Verification with Induction

CafeOBJ Team of JAIST

Topics

- Explain how to prove properties by the induction techniques with CafeOBJ
- Review: proof with an arbitrary element, etc
- Several examples: Nat, List
- Lemma discovery

Proof with an arbitrary element

- Review: Consider the following module

```
mod* PROOF-n {
    pr(NAT*)
    op n : -> Nat
```

\}
$\mathrm{PROOF}-\mathrm{n}+\mathrm{EQL}>\operatorname{red} \mathrm{s}(0+\mathbf{n})=0+\mathrm{s} \mathbf{n}$. (true) : Bool

This is a proof of
" $s(0+\mathbf{n})=0+s \mathbf{n}$ " for any natural number \mathbf{n}

Soundness of the proof

- Consider the denotation of PROOF-n
- includes a model of NAT* as it is (because of pr)
- NAT* denotes Natural numbers algebra N
- Constant n should be one of the elements of $N_{\text {Nat }}$
- For any natural number x, there exists a model M denoted by PROOF-n such that $\mathrm{M}_{\mathrm{n}}=x$

```
mod* PROOF-n {
    pr(NAT*)
    op n : -> Nat
}
```

```
PROOF-n> red s (0+n)=0+s n.
(true):Bool
```

This is a proof of $s(0+n)=0+s n$ for any natural number n

Proof of Implication

- Consider the following module

```
mod* PROOF-i {
    pr(NAT*)
    ops x y : -> Nat
    eq x = y + y .
}
```

```
PROOF-i + EQL> red x * s s 0 = (y * s s 0) + (y * s s 0).
(true):Bool
```

This is a proof of

```
x = s y implies x * s s 0 = (y* s s 0) + (y * s s 0)
```


Soundness of the implication proof

- Consider the denotation of PROOF-i
- x and y are elements of N and satisfy $\mathrm{x}=\mathrm{s} \mathrm{y}$ in a model
- For any natural number x and y satisfying " $x=y+1$ ", there exists a model M denoted by PROOF-i such that $\mathrm{M}_{\mathrm{x}}=x$ and $\mathrm{M}_{\mathrm{y}}=y$

```
mod* PROOF-i {
    pr(NAT*)
    ops x y : -> Nat
    eq x = s y.
```

```
red x * s s 0
    =(y*s s 0) +
    (y * s s 0) .
(true):Bool
```

This is a proof of

Proof score (in the board sense)

- We can make nameless module for a proof by opening a module

```
PROOF-i + EQL> open NAT* + EQL
%NAT* + EQL> ops x y : -> Nat.
%NAT* + EQL> eq x = y + y .
%NAT* + EQL> red x * s s 0 = (y * s s 0) + (y * s s 0)
(true):Bool
%NAT* + EQL> close
PROOF-i + EQL>
```

```
proof score
open NAT* + EQL
    ops x y : -> Nat
    eq x = y + y
    red x * s s 0 =
close
```

```
mod* PROOF-i {
    pr(NAT*)
    ops x y : -> Nat
    eq x = s y .}
```

PROOF-i + EQL> red ...

Structural Induction

- Structural induction is a proof method for recursivelydefined data structures (like terms)
- To prove $P(X)$ for all terms constructed by the set F of operators

1. [Induction Basis] Prove $P(c)$ for each constant c in F
2. [Induction Step] For each function f in F whose arity is n,

- Assume $P\left(t_{1}\right), P\left(t_{2}\right), \ldots, P\left(t_{n}\right)$, and
- Prove $P\left(f\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)$

Example 1: Left-identity of +

- The following is a proof score of that 0 is a leftidentity of +
$-\mathrm{P}(\mathrm{N})=" 0+\mathrm{N}=\mathrm{N} "$
- Prove for all terms constructed by 0 and s \qquad

open NAT ++ EQL
red $0+0=0$.
op $n:->$ Nat.
eq $0+n=n$
red $0+s n=s n$.
close

Induction Basis

Induction Hypothesis Induction Step

CafeOBJ system returns true for both reductions for this proof score

```
mod! NAT+ {
    eq N+O=N
    eq M + s N = s(M + N)
```

