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Abstract

In recent years, numerous attempts have
been devoted to derive Context Free
Grammars (CFGs) by using a large cor-
pus. In this paper, we describe a method
to extract a Probabilistic Context Free
Grammar (PCFG) of Japanese from a
bracketed corpus, and propose two meth-
ods to improve it. The experiments show
that the extracted PCFG has a 94 % ac-
cept rate, 85 % brackets recall and 75 %
brackets precision.

1 Introduction

There have been numerous attempts to derive a
CFG by using a large corpus. The advantage of
this approach includes: less human labor, broad
coverage of the grammar and independence from
individual introspection. In addition, it is easy to
incorporate statistical features into the grammar.
This may help to choose a correct parse tree.

Lari and Young (Lari and Young, 1990) sug-
gested the use of the Inside-Outside algorithm for
grammar inference. They assume the grammar is
represented in the Chomsky normal form. Given
a set of non-terminal and terminal symbols, they
start with an initial grammar that is generated
from every combination of symbols. Then they
estimate the probabilities of the rules using the
Inside-Outside algorithm, and remove the rules
that have less probabilities than a certain thresh-
old. Pereira and Schabes (Pereira and Schabes,
1992) modified the Inside-Outside algorithm for a
partially bracketed corpus in order to reduce com-
puting time. Kiyono and Tsujii (Kiyono and T-
sujii, 1994a; Kiyono and Tsujii, 1994b) proposed
a semi-automatic method to acquire new rules of

an existing CFG. When a parse fails, they extract
candidates of new rules from the results of par-
tial parsing. The plausibility of the candidates is
estimated from a training corpus, and only can-
didates that have higher plausibility are added to
the grammar. Their method aims to extend the
coverage of a given CFG with support of human
decisions.

One of the drawbacks of these previous at-
tempts is that their methods need much comput-
ing time. This would be an obstacle to deal with a
large corpus. In addition, little attention has been
paid to acquiring a Japanese grammar.

This paper proposes a method to extract a
PCFG of Japanese language using a bracketed cor-
pus with less computing time (Shirai et al., 1995).
We describe the basic idea in section 2, then we
propose two methods to improve the PCFG. One
reduces the grammar size by removing redundant
rules, as described in section 3; the other decreas-
es the number of unnecessary parse trees, as de-
scribed in section 4. In section 5, we show the
results of experiments that evaluate the proposed
methods.

2 Extracting PCFG

2.1 Training Corpus

We make use of 75,000 sentences in the EDR
corpus (EDR, 1994), which are excerpted from
newspaper articles and magazines. The sentences
range from 5 words to 81 words in length. The av-
erage length is about 23 words. Each sentence is
annotated with morphological and syntactical in-
formation, that is, each word is segmented, tagged
with its part of speech (POS), and the syntac-
tic structure is given by a skeletal tree. Figure 1
shows an example of a sentence. The meaning of
this sentence is “The funding for the choral group
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Figure 1: Example sentence in the EDR corpus

is low.”

2.2 Extracting CFG rules

Each node other than any leaf in a skeletal tree
can be transformed into a production rule that has
the node itself on the left hand side (LHS) and the
immediate children on the right hand side (RHS).
Table 1 shows the rules that are extracted from
the skeletal tree shown in Figure 1. Each brack-

Table 1: The rules derived from the skeletal tree
〈5〉 → Keiyousi (adjective) Gobi (ending)
〈4〉 → Meisi (noun) Josi (postposition)
〈3〉 → 〈4〉 Meisi (noun)
〈2〉 → 〈3〉 Josi (postposition)
〈1〉 → 〈2〉 〈5〉
〈0〉 → 〈1〉 Kigou (symbol)

eted number in the rules corresponds to an inter-
mediate node in Figure 1. Note that the symbols
in the RHS of these rules are lexical categories. In
order to transform these rules into CFG rules, we
need to assign appropriate non-terminal symbol-
s to the bracketed numbers in Table 1. In other
words, we can extract CFG rules by labeling in-
termediate nodes in skeletal trees.

