
1

Verifying Specifications with Proof Scores
in CafeOBJ

FUTATSUGI, Kokichi
二木 厚吉

Chair of Language Design
Graduate School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
Japan

(this talk is based on our group’s research results
with many persons’ contributions)

SinaiaSchoolOnFVSS, 080303
2

I am going to talk about…

Our perception of current situation of formal
methods and specification verifications

Introduction to how to model/specify and verify in
CafeOBJ with simple examples

An overview of specifications and proof scores in
CafeOBJ including what kinds of formal models
are used for writing formal specifications and
proof scores

Current status and future issues of the proof
score approach for verifying specifications

2

Our perception about
Formal Methods and Specification Verifications

SinaiaSchoolOnFVSS, 080303
4

Application areas of formal methods (FM)

1. Analysis and verification of developed
program codes (post-coding)

2. Analysis and verification of (models/specs of)
domains, requirements, and designs before/
without coding (pre-coding or without coding)

Successful application of formal methods to the
area of (models/specifications of) domains,
requirements, designs can bring drastic good
effects for systems developments, but it is not
well exploited and/or practiced yet.

specification = description of model

3

SinaiaSchoolOnFVSS, 080303
5

The current situation of FM
Verification with formal specifications still have a
potential to improve the practices in upstream (pre-
coding) of systems development processes
Model checking has brought a big success but still
has limitations

It is basically “model checking” for program codes
Still mainly for post-coding

Infinite state to finite state transformation can be unnatural
and difficult

Established interactive theorem provers (Isabelle/
HOL, Coq, PVS, etc.) are not necessary well
accepted to software/systems engineers

especially in upstream (pre-coding) phase

SinaiaSchoolOnFVSS, 080303
6

Difficulties in domains, requirements, designs

High level specifications of domains, requirements,
designs are inherently partial and evolutional
Usually there is no established formal
(mathematical) model for the problems
It is not easy to be convinced that some important
property holds for domains, requirements, designs

Interactive developments with
analyses/verifications are needed

Developments of domain theories can help

4

SinaiaSchoolOnFVSS, 080303
7

• Reasonable blend of user and machine
capabilities, intuition and rigor, high-level
planning and tedious formal calculation
♦ fully automated proofs are not necessary

good for human beings to perceive logical
structures of real problems/systems

♦ interactive understanding of real problem
domains and/or requirements is necessary

Our approach

Proof Score Approach

SinaiaSchoolOnFVSS, 080303
8

Proof Score Approach

Domain/requirement/design engineers are
expected to construct proof scores together
with formal specifications

Proof scores are instructions such that when
executed (or "played") and everything evaluates
as expected, then the desired property is
convinced to be hold

Proof by construction/development
Proof by reduction/computation/rewriting

5

Modeling/Specifying and Verifying in CafeOBJ

SinaiaSchoolOnFVSS, 080303
10

Modeling/Specifying and Verifying in CafeOBJ

1. By understanding a problem to be
modeled/specified, determine several sorts of
objects (entities, data, agents, states) and
operations (functions, actions, events) over
them for describing the problem

2. Define the meanings/functions of the
operations by declaring equations over
expressions composed of the operations

3. Write proof scores for properties to be verified

6

SinaiaSchoolOnFVSS, 080303
11

Natural Numbers -- Signature --

objects: Nat
operations: 0 : returns zero without arguments

s : given a natural number n returns the
next natural number (s n) of n

-- sort
[Nat]
-- operations
op 0 : -> Nat
op s_: Nat -> Nat

0 0+1 0+1+1 0+1+1+1 0+1+1+1+1 …

0 s(0) s(s(0)) s(s(s(0))) s(s(s(s(0)))) …

Nat
0

S_

SinaiaSchoolOnFVSS, 080303
12

1. 0 is a natural number
2. If n is natural number then (s n) is a natural

number
3. An object which is to be a natural number by 1 and 2

is only a natural number

Natural Number
-- Expressions/terms composed of operations --

mod! BASIC-NAT
{ [Nat] op 0: -> Nat op s_: Nat -> Nat }

Nat = {0, s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))) … }

Nat = {0, s 0, s s 0, s s s 0, s s s s 0, … }

Describe a problem in expressions/terms!