\}

Trace of reduction

- You can see how I.H. is used in the proof

```
open NAT+ + EQL
    red 0 + 0 = 0
    op n : -> Nat.
    eq 0 + n = n
    red 0+s n = s n.
close
```

```
1>[1] rule: eq (M:Nat + (s N:Nat)) = (s (M + N))
    { M:Nat |-> 0, N:Nat |-> n }
[1]: 0 + (s n) = s n ---> s (0 + n) = s n
1>[2] rule: eq (0 + n) = n {}
[2]: s (0+n)=s n ---> s n = s n
1>[3] rule: eq (CUX = CUX) = true
    { CUX |-> (s n) }
[3]: s n = s n ---> true
```


Wrong proof

- An arbitrary element in a induction proof score should not be declared as a variable

```
open NAT+ + EQL
    red 0 + 0 = 0.
    var N : Nat
    eq 0 + N = N .
    red 0 + s N = s N.
close
```

$\forall \mathrm{N}:$ Nat. $[0+\mathrm{N}=\mathrm{N}]$
$\Rightarrow \forall \mathrm{N}:$ Nat. $[0+\mathrm{s} \mathrm{N}=\mathrm{s} \mathrm{N}]$
open NAT + + EQL
red $0+0=0$.
op n : -> Nat.
eq $0+\mathrm{n}=\mathrm{n}$.
red $0+\mathrm{s} n=\mathrm{s} n$.

$$
\forall \mathrm{n}: \mathrm{Nat} \cdot\left[\begin{array}{l}
0+\mathrm{n}=\mathrm{n} \\
\Rightarrow 0+\mathrm{s} \mathrm{n}=\mathrm{s} \mathrm{n}
\end{array}\right]
$$

```
1>[1] rule: eq (O + N)=N {N N | - = s N }
[1]: 0 + (s N) = S N ---> s N = S N
[2]: s N:Nat = s N ---> true
```


Soundness of induction proof

- Sort Nat is defined in BASIC-NAT, which is declared as initial semantics (mod!)
- Thus, for any model M denoted by BASIC-NAT, for any element n in $\mathrm{M}_{\mathrm{Nat}}$, there is a term t constructed from 0 and s_ such that $\mathrm{M}_{t}=$ n (no junk)
- BASIC-NAT is protected, so it holds for NAT+ too
- Therefore, a proof of $P(t)$ for all terms constructed from 0 and s implies a proof of $P(t)$ for all terms of Sort Nat

```
mod! BASIC-NAT{
    [Zero NzNat < Nat]
    op 0 : -> Zero
    op s_ : Nat -> NzNat
```

\}

```
mod! NAT+ {
    pr (BASIC-NAT)
    eq N}+0=N=N
    eq M + s N = s(M +N)
```

\}

Adding proved equations

- If you succeed in proving $P(x)$ for x in a sort S by the induction and the sort \mathbf{S} is declared in an initial module and the module is protected, then you can declare $P(X: S)$ without changing the denotation of the specification


```
mod! NAT+' { ...
    vars M N : Nat
    eq N+O=N.
    eq M + s N = s(M + N)
    eq 0+N = N.
}
```

The denotations of NAT+ and NAT+' are same

Example 2: Commutativity of +

- Prove the addition operator to be commutative
- P(N) = " $\forall M: N a t . M+N=N+M "$
- When you have more than one variables in a property to be proved, you choose one of the variables as a target of the induction
- In this case M and N are symmetric

$\begin{gathered} \text { open NAT+ + EQL } \\ \text { var } M \text { : Nat } \end{gathered}$	
$\operatorname{red} M+0=0+M$	I.B.
op n : -> Nat.	
eq $M+n=n+M$	I.H
red $M+s \mathrm{n}=\mathrm{s} \mathrm{n}+\mathrm{m}$	I.S.
close	

Proof failed

- You do not always succeed in Induction Proof
open NAT+ + EQL
open NAT+ + EQL
var M : Nat
var M : Nat
red M + 0 = 0 + M
red M + 0 = 0 + M
op n : -> Nat .
op n : -> Nat .
eq M + n = n + M . I.H.
eq M + n = n + M . I.H.
red M + s n = s n + M . I.S.
red M + s n = s n + M . I.S.
close
close

```
%NAT+ + EQL> red M + 0 = 0 + M .
(M = (O + M)):Bool
```