When labeling the intermediate nodes, we have
to take account of the head 1 of a phrase. In con-
trast to English, Japanese is a head-final language.
Thus, we can derive the LHS symbol from the
right most symbol of the RHS. In general, we as-
sign “Y-Ku” (“Y phrase”) to 〈i〉 in the following
rule:

1In this paper, the word “head” means a syntactic head,
not a semantic head.

〈i〉 → X1 X2 · · · Xn Y

Here, 〈i〉 is an intermediate node, “Xi” and “Y ”
are lexical categories such as “Meisi” (“noun”),
“Keiyousi” (“adjective”) and “Josi” (“postposi-
tion”). Thus, we obtain the rule:

Y-Ku → X1 X2 · · · Xn Y .

Deriving “Y-Ku” from “Y ” corresponds to rais-
ing the bar level. In fact, “Ku” means “phrase” in
Japanese. For example, we assign 〈4〉 “Josi-Ku”
because the right most symbol (head) of the sec-
ond rule in Table 1 is “Josi.” We have to assign
the same symbol to 〈4〉 in the third rule of Table 1
at the same time, since it denotes the same node
in Figure 1.

This labeling scheme is usually appropriate.
However, there are some exceptions. In the E-
DR corpus, the POS “Kigou” (“symbol”) is giv-
en to the symbols such as period, comma, ques-
tion mark, parenthesis, etc. We can not regard
“Kigou” as the head of phrases even if it is the
right most POS of the rule. Another exception is
the POS “Gobi” (“ending”). “Gobi” is assigned
to the endings of verbs, auxiliary verbs and adjec-
tives. It is not desirable to assign “Gobi-Ku” to a
node whose right most child is “Gobi”, because we
can not distinguish these three categories. There-
fore, when “Kigou” or “Gobi” appear at the right
most position of a rule, we consider the previous
POS as the head. For example, in the following
rule, we regard “Keiyousi” (“adjective”) as the
head of the phrase and assign “Keiyousi-Ku” to
〈i〉.

〈i〉 → Keiyousi Gobi
(adjective) (ending)

⇓
Keiyousi-Ku → Keiyousi Gobi

In order to extract CFG rules, we assign appro-
priate labels to intermediate nodes of the skeletal
trees from bottom to up (i.e. from leaves to a
root) according to the following procedure.

1. Find a node that has no unlabeled child. If
there is no such node in the skeletal trees, go
to 5.

2. Identify the head from amongst the children.
This is done by scanning the children from
right to left to find a symbol other than “Go-
bi” (“ending”) and “Kigou” (“symbol”).

3. Make a new label concatenating “-Ku” to the
head, if the head symbol does not end with



“-Ku.” If the head symbol ends with “-Ku”,
the new label is equal to the head symbol,
that is, it constitutes a right recursive rule.

4. Assign the designated new label to the node,
except in the case of the root of the tree. As-
sign the root the label “S” (i.e. the start sym-
bol). Go to 1.

5. Extract the CFG rules from the labeled trees.

One of the significant features of this method is
that its time complexity is linear with respect to
the total length of sentences. In addition, the pro-
cedure is a deterministic process. Table 2 shows
the CFG rules extracted from the skeletal tree in
Figure 1.

Table 2: The extracted CFG rules
Keiyousi-Ku → Keiyousi Gobi

(adjective) (ending)

Josi-Ku → Meisi Josi
(noun) (postposition)

Meisi-Ku → Josi-Ku Meisi
(noun)

Josi-Ku → Meisi-Ku Josi
(postposition)

Keiyousi-Ku → Josi-Ku Keiyousi-Ku

S → Keiyousi-Ku Kigou
(symbol)

Next, we estimate the probabilities of the ex-
tracted rules in a very simple way. When we
extract the rules from the bracketed corpus, we
count the occurrence of the rule r, C(r). For a
rule A → ζi, its probability is estimated as fol-
lows.

