
1

Falsification and Verification
by Searching

CafeOBJ Team of JAIST

LectureNote10, Sinaia School, 03-10 March 2008
2

Topics

Search command of CafeOBJ

Falsification with the search command

Verification with the search command

2

LectureNote10, Sinaia School, 03-10 March 2008
3

Search command of CafeOBJ

pred _=(_,_)=>*_ : Any NzNat* NzNat* Any

CafeOBJ System has the following built-in predicate:
- ANY is any sort (that is, the command is available for any sort)
- NzNat* is a built-in sort containing non-zero natural number

and the special symbol “*” which stands for infinity

(t1 =(m,n)=>* t2) returns true if t1 can be translated (or
rewritten), via more than 0 times transitions, to some term which
matches to t2. Otherwise, it returns false . Possible
transitions/rewritings are searched in breadth first fashion. n is
upper bound of the depth of the search, and m is upper bound of
the number of terms which match to t2. If either of the depth of
the search or the number of the matched terms reaches to the
upper bound, the search stops.

LectureNote10, Sinaia School, 03-10 March 2008
4

t1 =(m,n)=>* t2

…

…

…

…

…

…

t1

…

n : the depth of
the search tree

m : the number of
the searched terms
which match to t2

…

…

3

LectureNote10, Sinaia School, 03-10 March 2008
5

Two other variants of Search command

pred _=(_,_)=>+_ : Any NzNat* NzNat* Any
pred _=(_,_)=>!_ : Any NzNat* NzNat* Any

(t1 =(m,n)=>+ t2) indicates that the application
of transition rules are more than 1 time.

(t1 =(m,n)=>! t2) indicates that the term
matching to t2 should be a term to which no transition
rules are applicable.

LectureNote10, Sinaia School, 03-10 March 2008
6

An example for search command:
Readers/Writers Policy

-- the following four transitions rules
-- are specifying a Readers/Writers policy
vars R W : Counter .

-- can start to write if no readers and no writers
trans [+w] : < 0, 0 > => < 0, s 0 > .

-- can start to read if no writers
trans [+r] : < R, 0 > => < s R, 0 > .

-- can stop reading anytime
trans [-r] : < s R, W > => < R, W > .

-- can stop writing anytime
trans [-w] : < R, s W > => < R, W > .

searchCommand.mod

READERS-WRITERS

4

LectureNote10, Sinaia School, 03-10 March 2008
7

State transition diagram for READERS-WRITERS

< 0,0 >

< s ... s 0,0 >

< s 0,0 >

< 0,s 0 >

…
…

W+

W-

R+ R-

R-

R-

R-

R+

R+

R+

LectureNote10, Sinaia School, 03-10 March 2008
8

suchThat condition

pred1(t2) is a predicate about t2 and can
refer to the variables which appear in t2.
pred1(t2) enhances the condition used to
determine the term which matches to t2.

t1 =(m,n)=>* t2 suchThat pred1(t2)

searchCommand.mod

5

LectureNote10, Sinaia School, 03-10 March 2008
9

t1 =(m,n)=>* t2 suchThat pred1(t2)

…

…

…

…

…

…

t1

…

n : the depth of
the search tree

m : the number of
the searched terms
which match to t2 and
satisfy pred(t2)

…

…

LectureNote10, Sinaia School, 03-10 March 2008
10

withStateEq predicate

t1 =(m,n)=>* t2
withStateEq pred2(S1:Sort,S2:Sort)

searchCommand.mod

pred2(S1:Sort,S2:Sort) is a predicate of two arguments
with the same (or greater) sort of t2.
pred2(S1:Sort,S2:Sort) is used to determine a newly
searched term (a state configuration) is already searched one.
If this withStateEq predicate is not given, the term identity
binary predicate is used for the purpose.

t1 =(m,n)=>* t2 suchThat pred1(t2)
withStateEq pred2(S1:Sort,S2:Sort)

Using both of suchTant and withStateEq is also possible

6

LectureNote10, Sinaia School, 03-10 March 2008
11

t1 =(m,n)=>* t2
withStateEq pred2(S1:Sort,S2:Sort)