The I.B. reduction does not return true

Find lemma

- To make a proof complete, some lemma is needed
- A suitable lemma may or may not be found from the result of the failed reduction

```
%NAT+ + EQL> red M + 0 = 0 + M.
(M = (0 + M) ):Bool
```

We already proved this equation
(0 is the left-identity of +)

Adding proved lemma

- We can add a proved equation in a proof score

open NAT+ + EQL vars M N : Nat	
eq $0+N=N$	Lemma
op n : -> Nat	
red $\mathrm{M}+0=0+\mathrm{M}$	I.B.
eq $M+n=n+M$	I.H.
red $M+s \mathrm{n}=\mathrm{s} \mathrm{n}+\mathrm{M}$	I.S.
close	

```
%NAT+ + EQL> red M + 0 = 0 + M .
(true):Bool
%NAT+ + EQL> red M + s n = s n + M .
((s (n + M)) = ((s n) + M)):Bool
```

Thanks to Lemma, I.B. succeeds, but I.S. does not succeed

Complete proof

- The result of the reduction of the Induction Step also can be proved by the induction

```
%NAT+ + EQL> red M + s n = s n + M .
((s (n + M)) = ((s n) + M)):Bool
\begin{tabular}{|c|c|c|}
\hline Proof of "s M + N = s(M + N)" & & vars M N : Nat \\
\hline ```
open NAT+ + EQL
    var M : Nat
``` & Lemma & \[
\begin{aligned}
& \text { eq } 0+N=N \\
& \text { eq } s M+N=s(M+N)
\end{aligned}
\] \\
\hline op n : -> Nat & & op n : -> Nat. \\
\hline red \(s M+0=s(M+0)\) & I.B. & red \(M+0=0+M\) \\
\hline eq \(s M+n=s(M+n)\) & I.H. & eq \(M+n=n+M\) \\
\hline red \(s M+s n=s(M+s n)\) & I.S. & red \(M+s \mathrm{n}=\mathrm{s} \mathrm{n}+\mathrm{M}\) \\
\hline close & & close \\
\hline
\end{tabular}
All reductions return true, and The proof has been completed
```


## Specification of lists

- The following parameterized module specifies lists whose elements can be of any kind of sets

```
hwd:mod* TRIV {
 [Elt]
}
```

```
mod! BASIC-LIST(X :: TRIV)
```

mod! BASIC-LIST(X :: TRIV)
[Empty NeList < List]
[Empty NeList < List]
op nil : -> Empty
op nil : -> Empty
op _::_ : Elt List -> NeList
op _::_ : Elt List -> NeList
}
}
view t2n from TRIV to NAT{ sort Elt -> Nat }

```
```

BASIC-LIST(X <= t2n)> parse 0 :: 1 :: 2 :: nil

```
BASIC-LIST(X <= t2n)> parse 0 :: 1 :: 2 :: nil
(0 :: (1 :: (2 :: nil))):NeList
```

(0 :: (1 :: (2 :: nil))):NeList

```

\section*{Concatenation of lists}
- Specify a concatenation function of lists
```

mod! LIST-@ {
pr(BASIC-LIST)
op _@_: List List -> List
var E : Elt.
vars L1 L2 : List
eq nil@ L1 = L1
eq (E :: L1) @ L2 = E :: (L1 @ L2)

```
\}
```

LIST-@(X <= t2n)> red (0 :: 1 :: nil) @ (2 :: 3 :: nil).
[1]: ((0 :: (1 :: nil)) @ (2 :: (3 :: nil)))
[2]: (0 :: ((1 :: nil) @ (2 :: (3 :: nil))) )
[3]: (0 :: (1 :: (nil @ (2 :: (3 :: nil))) ))
---> (0 :: (1 :: (2 :: (3 :: nil))))

```

\section*{Example 3: Associativity of @}
- Prove the associativity of @
- (A @ B) @ C = A @ (B @ C)
- Which variable should we apply the induction to?

\section*{Adding associativity}
- The commutative law and the associative law should be declared as an attribute of the operator
- Remind of the lecture on the term rewriting system
```

mod! LIST-@-assoc {
pr(LIST-@)
eq (A:List @ B:List) @ C:List = A @ (B @ C) .