P (A→ ζi) =
C(A→ ζi)∑

j

C(A→ ζj)

3 Reducing the grammar size

In this section, we describe the method to reduce
the size of the extracted grammar while retaining
its coverage. First, we define a “redundant rule”
as follows. The rule A → ζ is redundant iff the
non-terminal symbol A can be expanded into the
symbol sequence ζ using the rules other than A→
ζ. For example, in the following grammar, the
rule ra is redundant because non-terminal symbol
A can be expanded into BCDEF using the rules
rb, rc, rd. Thus, we can remove the rule ra from
the grammar without narrowing its coverage.

ra : A → B C D E F

rb : A → G H

rc : G → B C

rd : H → D E F

The problem we must consider now is how to
deal with the previously calculated figure for the
occurrence of redundant rules. As we have men-
tioned above, we use the sum of rule occurrence to
estimate the probability of the rule. Even though
redundant rules may be removed, we have to take
account of their occurrence. In the above exam-
ple, the number of the occurrence of ra should be
added to that of rb, rc and rd, because the struc-
ture subtended by ra in the training corpus is re-
placed with that produced by the combination of
rb, rc and rd. Consider now the case where the
following rules r′b, r

′
c, r

′
d also exist in the grammar.

r′b : A → I D J

r′c : I → B C

r′d : J → E F

Since A can also be expanded to BCDEF by us-
ing r′b, r′c and r′d, the occurrence figure for ra must
be distributed between {rb, rc, rd} and {r′b, r′c, r′d},
in proportion to the number of the occurrence of
rb and r′b.

The algorithm to remove redundant rules from
a CFG is detailed below. In the algorithm, “R”
denotes the original CFG, and “Rnew” denotes the
reduced grammar. The initial value of Rnew is set
empty.

1. Find the rule ra in R, that has the longest
RHS, and remove it from R.

2. Find all rule sets {rj
b , rj

c1, · · ·, rj
cn} in R,

which satisfy the following conditions:

ra : A → αj
1 βj

1 αj
2 · · · αj

n βj
n αj

n+1

rj
b : A → αj

1 Bj
1 αj

2 · · · αj
n Bj

n αj
n+1

rj
c1 : Bj

1 → βj
1

...
rj
cn : Bj

n → βj
n

In the above, αj
i , βj

i are sequences of termi-
nal and non-terminal symbols, and A, Bj

i are
non-terminal symbols.

3. If no rule set is found in Step 2, ra is not
redundant and is added to Rnew. Otherwise,
ra is a redundant rule, and we do not add
it to Rnew, but update the number of the



occurrence of the rules in the rule set {rj
b ,

rj
c1, · · ·, rj

cn} as follows.

for all i, j

C(rj
b) ← C(rj

b) + C(ra)× C(rj
b)∑

k

C(rk
b )

C(rj
ci) ← C(rj

ci) + C(ra)× C(rj
b)∑

k

C(rk
b )

4. If R is empty, then terminate, else go to 1.

4 Decreasing ambiguity

The extracted grammar described in the previous
section gives a great number of parse trees for an
input sentence. In this section, we will describe
two methods of modifying the grammar in order
to suppress unnecessary parse trees.

