computes it

by (n+1)(n+2) / 2 rewrite

steps

(1 + 2 + ... + (n+1) + (n+2))

Sinaia School Lecture 4 Verification with Induction "%/33

Smart reverse

•! The following improved reverse function takes a list to

be reversed and the empty list, and returns the

reversed list

–! The reversed list is made one by one in the second

argument of revi

mod! LIST-revi {

 pr(BASIC-LIST)

 op revi : List List -> List

 vars L1 L2 : List

 var E : Elt

 eq revi(nil, L2) = L2 .

 eq revi((E :: L1), L2) = revi(L1, (E :: L2)) .

}

Sinaia School Lecture 4 Verification with Induction "'/33

Trace of revi

•! For an input list whose length is n, the improved

reverse computes it by n + 1 rewrite steps (O(n))

LIST-revi(X <= t2n)>

red revi(0 :: 1 :: 2 :: 3 :: 4 :: 5 :: nil ,nil)):List

[1]: revi((0 :: (1 :: (2 :: (3 :: (4 :: (5 :: nil)))))) , nil)

[2]: revi((1 :: (2 :: (3 :: (4 :: (5 :: nil))))) , (0 :: nil))

[3]: revi((2 :: (3 :: (4 :: (5 :: nil)))) , (1 :: (0 :: nil)))

[4]: revi((3 :: (4 :: (5 :: nil))) , (2 :: (1 :: (0 :: nil))))

[5]: revi((4 :: (5 :: nil)) , (3 :: (2 :: (1 :: (0 :: nil)))))

[6]: revi((5 :: nil) , (4 :: (3 :: (2 :: (1 :: (0 :: nil))))))

[7]: revi(nil , (5 :: (4 :: (3 :: (2 :: (1 :: (0 :: nil)))))))

(5 :: (4 :: (3 :: (2 :: (1 :: (0 :: nil)))))):NeList

(0.000 sec for parse, 7 rewrites(0.000 sec), 13 matches)!

Sinaia School Lecture 4 Verification with Induction "(/33

Example 4: rev = revi

•! Prove that the naive reverse and the smart reverse

denote a same function

–! revi(L, nil) = rev L

 I.S.
 I.H.
 I.B.

-- PROVE revi (L, nil) = rev L

open LIST-rev + LIST-revi + EQL .

 var E : Elt .

 op l : -> List .

 red revi(nil, nil) = rev nil .

 eq revi(l, nil) = rev l .

 red revi(E :: l, nil) = rev (E ::

l) .

close!

%LIST-...> red revi(nil, nil) = rev nil .

(true):Bool

%LIST-...> red revi(E :: l, nil) = rev (E :: l)

(revi(l,(E :: nil)) = ((rev l) @ (E :: nil))):Bool!

Sinaia School Lecture 4 Verification with Induction ")/33

Lemma discovery failed

•! If you take the result of the failed reduction itself as a

lemma, it fails again and again

%LIST-...> red revi(E :: l, nil) = rev (E :: l)

(revi(l,(E :: nil)) = ((rev l) @ (E :: nil))):Bool!

-- PROVE revi(l, E :: nil) = (rev l) @ (E :: nil)

open LIST-rev + LIST-revi + EQL .

 ...

 red revi(F :: l, E :: nil)= (rev (F :: l)) @ (E :: nil) .

close!

%LIST-...> red ...

(revi(l,(F :: (E :: nil))) = ((rev l) @ (F :: (E :: nil)))):Bool!

-- PROVE revi(l, F :: E :: nil) = (rev l) @ (F :: E :: nil)

open LIST-rev + LIST-revi + EQL .

 ...

 red revi(G :: l, F :: E :: nil)= (rev (G :: l)) @ (F :: E :: nil) .

close!

 %LIST-...> red ...

(revi(l,(G :: (F :: (E :: nil)))) = ((rev l) @ (G :: (F :: (E :: nil))))):Bool!

Sinaia School Lecture 4 Verification with Induction "*/33

Generalization

•! From the result of the last reduction, you may think of

a generalized equation

–! The second argument G :: F :: E :: nil of revi in lhs
is same as the second argument of @ in rhs

–! Thus, revi(L, L’) = (rev L) @ L’ may hold, which

is a generalization of revi(L, nil) = rev L

revi(l, G :: F :: E :: nil) = (rev l) @ (G :: F :: E :: nil)!

Sinaia School Lecture 4 Verification with Induction #+/33

Prove a generalized equation

•! The proof score of revi(L, L’) = (rev L) @ L’

returns true

open LIST-rev + LIST-revi + EQL .

 var E : Elt .

 var L' : List .

 op l : -> List .

 red (rev nil) @ L' = revi(nil, L') .

 eq revi(l, L') = (rev l) @ L' .

 red (rev (E :: l)) @ L' = revi(E :: l, L') .

close!

Sinaia School Lecture 4 Verification with Induction #!/33

Proof completed

•! Adding the lemma (the generalized equation) makes

the proof score succeed

open LIST-rev + LIST-revi + EQL .

 var E : Elt .

 vars L L' : List

 eq revi(L, L') = (rev L) @ L' .

 op l : -> List .

 red revi(nil, nil) = rev nil .

 eq revi(l, nil) = rev l .

 red revi(E :: l, nil) = rev (E :: l) .

close!

Sinaia School Lecture 4 Verification with Induction #"/33

Comments are important

•! In this material, although we did not write comments

in our examples because of a space limitation,

comments are heavily recommended to be added to
specifications and proof scores

-- Proof of revi(L, nil) = rev L

open LIST-rev + LIST-revi + EQL .

 -- Declare Lemma

 eq revi(L:List, L‘:List) = (rev L) @ L' .

 -- Declare an arbitrary element for Induction

 op l : -> List .

 --> Prove Induction Base

 red revi(nil, nil) = rev nil .

 -- Declare Induction Hypothesis

 eq revi(l, nil) = rev l .

 --> Prove Induction Step

 red revi(E:Elt :: l, nil) = rev (E :: l) .

close!

Sinaia School Lecture 4 Verification with Induction ##/33

Summary

•! Showed several induction proofs

•! To make a proof score of induction

–! Decide which variable you apply the induction

–! Check the target sort is declared in an initial module and the

module is protected

–! Declare a constant as an arbitrary element

–! Reduce I.B. for all constants of the sort

–! Declare I.H. by the constant declared as an arbitrary element

–! Reduce I.S. for all (non-constant) constructors of the sort

–! Find, prove, and declare lemma if the proof score failed

•! The result of reduction, or a generalization

TRS revised!

•! In the description stage with rapid-prototyping, we

may obtain specifications which satisfy termination,

confluence, etc

•! In the verification stage, we may not obtain such

good properties because equations (rewrite rules) are

added in proof scores

–! Especially you may get non-confluence TRS

–! When getting non-confluence TRS, the precedence of

equations may be important

•! Equations in the latest module are precedent

•! Upper equations are precedent in a same module!

Sinaia School Lecture 4 Verification with Induction #$/33