```
\}
```

mod! LIST-@-assoc {
pr(LIST-@)
op _@_ : List List -> List {assoc}
}

```

\section*{Reverse function}
- Specify a reverse function
```

mod! LIST-rev {
pr(LIST-@-assoc)
op rev _ : List -> List
var E : Elt . var L : List.
eq rev nil = nil .
eq rev (E :: L) = (rev L) @ (E :: nil) .

```
\}
```

LIST-rev(X <= t2n)> red rev (0 :: 1 :: 2 :: nil) .

```
(2 : : (1 : : (0 : : nil))) :NeList

\section*{rev is naive}
- Computation of rev is not so efficient
- For example, rev \([0,1, \ldots, n-1, n]\) is first reduced into \([n] @[n-1] @ \ldots @[1] @[0]\) and then the concatenation of the singleton lists is reduced by the equation on @
- Here, \([0,1, \ldots, \mathrm{n}]\) is an abbreviation of (\(0:: 1:: . . .:: \mathrm{n}:: \mathrm{nil}\))
```

1: rev [0, 1, 2]
2: (rev [1, 2]) @ [0]
3: (rev [2]) @ [1] @ [0]
4: (rev nil) @ [2] @ [1] @ [0]
5: nil @ [2] @ [1] @ [0]
6: [2] @ [1] @ [0]
7: 2 :: (nil @ [1] @ [0])
8: 2 :: ([1] @ [0])
9: 2 :: 1 :: (nil @ [0])
10: 2 :: 1:: [0]

```
= 2 :: 1 :: 0 :: nil

\section*{Smart reverse}
- The following improved reverse function takes a list to be reversed and the empty list, and returns the reversed list
- The reversed list is made one by one in the second argument of revi
```

mod! LIST-revi {
pr(BASIC-LIST)
op revi : List List -> List
vars L1 L2 : List
var E : Elt
eq revi(nil, L2) = L2
eq revi((E :: L1), L2) = revi(L1, (E :: L2))
}

```

\section*{Trace of revi}
- For an input list whose length is n , the improved reverse computes it by \(\mathrm{n}+1\) rewrite steps (\(\mathrm{O}(\mathrm{n})\))
```

LIST-revi(X <= t2n)>
red revi(0 :: 1 :: 2 :: 3 :: 4 :: 5 :: nil ,nil)):List
[1]: revi( (0 :: (1 :: (2 :: (3 :: (4 :: (5 :: nil)))))) , nil )
[2]: revi( (1 :: (2 :: (3 :: (4 :: (5 :: nil))))) , (0 :: nil) )
[3]: revi( (2 :: (3 :: (4 :: (5 :: nil)))) , (1 :: (0 :: nil)) )
[4]: revi( (3 :: (4 :: (5 :: nil))) , (2 :: (1 :: (0 :: nil))) )
[5]: revi( (4 :: (5 :: nil)) , (3 :: (2 :: (1 :: (0 :: nil)))) )
[6]: revi( (5 :: nil) , (4 :: (3 :: (2 :: (1 :: (0 :: nil))))) )
[7]: revi( nil , (5 :: (4 :: (3 :: (2 :: (1 :: (0 :: nil)))))) )
(5 :: (4 :: (3 :: (2 :: (1 :: (0 :: nil)))))):NeList
(0.000 sec for parse, 7 rewrites(0.000 sec), 13 matches)

```

\section*{Example 4: rev = revi}
- Prove that the naive reverse and the smart reverse denote a same function
```

- revi(L, nil) = rev L
-- PROVE revi (L, nil) = rev L
open LIST-rev + LIST-revi + EQL .
var E : Elt .
op l : -> List
red revi(nil, nil) = rev nil . I.B.
eq revi(l, nil) = rev l .
red revi(E :: l, nil) = rev (E ::
I.H.
I.S.
l)
close

```
```

%LIST-...> red revi(nil, nil) = rev nil .