4.1 Structure of compound words

We will use the term “compound word” to refer
to any constituent that consists of items of the
same POS. In Figure 2, we show two examples of
a “compound noun”:

(a)

(b)

kokusai kinyuu tosi

insatu koujou

(noun)
Meisi

(noun)
Meisi

(noun)
Meisi

(noun)
Meisi

(noun)
Meisi

(noun)
Meisi

‘‘ ’’^kado
‘‘ ’’

‘‘ ’’ ‘‘ ’’

‘‘ ’’ ‘‘ ’’ ’’‘‘

card( ) )’’‘‘( )’’‘‘(

)’’‘‘(

printing factory

)’’‘‘( )’’‘‘(international financial city

Figure 2: Examples of compound noun

They have the same sequence of POS, but
have different structure. In general, it is diffi-
cult to determine the correct structure of com-
pound nouns without regarding semantic informa-
tion (Kobayashi et al., 1994). Therefore, parsing a
sequence of “Meisi” (“noun”) such as “Meisi Meisi
Meisi” results in both structures (a) and (b). In-
creasing the length of the sequence would cause
combinatorial explosion in the number of parse
trees of distinct structure.

In order to suppress unnecessary parse trees, we
make only a right linear binary branching tree (as

shown in Figure 3) for a compound word in the
syntactic analysis. We assume the correct struc-
ture is identified in the semantic analysis phase.

X

X-Retu

XXX

X-Retu

X-Retu

Figure 3: Right linear tree for compound word

We assign a new non-terminal symbol “X-Retu”,
where “Retu” means “sequence”, to the root node
and the intermediate nodes of a right linear tree
whose leaves are all POS “X.”

In order to obtain a right linear tree for a com-
pound word, we make the following modification
on the algorithm shown in section 2.2.

1. Find every subtree whose leaves are all the
same POS X and replace it with the non-
terminal symbol “X-Retu” in the training
corpus.

2. Execute the algorithm in section 2.2.

3. For each subtree replaced in the Step 1, add
to the grammar the following rule A with oc-
currence 1 and rule B with occurrence n−2,
where n is the number of the leaves in the
subtree.

A : X-Retu → X X

B : X-Retu → X X-Retu

A preliminary experiment with 10,000 sentences
shows that this modification decreases the number
of parse trees by 20 %.

4.2 Subcategorization of part of speech

The categorization of POSs in the EDR corpus
is rather coarse. There are only 15 POSs. This
is one of the reasons that the grammar gives so
many parse trees. In this section, we propose to
subcategorize some of the POSs into more fine-
grained ones. In particular, we take two POSs,
“Kigou” (“symbol”) and “Josi” (“postposition”).

4.2.1 Kigou (symbol)

As mentioned in section 2.2, various symbols
such as period, comma, parentheses and so forth
have POS “Kigou” (“symbol”). Among them,



period, question mark and comma appear fre-
quently and play important roles in the syntactic
structure. Thus, we subcategorize POS “Kigou”
(“symbol”) into the following three subcategories:
“Bunmatu-Kigou” (“end-mark”) for periods and
question marks, “Touten” (“comma”) for commas
and “Kigou” (“symbol”) for all remaining symbol-
s.

4.2.2 Josi (postposition)
There are several kinds of “Josi” (“postposi-

tion”) in Japanese, which generally indicate gram-
matical case, such as nominal, accusative and da-
tive. In the EDR corpus, however, all the postpo-
sitions are given the same POS “Josi” (“postpo-
sition”). It is reasonable to distinguish them be-
cause they play very different roles in a sentence.

We assign a new POS “Josi-W ” to postposition-
s, where “W” is the spelling of the postposition
itself. For example, we assign POS “Josi-ga” to
the postposition “ga” shown in Figure 1. This
procedure can be done automatically.

The preliminary experiment with 10,000 sen-
tences shows that subcategorizing these two POSs
decreases the number of parse trees by 70 %. On
the other hand, the number of the extracted rules
grows about 5 times, but still remains a reasonable
size.

5 Experiment

We conducted an experiment to evaluate our
methods by using the EDR corpus described in
section 2.1. Our experiment was executed on a
Sun Sparc Station 10/51. Out of the 75,000 sen-
tences in the EDR corpus, we used 67,500 for ex-
tracting PCFG and 7,500 as test sentences.

Table 3 shows the features of the extracted
grammar. Removing the redundant rules decreas-
es the grammar size by about 80 %.

