Falsification and Verification
 by Searching

CafeOBJ Team of JAIST

Topics

- Search command of CafeOBJ
- Falsification with the search command
- Verification with the search command

Search command of CafeOBJ

CafeOBJ System has the following built-in predicate:

- ANY is any sort (that is, the command is available for any sort)
- NzNat * is a built-in sort containing non-zero natural number and the special symbol "**" which stands for infinity
pred _=(_r,) $=>^{*}$ _ Any NzNat* NzNat* Any
($\mathrm{t} 1=(\mathrm{m}, \mathrm{n})=\mathbf{> *}^{*} \mathrm{t} 2$) returns true if t 1 can be translated (or rewritten), via more than 0 times transitions, to some term which matches to t2. Otherwise, it returns false. Possible transitions/rewritings are searched in breadth first fashion. \mathbf{n} is upper bound of the depth of the search, and m is upper bound of the number of terms which match to t2. If either of the depth of the search or the number of the matched terms reaches to the upper bound, the search stops.

Two other variants of Search command

```
pred _=(_,_)=>+_ : Any NzNat* NzNat* Any
pred _=(_,_)=>!_ : Any NzNat* NzNat* Any
```

($\mathrm{t} 1=(\mathrm{m}, \mathrm{n})=>+\mathrm{t2})$ indicates that the application of transition rules are more than 1 time.
($\mathrm{t} 1=(\mathrm{m}, \mathrm{n})=\mathbf{>}$! t2) indicates that the term matching to t 2 should be a term to which no transition rules are applicable.

An example for search command:

READERS-WRITERS
-- the following four transitions rules
-- are specifying a Readers/Writers policy vars R W : Counter .
-- can start to write if no readers and no writers trans [+w] : < 0, $0>=><0, \mathrm{~s} 0$ > .
-- can start to read if no writers
trans [+r] : < R, $0>=><\mathrm{s}$, 0 > .
-- can stop reading anytime
trans [-r]: < s R, W > => < R, W > .
-- can stop writing anytime
trans [-W]: < R, s W > => < R, W > .

State transition diagram for READERS-WRITERS

suchThat condition

```
t1 =(m,n)=>* t2 suchThat pred1(t2)
```

pred1(t2) is a predicate about t2 and can refer to the variables which appear in $\mathbf{t 2}$. pred1(t2) enhances the condition used to determine the term which matches to $\mathbf{t 2}$.

```
t1 =(m, n)=>* t2 suchThat pred1(t2)
```


withStateEq predicate

t1 $=(\mathrm{m}, \mathrm{n})=$ * $^{\text {t2 }}$

withStateEq pred2(S1:Sort,S2:Sort)
pred2(S1:Sort, S2:Sort) is a predicate of two arguments with the same (or greater) sort of $\mathbf{t 2}$.
pred2(S1:Sort, S2:Sort) is used to determine a newly searched term (a state configuration) is already searched one. If this withStateEq predicate is not given, the term identity binary predicate is used for the purpose.

Using both of suchTant and withStateEq is also possible
t1 $=(\mathrm{m}, \mathrm{n})=>^{*}$ t2 suchThat pred1(t2) withStateEq pred2(S1:Sort,S2:Sort)

```
t1 =(m,n)=>* t2
withStateEq pred2(S1:Sort, S2:Sort)
```



```
vars R W : Counter
-- mutual exclusion property
pred mutualEx_ : Config
eq mutualEx < 0 , W > = true .
eq mutualEx < R , 0 > = true .
eq mutualEx < s R , s W > = false .
-- only one writer property
pred oneWt_ : Config
eq oneWt < R, 0 > = true
eq oneWt < R, s 0 > = true .
eq oneWt < R, s s W > = false .
```

Search command (red using (_=(_,_)=>*)) for verifying that mutualEx holds for all reachable states

```
red < 0 , 0 > ==>* C:Config
    suchThat (mutualEx (C) == false) .
```

If this returns "false" then the verification is done!
red < 0,0 > ==>*
< s R:Counter , s W:Counter > .

If this returns "false" then the verification is done!

Unfortunately both of these reductions do not stop!

The following two equations hold.
mutualEx (< s s R:Counter, $0>$) $=$ mutualEx (< s 0,0 >) oneWt (< s s R:Counter, $0>$) $=$ oneWt (< s 0,0 >)

The first equation can give the following search command for the verification of mutualEx.

```
eq< s s R:Counter , 0 > = < s 0 , 0 > .
red < 0 , 0 > ==>* C:Config
    suchThat (mutualEx(C) == false) .
```

For oneWt property:

```
eq< s s R:Counter , 0 > = < s 0 , 0 > .
red < 0 , 0 > ==>* C:Config
    suchThat (oneWt(C) == false).
```

State transition diagram for READERS-WRITERS after the equational abstraction

QLOCK with separable want action

Each agent i is executing: \square : atomic action

Signature for QLOCKw2w

-- state space of the system *[Sys]*	
	Hiden sort declaration
-- visible sorts for observation	
[Queue Pid Label]	visible sort declaration
-- observations	
bop pc : Sys Pid -> Label bop tmp : Sys Pid -> Queue bop queue : Sys -> Queue	Observation declaration
-- actions	
bop want1 : Sys Pid -> Sys bop want2 : Sys Pid -> Sys bop try : Sys Pid -> Sys bop exit : Sys Pid -> Sys	action declaration