…

…

…

…

…

…

t1

…

n : the depth of
the search tree

…

…

m : the number of
the searched terms
which match to t2

: pred2 = true

LectureNote10, Sinaia School, 03-10 March 2008
12

Abbreviated search commands

(CXU ==>1 CYU) =def (CXU =(1,*)=>+ CYU)

(CXU ==>* CYU) =def (CXU =(*,*)=>* CYU)

(CXU ==>! CYU) =def (CXU =(*,*)=>! CYU)

(CXU ==>+ CYU) =def (CXU =(*,*)=>+ CYU)

searchCommand.mod

7

LectureNote10, Sinaia School, 03-10 March 2008
13

Verifying properties of READERS-WRITERS readerWriter.mod

vars R W : Counter
-- mutual exclusion property
pred mutualEx_ : Config
eq mutualEx < 0 , W > = true .
eq mutualEx < R , 0 > = true .
eq mutualEx < s R , s W > = false .
-- only one writer property
pred oneWt_ : Config
eq oneWt < R, 0 > = true .
eq oneWt < R, s 0 > = true .
eq oneWt < R, s s W > = false .

LectureNote10, Sinaia School, 03-10 March 2008
14

Search command (red using (_=(_,_)=>*)) for verifying
that mutualEx holds for all reachable states

red < 0 , 0 > ==>* C:Config
suchThat (mutualEx(C) == false) .

If this returns “false” then the verification is done!

red < 0 , 0 > ==>*
< s R:Counter , s W:Counter > .

If this returns “false” then the verification is done!

Unfortunately both of these reductions do not stop!

readerWriter.mod

8

LectureNote10, Sinaia School, 03-10 March 2008
15

Equational abstraction for READERS-WRITERS
readerWriter.mod

mutualEx(< s s R:Counter,0 >) = mutualEx(< s 0,0 >)
oneWt(< s s R:Counter,0 >) = oneWt(< s 0,0 >)

The following two equations hold.

The first equation can give the following search command
for the verification of mutualEx.
eq < s s R:Counter , 0 > = < s 0 , 0 > .
red < 0 , 0 > ==>* C:Config

suchThat (mutualEx(C) == false) .

eq < s s R:Counter , 0 > = < s 0 , 0 > .
red < 0 , 0 > ==>* C:Config

suchThat (oneWt(C) == false) .

For oneWt property:

LectureNote10, Sinaia School, 03-10 March 2008
16

State transition diagram for READERS-WRITERS
after the equational abstraction

< 0,0 >

< s ... s 0,0 >

< s 0,0 >

< 0,s 0 >

…
…

W+

W-

R+ R-

R-

R-

R-

R+

R+

R+

9

LectureNote10, Sinaia School, 03-10 March 2008
17

QLOCK with separable want action

Remainder Section Critical Section

top(queue)=i

cs

queue<-put(tmpi,i)

get(queue)

wt

rm true

false

Each agent i is executing: : atomic action

tmpi<-queue

qc

exit

want1

want2

try

qlockWithSepWant.mod

LectureNote10, Sinaia School, 03-10 March 2008
18

Observation declaration

action declaration

visible sort declaration

Hiden sort declaration

Signature for QLOCKw2w

-- state space of the system
[Sys]

-- visible sorts for observation
[Queue Pid Label]

-- observations
bop pc : Sys Pid -> Label
bop tmp : Sys Pid -> Queue
bop queue : Sys -> Queue

-- actions
bop want1 : Sys Pid -> Sys
bop want2 : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

10

LectureNote10, Sinaia School, 03-10 March 2008
19

Separable want: want1 and want2
-- for want1

op c-want1 : Sys Pid -> Bool {strat: (0 1 2)}
eq c-want1(S,I) = (pc(S,I) = rm) .
--
ceq pc(want1(S,I),J)

= (if I = J then qc else pc(S,J) fi) if c-want1(S,I) .
ceq tmp(want1(S,I),J)

= (if I = J then queue(S) else tmp(S,J) fi) if c-want1(S,I) .
ceq queue(want1(S,I)) = queue(S) if c-want1(S,I) .
ceq want1(S,I) = S if not c-want1(S,I) .