Table 3: Extracted PCFG

the number of non terminal symbols 22
the number of terminal symbols 161
the number of rules 1781
(before removing redundant rules) (8011)

Next, we analyzed the test sentences by using
a GLR parser (Tomita, 1986) with the extracted
PCFG. In spite of our efforts to decrease the num-
ber of parse trees (section 4), the parser failed to

analyze 20 % of the test sentences due to insuffi-
cient memory. Therefore, we introduced a pruning
mechanism into the parser. At each reduce action,
the probability of the subtree was calculated and
those which had less probability than a certain
threshold were discarded.

Table 4 shows the result of parsing test sen-
tences 2. The row “accept” shows the cases

Table 4: The result of syntactic analysis

without with
pruning pruning

accept 5897 6931
reject 12 15

overflow 1465 428

accept rate =
6931
7374

= 93.99%

that the parser generates at least one parse tree.
While, the row “reject” shows the cases that the
parser generates no parse tree. The row “over-
flow” shows the cases that the parser aborts due
to the insufficient memory. From the Table 4, we
can see that the accept rate is nearly 94 %. The
large part of the failure rate occurred due to in-
sufficient memory, thus we consider that the ex-
tracted grammar has a broad coverage.

We evaluated the accuracy of parse trees on the
basis of the number of compatible brackets that
were consistent with the bracketings of the skele-
tal trees (Pereira and Schabes, 1992). First, we
define “correct brackets” and “correct parse tree”
as follows.

• Correct brackets is a pair of brackets that
does not cross any bracket annotated in the
test sentence.

• A correct parse tree is a parse tree that con-
tains only correct brackets.

In order to evaluate the accuracy of the parse
trees, we first chose the tree which had the fewest
wrong brackets within the 15 most probable parse
trees for each test sentence. Then, we counted the
number of correct brackets and correct parse trees
within these selected parse trees.

Table 5 shows the sentence accuracy, and the
brackets recall and precision. Each of them are
defined as follows:

2We could not parse all 7,500 test sentences due to the
inconsistencies of the annotated tree.



sentence accuracy

=
No. of correct sentences

No. of accepted sentences

brackets recall

=
No. of correct brackets

No. of brackets in test sentences

brackets precision

=
No. of correct brackets

No. of brackets in all parse trees

Table 5: The accuracy of parse trees

without with
pruning pruning

Correct 1731 1731
Incorrect 4166 5200

Total 5897 6931

sentence accuracy =
1731
6931

= 24.97%

brackets recall =
105485
124377

= 84.81%

brackets precision =
105485
141067

= 74.78%

The brackets recall (about 85 %) and precision
(about 75 %) is fairly good, but the sentence ac-
curacy (about 25 %) is not. Schabes et al. (Sch-
abes et al., 1993) reported their method result-
ed in 71.5% of brackets precision 3 and 6.8 % of
sentence accuracy for test sentences whose length
ranged from 20 to 30 words. The average length
of our test sentences is about 23 words. Thus,
our result is better than theirs. However, direc-
t comparison is not very meaningful because the
languages and the corpora dealt with are different.

6 Conclusion

In this paper, we proposed a method to extract
a PCFG from a bracketed corpus. We also sug-
gested two methods to improve the PCFG, one in
removing redundant rules to reduce the grammar
size, and the other in decreasing the number of
parse trees. The latter is accomplished by intro-
ducing right recursive rules for compound words
and subcategorizing the POSs. Finally, we con-
ducted an experiment to evaluate the proposed
methods. It shows that the accept rate is 94 %,
the brackets recall is 85 %, the brackets precision
is 75 % and the sentence accuracy is 25 %.

3They did not show the brackets recall.

One of the important problems to solve is that
the extracted grammar still generates too many
parse trees (109 on average). We need further
improvement in order to prune unnecessary trees
without degrading accuracies and coverage.
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