Separable want: want1 and want2

```
-- for want1
    op c-want1 : Sys Pid -> Bool {strat: (0 1 2)}
    eq c-want1(S,I) = (pc(S,I) = rm) .
    ceq pc(want1(S,I),J)
        = (if I = J then qc else pc(S,J) fi) if c-want1(S,I).
    ceq tmp(want1(S,I),J)
        = (if I = J then queue(S) else tmp(S,J) fi) if c-want1(S,I) .
    ceq queue(want1(S,I)) = queue(S) if c-want1(S,I).
    ceq want1(S,I) = S if not c-want1(S,I).
-- for want2
    op c-want2 : Sys Pid -> Bool {strat: (0 1 2)}
    eq c-want2(S,I) = (pc(S,I) = qc) .
    --
    ceq pc(want2(S,I),J)
        = (if I = J then wt else pc(S,J) fi) if c-want2(S,I).
    ceq tmp(want2(S,I),J) = tmp(S,J) if c-want2(S,I)
    ceq queue(want2(S,I)) = put(I,tmp(S,I)) if c-want2(S,I)
    ceq want2(S,I) =S if not c-want2(S,I).
```


$\mathrm{R}_{\text {0Lockw2w }}$: set of reachable states of QLOCKw2w

Signature determining $\mathrm{R}_{\mathrm{QLoCKw} 2 \mathrm{w}}$

-- any initial state
op init : -> Sys
-- actions
bop want1 : Sys Pid -> Sys
bop want2 : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

> Recursive definition of $\mathrm{R}_{\text {QLOCKw2w }}$
> $\mathrm{R}_{\mathrm{QLOCKW} 2 \mathrm{w}}=\{$ init $\} \mathrm{U}$
> $\{$ want1($\left.s, i) \mid s \in R_{\text {LLockw2w }}, i \in \operatorname{Pid}\right\} U$
> \{want2(s,i)|s, $R_{\text {QLockw } 2 w, i \in P i d\}} U$
> $\left\{\operatorname{try}(s, i) \mid s \in R_{R_{\text {LOCKW } 2 w}, i}, i \in P i d\right\} \quad U$ \{exit(s,i)|s, $\left.R_{\text {QLockw2w }}, i \in \operatorname{Pid}\right\}$

Making actions into transitions for agents $\mathbf{i}, \mathrm{j}, \mathrm{x}$

```
-- possible transitions in transition rules
    ctrans [want1-i] : < S > => < want1(S,i) > if c-want1(S,i) .
```



```
    ctrans [want1-x] : < S > => < want1 \((S, x)>\) if \(c\)-want1 \((S, x)\).
    ctrans [want2-i] : < S > => < want2(S,i) > if c-want2(S,i) .
    ctrans [want2-j] : < S > => < want2(S,j) > if c-want2(S, j) .
    ctrans [want2-x] : < S > => < want2(S, x) > if c-want2(S, x) .
    ctrans [try-i] : < S > => < try(S,i) > if c-try(S,i) .
    ctrans [try-j] : < S > => < try(S,j) > if c-try(S,j).
    ctrans \([\operatorname{try}-\mathrm{x}]:<\mathrm{S}>\mathrm{=}<\operatorname{try}(\mathrm{S}, \mathrm{x})>\mathrm{if} \mathrm{c}-\operatorname{try}(\mathrm{S}, \mathrm{x})\).
    ctrans [exit-i] : < S > => < exit(S,i) > if c-exit(S,i) .
    ctrans [exit-j] : < S > => <exit(S,j) > if c-exit(S,j) .
    ctrans [exit-x] : < S > => <exit \((S, x)>\) if c-exit \((S, x)\).
```


Falsification can be done

 by the search command```
eq mutualEx(S:Sys,I:Pid,J:Pid) =
 ((pc(S,I) = cs and pc(S,J) = cs) implies I = J)
eq mutualEx-ij(S:Sys) = mutualEx(S,i,j) .
red < init > =(1,6)=>* < S:Sys >
 suchThat (not mutualEx-ij(S)) .
```

If
red < init > $=(1,6)=>^{*}<$ S:Sys >
suchThat (not mutualEx-ij(S)) .
returns true for some term, the term represent a state s
in $R_{\text {QLockw2w }}$ for which mutualEx $(s, i, j)$ does not hold.

## A counter example found

## show path 382

[state 0] (< init >):Config ctrans [want1-i]
[state 1] (<want1 (init, i) >):Config ctrans [want1-j]
[state 4] (<want1 (want1 (init, i), j) >) : Config ctrans [want2-i]
[state 14] (< want2 (want1 (want1 (init, i), j), i) >) :Config ctrans [try-i]
[state 45] (< try (want2 (want1 (want1 (init, i), j), i), i) >) :Config ctrans [want2-j]
[state 136] (< want2 (try (want2 (want1 (want1 (init, i), j), i), i), j) >) : Config ctrans [try-j]
[state 382] (< try (want2 (try (want2 (want1 (want1 (init, i), j), i), i), j), j) >) :Config

```
try(want2(try(want2(want1(want1(init,i),j),i),i),j),j)
```