```
%LIST-...> red revi(nil, nil) = rev nil .
(true):Bool
(true):Bool
%LIST-...> red revi(E :: l, nil) = rev (E :: l)
%LIST-...> red revi(E :: l, nil) = rev (E :: l)
(revi(l,(E :: nil)) = ((rev l) @ (E :: nil))):Bool
```

(revi(l,(E :: nil)) = ((rev l) @ (E :: nil))):Bool

```

\section*{Lemma discovery failed}
- If you take the result of the failed reduction itself as a lemma, it fails again and again
```

%LIST-...> red revi(E :: l, nil) = rev (E :: l)
(revi(l,(E :: nil)) = ((rev l) @ (E : : nil))):Bool
-- PROVE revi(l, E :: nil) = (rev l) @ (E :: nil)
open LIST-rev + LIST-revi + EQL .
red revi(F :: l, E : : nil)=(rev (F :: l)) @ (E :: nil).
close
%LIST-...> red ...
(revi(l,(F : : (E : : nil))) = ((rev l) @ (F : : (E : : nil)))):Bool
-- PROVE revi(l, F :: E : : nil) = (rev l) @ (F :: E :: nil)
open LIST-rev + LIST-revi + EQL .
red revi(G :: l, F :: E :: nil)= (rev (G :: l)) @ (F :: E :: nil) .
close
%LIST-...> red ...
(revi(l,(G : : (F : : (E :: nil)))) = ((rev l) @ (G :: (F :: (E :: nil))))) :Bool

```

\section*{Generalization}
```

revi(l, G :: F :: E :: nil) = (rev l) @ (G :: F :: E :: nil)

```
- From the result of the last reduction, you may think of a generalized equation
- The second argument \(G\) :: F :: E : : nil of revi in lhs is same as the second argument of \(@\) in rhs
- Thus, revi (L, \(L^{\prime}\)) = (rev L) @ L' may hold, which is a generalization of revi \((\mathrm{L}, \mathrm{nil})=\mathrm{rev} \mathrm{L}\)

\section*{Prove a generalized equation}
- The proof score of revi(L, \(\left.L^{\prime}\right)\) = (rev L) @ \(L^{\prime}\) returns true
```

open LIST-rev + LIST-revi + EQL .
var E : Elt.
var L' : List.
op l : -> List.
red (rev nil) @ L' = revi(nil, L') .
eq revi(l, L') = (rev l) @ L' .
red (rev (E :: l)) @ L' = revi(E :: l, L') .
close

```

\section*{Proof completed}
- Adding the lemma (the generalized equation) makes the proof score succeed
```

open LIST-rev + LIST-revi + EQL .
var E : Elt .
vars L L' : List
eq revi(L, L') = (rev L) @ L'.
op l : -> List .
red revi(nil, nil) = rev nil .
eq revi(l, nil) = rev l .
red revi(E :: l, nil) = rev (E :: l) .
close

```

\section*{Comments are important}
- In this material, although we did not write comments in our examples because of a space limitation, comments are heavily recommended to be added to specifications and proof scores
```

-- Proof of revi(L, nil) = rev L
open LIST-rev + LIST-revi + EQL .
-- Declare Lemma
eq revi(L:List, L':List) = (rev L) @ L' .
-- Declare an arbitrary element for Induction
op l : -> List .
--> Prove Induction Base
red revi(nil, nil) = rev nil .
-- Declare Induction Hypothesis
eq revi(l, nil) = rev l .
--> Prove Induction Step
red revi(E:Elt :: l, nil) = rev (E :: l) .
close

```

\section*{Summary}
- Showed several induction proofs
- To make a proof score of induction
- Decide which variable you apply the induction
- Check the target sort is declared in an initial module and the module is protected
- Declare a constant as an arbitrary element
- Reduce I.B. for all constants of the sort
- Declare I.H. by the constant declared as an arbitrary element
- Reduce I.S. for all (non-constant) constructors of the sort
- Find, prove, and declare lemma if the proof score failed
- The result of reduction, or a generalization

\section*{TRS revised}
- In the description stage with rapid-prototyping, we may obtain specifications which satisfy termination, confluence, etc
- In the verification stage, we may not obtain such good properties because equations (rewrite rules) are added in proof scores
- Especially you may get non-confluence TRS
- When getting non-confluence TRS, the precedence of equations may be important
- Equations in the latest module are precedent
- Upper equations are precedent in a same module```