Peano’s definition of natural numbers （１８８９）, Giuseppe Peano (1858-1932)

7

SinaiaSchoolOnFVSS, 080303
13

Mathematical Induction over Natural Numbers

Goal: Prove that for any natural number n ∈ {0, s 0, s s 0,…}
P(n) is true

Induction Scheme:

P(0) ∀n∈N.[P(n)⊃ P(s n)]

∀n∈N.P(n)

Concrete Procedure: (induction with respect to n)
1. Prove P(0) is true

2. Assume that P(n) holds, and prove that P(s n) is true

SinaiaSchoolOnFVSS, 080303
14

Natural numbers with addition operation
-- signature and expressions/terms --

-- sort
[Nat]
-- operations
op 0 : -> Nat
op s_: Nat -> Nat
op _+_: Nat Nat -> Nat

Nat
0

S_

+

Nat = { 0 } ∪ { s n | n ∈ Nat }
∪ { n1 + n2 | n1 ∈ Nat ∧ n2 ∈ Nat }

8

SinaiaSchoolOnFVSS, 080303
15

Natural numbers with addition
-- expressions/terms composed by operations --

op 0: -> Nat . op s_: Nat -> Nat . op _+_: Nat Nat -> Nat .

Nat = {
0, s 0, s s 0, s s s 0, ... ,
0 + 0, 0 + (s 0), 0 + (s s 0), 0 + (s s s 0), ...,
(s 0) + 0, (s 0) + (s 0), (s 0) + (s s 0),

(s 0) + (s s s 0), ...,
(s s 0) + 0, (s s 0) + (s 0), (s s 0) + (s s 0),

(s s 0) + (s s s 0), ...,
... ...
0 + (0 + 0), 0 + (0 + (s 0)), ...
...
(0 + 0) + 0, (0 + (s 0)) + 0, ...
...
. }

SinaiaSchoolOnFVSS, 080303
16

Natural numbers with addition
-- equations defining meaning/function --

CafeOBJ code describing
Natural numbers with addition

mod! NAT+ {
-- sort
[Nat]
-- operations
op 0 : -> Nat
op s_: Nat -> Nat
op _+_: Nat Nat -> Nat
-- equations
eq N:Nat + 0 = N .
eq N:Nat + (s M:Nat) = s (N + M) .
}

Inference/Computation
with the equations

(s 0) + (s s 0)
= s((s 0) + (s 0))
= s s((s 0) + 0)
= s s s 0

9

SinaiaSchoolOnFVSS, 080303
17

Proof Score
for the proof of associativity of addition (_+_)

-- opening module NAT+ and EQL
-- EQL is a built-in meta-module
-- for making a predicate (_ = _) available
open (NAT+ + EQL)
--> declaring constants as arbitrary values
ops i j k : -> Nat .

--> Prove associativity: (i + j) + k = i +(j + k)
--> by induction on k

--> base case proof for 0:
red i + (j + 0) = (i + j) + 0 .
--> induction hypothesis:
eq (i + j) + k = i + (j + k) .
--> proof of induction step for (s k):
red (i + j) + (s k) = i + (j + (s k)) .
--> QED {end of proof for associativity of (_+_)}
close

SinaiaSchoolOnFVSS, 080303
18

Specification and Proof Score
for two definitions of factorial (1)

mod! NAT*ac {
[Nat]
op 0 : -> Nat
op s_ : Nat -> Nat
op _+_ : Nat Nat -> Nat {assoc comm}
eq M:Nat + 0 = M .
eq M:Nat + s N:Nat = s(M + N) .
op _*_ : Nat Nat -> Nat {assoc comm}
eq M:Nat * 0 = 0 .
eq M:Nat * s N:Nat = (M * N) + M . }

mod! NAT*dist { protecting(NAT*ac)
eq L:Nat * (M:Nat + N:Nat) = (L * M) + (L * N) . }

10

SinaiaSchoolOnFVSS, 080303
19

Specification and Proof Score
for two definitions of factorial (2)

mod! FACT { protecting(NAT*ac)
op fact : Nat -> Nat
eq fact(0) = s 0 .
eq fact(s N:Nat) = (s N) * fact(N) .