-- for want2
op c-want2 : Sys Pid -> Bool {strat: (0 1 2)}
eq c-want2(S,I) = (pc(S,I) = qc) .
--
ceq pc(want2(S,I),J)

= (if I = J then wt else pc(S,J) fi) if c-want2(S,I) .
ceq tmp(want2(S,I),J) = tmp(S,J) if c-want2(S,I) .
ceq queue(want2(S,I)) = put(I,tmp(S,I)) if c-want2(S,I) .
ceq want2(S,I) = S if not c-want2(S,I) .

LectureNote10, Sinaia School, 03-10 March 2008
20

RQLOCKw2w: set of reachable states of QLOCKw2w

-- any initial state
op init : -> Sys

-- actions
bop want1 : Sys Pid -> Sys
bop want2 : Sys Pid -> Sys
bop try : Sys Pid -> Sys
bop exit : Sys Pid -> Sys

Signature determining RQLOCKw2w

RQLOCKw2w = {init} ∪
{want1(s,i)|s∈RQLOCKw2w,i∈Pid} ∪
{want2(s,i)|s∈RQLOCKw2w,i∈Pid} ∪
{try(s,i) |s∈RQLOCKw2w,i∈Pid} ∪
{exit(s,i)|s∈RQLOCKw2w,i∈Pid}

Recursive definition of RQLOCKw2w

11

LectureNote10, Sinaia School, 03-10 March 2008
21

Making actions into transitions for agents i,j,x
-- possible transitions in transition rules
ctrans [want1-i] : < S > => < want1(S,i) > if c-want1(S,i) .
ctrans [want1-j] : < S > => < want1(S,j) > if c-want1(S,j) .
ctrans [want1-x] : < S > => < want1(S,x) > if c-want1(S,x) .

ctrans [want2-i] : < S > => < want2(S,i) > if c-want2(S,i) .
ctrans [want2-j] : < S > => < want2(S,j) > if c-want2(S,j) .
ctrans [want2-x] : < S > => < want2(S,x) > if c-want2(S,x) .

ctrans [try-i] : < S > => < try(S,i) > if c-try(S,i) .
ctrans [try-j] : < S > => < try(S,j) > if c-try(S,j) .
ctrans [try-x] : < S > => < try(S,x) > if c-try(S,x) .

ctrans [exit-i] : < S > => < exit(S,i) > if c-exit(S,i) .
ctrans [exit-j] : < S > => < exit(S,j) > if c-exit(S,j) .
ctrans [exit-x] : < S > => < exit(S,x) > if c-exit(S,x) .

LectureNote10, Sinaia School, 03-10 March 2008
22

Falsification can be done
by the search command

eq mutualEx(S:Sys,I:Pid,J:Pid) =
((pc(S,I) = cs and pc(S,J) = cs) implies I = J) .

eq mutualEx-ij(S:Sys) = mutualEx(S,i,j) .

red < init > =(1,6)=>* < S:Sys >
suchThat (not mutualEx-ij(S)) .

If
red < init > =(1,6)=>* < S:Sys >

suchThat (not mutualEx-ij(S)) .
returns true for some term, the term represent a state s
in RQLOCKw2w for which mutualEx(s,i,j) does not hold.

12

LectureNote10, Sinaia School, 03-10 March 2008
23

A counter example found

[state 0] (< init >):Config
ctrans [want1-i]

[state 1] (< want1(init,i) >):Config
ctrans [want1-j]

[state 4] (< want1(want1(init,i),j) >):Config
ctrans [want2-i]

[state 14] (< want2(want1(want1(init,i),j),i) >):Config
ctrans [try-i]

[state 45] (< try(want2(want1(want1(init,i),j),i),i) >):Config
ctrans [want2-j]

[state 136] (< want2(try(want2(want1(want1(init,i),j),i),i),j) >):Config
ctrans [try-j]

[state 382] (< try(want2(try(want2(want1(want1(init,i),j),i),i),j),j) >):Config

try(want2(try(want2(want1(want1(init,i),j),i),i),j),j)

show path 382
qlockWithSepWantFalsify.mod