}

mod! FACT2 { protecting(NAT*ac)
op fact2 : Nat Nat -> Nat
eq fact2(0, A:Nat) = A .
eq fact2((s N:Nat), A:Nat) = fact2(N, (s N) * A) .

}

SinaiaSchoolOnFVSS, 080303
20

Specification and Proof Score
for two definitions of factorial (3)

open (FACT + FACT2 + NAT*dist + EQL)
--> i,j,k stand for any natural numbers
ops i j k : -> Nat .
--> proving: fact2(i, j) = j * fact(i)
--> by induction on i
--> proof of induction base for 0:
red fact2(0,j) = j * fact(0) .
--> induction hypothesis:
eq fact2(i,J:Nat) = J * fact(i) .
--> proof of induction step for (s i):
red fact2(s i, j) = j * fact(s i) .
--> QED (quod erat demonstrandum:
--> which was to be demonstrated)
close

11

Specifications and Proof Scores in CafeOBJ

SinaiaSchoolOnFVSS, 080303
22

Specifications and Proof scores in CafeOBJ

In the proof score approach, specifications are only
algebraic equational specifications
Proof score is a sequence of reduction
(simplification) commands for reducing expressions
(usually boolean) to its normal form in some
appropriate situations
♦ situation: a set of equations (axioms) with some

bindings (a set of name->object relationships)
♦ proof score also contains CafeOBJ codes which

build appropriate situations in which reductions
take place

12

SinaiaSchoolOnFVSS, 080303
23

Development of proof scores in CafeOBJ

• Many simple proof scores are written in OBJ
language from 1980’s; some of them are not
trivial

• From around 1997 CafeOBJ group at JAIST use
proof scores seriously for verifying
specifications for various examples
♦ From static to dynamic/reactive system
♦ From ad hoc to more systematic proof scores
♦ Introduction of OTS (Observational Transition

System) was a most important step

SinaiaSchoolOnFVSS, 080303
24

Introducing CafeOBJ

• CafeOBJ is an algebraic formal specification
language; it is a successor of the OBJ language

• CafeOBJ is a formal language for writing a formal
model and reasoning about the model
♦ It is not a programming language for writing

program codes for a system which is supposed
to run on machines

♦ However, CafeOBJ codes (specifications) are
executable on machines for simulating, analyzing,
and/or reasoning about the models described

13

SinaiaSchoolOnFVSS, 080303
25

A little bit of CafeOBJ history

KF thought of the basic ideas of CafeOBJ after he
participated OBJ project at SRI in 1983-1984, and several
design and implementation attempts were done during 1985-
1995
The CafeOBJ development project is fully supported by
IPA/MITI of Japanese Government from 1996.4 to 1998.3

Six Japanese Companies, Five Japanese Universities,
Three Foreign Research Group participate CAFÉ project
A book entitled “CafeOBJ Report” was published in 1998
which defines the syntax and semantics of the CafeOBJ
language

Sufficiently reliable and usable CafeOBJ system was
available at around the beginning of 1999.
Several groups including KF’s group at JAIST are using
CafeOBJ for developing formal methods for various
application areas and/or for education of FM

SinaiaSchoolOnFVSS, 080303
26

Related on going
Language System Development Projects

• “Maude” Language of SRI/UIUC is another project
for following up the OBJ language
♦ LNCS entitled “All about Maude” (almost 800

pages) is published recently (2007)

• “CASL” language of European researchers is an
attempt of developing a common algebraic
specification language
♦ Two volumes of LNCS are published

14

SinaiaSchoolOnFVSS, 080303
27

VDM/Z versus OBJ/CafeOBJ/Maude

• VDM/Z
♦ non-executable; good formal communication

languages between
specifiers/designers/implementers, but not so
powerful for automatic checkings/verifications

• OBJ/CafeOBJ/Maude
♦ executable; a powerful tool for rapid prototyping,

automatic checking, formal reasoning, and
verifications

SinaiaSchoolOnFVSS, 080303
28

Main features of CafeOBJ

• Equational Specification -- OBJ, CafeOBJ, Maude
♦ equational logic

• Behavioral Specification -- CafeOBJ
CHA: coherent hidden algebra; OTS

• Modular Specification -- OBJ, CafeOBJ, Maude
♦ parameterized modules and module expressions
♦ institutions based semantics

• Typed Specification -- OBJ, CafeOBJ, Maude
♦ order-sorted algebra

• Rewriting Specification -- Maude, CafeOBJ
♦ rewriting logic

15

SinaiaSchoolOnFVSS, 080303
29

Two kinds of formal models in CafeOBJ

Abstract data types with tight semantics
Modeling data
Initial algebra semantics
Induction based reasoning

Abstract machines (abstract process types) with loose
semantics

Modeling processes or behaviors
Coherent hidden algebra semantics
Co-induction based reasoning
CafeOBJ is the first algebraic formal specification
language which supports the abstract machines

These two models can provide
unified specification style

both for static and dynamic systems

SinaiaSchoolOnFVSS, 080303
30

Modeling Behaviors by sequences of actions

Hidden Sort
(System’s

State Space)

Visible Sort
(Data)

．．．

．．．

Action
(method)

Action
(method)

Observation
(attribute)

Observation
(attribute)

Visible Sorts
(Data)

Visible Sorts
(Data)

Visible Sort
(Data)

Visible Sorts
(Data) Visible Sorts

(Data)

16

SinaiaSchoolOnFVSS, 080303
31

Simple Bank Account -- signature --

Nat

Int
Account init

deposit
withdraw

balance

SinaiaSchoolOnFVSS, 080303
32

Simple Bank Account -- signature --

-- state space of an ACCOUNT system
[Account]
-- initial state of an ACCOUNT system
op init : -> Account
-- an observer of Account
bop balance : Account -> Int
-- two actions for Account
bop deposit : Account Nat -> Account
bop withdraw : Account Nat -> Account

17

SinaiaSchoolOnFVSS, 080303
33

Reachable state space of ACCOUNT

ReachableStateSpaceOfAccount
= {init}
∪
{deposit(a,n}|

a∈ReachableStateSpaceOfAccount,n∈Nat}
∪
{withdraw(a,n)|

a∈ReachableStateSpaceOfAccount,n∈Nat}

SinaiaSchoolOnFVSS, 080303
34

CafeOBJ specification of ACCOUNT

mod* ACCOUNT { protecting(INT>=)
-- signature should comes here

...
-- condition for init; initial condition
eq balance(init) = 0 .

-- for the action "deposit(A,N)"
eq balance(deposit(A:Account,N:Nat)) = balance(A) + N .

-- for the action "withdraw(A,N)"
cq balance(withdraw(A:Account,N:Nat))

= balance(A) - N if ((balance(A) - N) >= 0) .
cq balance(withdraw(A:Account,N:Nat))

= balance(A) if not((balance(A) - N) >= 0) . }

18

Current status and future issues

SinaiaSchoolOnFVSS, 080303
36

Current Achievements of
OTS/CafeOBJ proof score approach

Some classical mutual exclusion algorithms
Some real time algorithms
e.g. Fischer’s mutual exclusion protocol
Railway signaling systems
Authentication protocol
e.g. NSLPK, Otway-Rees, STS protocols

Practical sized e-commerce protocol of SET
(some of proof score exceeds 60,000 lines;
specification is about 2,000 lines,
20-30 minutes for reduction of the proof score)

UML semantics (class diagram + OCL-assertions)
Formal Fault Tree Analysis
Secure workflow models

OTS/CafeOBJ approach has been applied to the
following kinds of problems and found usable:

19

SinaiaSchoolOnFVSS, 080303
37

Three levels of CafeOBJ applications
1. Construct formal models; Develop formal

specifications
2. Do rapid prototyping and check the properties of

specifications; execute specifications for
validations/verifications

3. Write proof scores to verify properties of
specifications; verifications with
reductions/rewritings

Choose an appropriate level
depending on problems and situations

SinaiaSchoolOnFVSS, 080303
38

Prerequisites for
proof score writing in CafeOBJ (1)

• Algebraic modeling:
development of algebraic specifications
♦ defining signature for a real problem
♦ expressing the semantics of a problem in

equations
more exactly, expressing the problem in reduction
rules

20

SinaiaSchoolOnFVSS, 080303
39

Prerequisites for
proof score writing in CafeOBJ (2)

• Equational logic, rewriting, and
propositional calculus
♦ equationl reasoning

equivalence relation, equational calculus, …
♦ propositional calculus with “xor”

normal forms which has the complete
rewriting calculus

♦ reduction/rewriting
termination, confluence, sufficiently
completeness

SinaiaSchoolOnFVSS, 080303
40

Prerequisites for
proof score writing in CafeOBJ (3)

• Proof by induction and case analysis
♦ case splitting using key predicates in

specifications
♦ discovery of lemmas
♦ decomposition of a goal predicate into

an appropriate conjunctive form

These are the most difficult parts of
proof score writing
But this is common to any kind of interactive verifiers!

21

SinaiaSchoolOnFVSS, 080303
41

Traceability in proof score approach
with CafeOBJ

• All reductions are done exactly using
equations in specifications
♦ this make it easy to detect necessary changes in

specs for letting something happen (or not happen)
• Usually reductions are sufficiently fast, and

encourage prompt interactions between user
and system

This is a quit unique feature of the proof
score approach with CafeOBJ comparing
to other verification method which often
involves several formalisms/logics and
translations between them

SinaiaSchoolOnFVSS, 080303
42

Equational proofs by reduction/rewriting

Why do we care about
equational reasoning by reduction ?

It is simple and powerful and a promising light
weighted formal reasoning method

easy to understand and can be more acceptable for
software engineers

It supports transparent relation between specs
and reasoning by reduction (good traceability)

22

SinaiaSchoolOnFVSS, 080303
43

Future Issues (1)

• Development of theory and methodology for proof score
writings
♦ Automate case analysis and lemma discovery

Automation of inductive proof (Crème)
ο NSLPK verification is almost done automatically

♦ Incorporation of model checking technologies (i.e.
searching of state space) into proof score writings

Search command of the form:
reduce S1 =(m,n)=>* S2 suchThat P(S2) .

has been introduced into CafeOBJ recently
The command already has made the following
possible:
ο Automatic counter example findings
ο Automation of some parts of proof scores

SinaiaSchoolOnFVSS, 080303
44

Future Issues (2)

Development proof score writing environment
♦ Standard platforms for programming environment can

be naturally used: Emacs, Eclips
♦ Write specs and proofs as writing programs and test

cases, but in logically more sound and complete way.

• Application to important domains and development of
formal specifications (precise descriptions of models) in
the domain; not only technical domains but also
business/social domains
♦ Mobile protocols and systems
♦ Digital Right Management (DRM) systems
♦ E-Government and public administration
♦ Internal control/governance (security/safety

rules/policies in an organization)

23

SinaiaSchoolOnFVSS, 080303
45

Future Issues (3)

• Development of proof scores for verifying important
properties of application domains
♦ (Formal specification + Proof Score) hope to be an

important asset for the organization
♦ The proof score method hope to show new kind of

facts which are difficult to be shown by other method
♦ Systems verification has already become an important

topic in systems development and maintenance.

SinaiaSchoolOnFVSS, 080303
46

CafeOBJ Official Home Page

http://www.ldl.jaist.ac.jp/cafeobj/

