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我々は構文的優先度，語彙的従属関係を同時に取り扱う統合的確率言語モデルを提案
している．このモデルの特長は構文的優先度と語彙的従属関係を互いに独立に取り扱
う点にある．これにより，両者を独立に学習することができるだけでなく，両者がそ
れぞれ曖昧性解消にどれだけ有効に作用するのかを容易に評価できる．本稿では，こ
のモデルを用いて日本語文の係り受け解析実験を行った結果について報告し，構文的
優先度，語彙的従属関係のそれぞれが文節の係り先の正解率の向上に大きく貢献する
ことを示す．また，解析に失敗した原因について調査を行い，その主な要因と本稿で
提案するモデルにおける対処法について論ずる．
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We propose a new statistical language model which integrates lexical association
statistics with syntactic preferences, while maintaining the modularity of these d-
ifferent statistics types, facilitating both the training of the model and analysis of
its behavior. In this paper, we report the results of an empirical evaluation of our
model, in which the model is applied to the disambiguation of Japanese sentence
dependency structures. The results show that both syntactic preferences and lexi-
cal associations significantly raise the accuracy, which is the ratio of the number of
Bunsetu phrases whose modifiee is correctly identified, to the total phrase number.
We also discuss further room for improvement based on our error analysis.



1 Introduction

In the statistical parsing literature, it has already
been established that statistics of lexical association
have real potential for improvement of disambigua-
tion performance. The question is how lexical as-
sociation statistics should be incorporated into the
overall statistical parsing framework. In exploring
this issue, we consider the following four basic re-
quirements:

• Integration of different types of statistics:
Lexical association statistics should be inte-
grated with other types of statistics that are
also expected to be effective in statistical pars-
ing, such as short-term POS n-gram statistics
and long-term structural preferences over parse
trees.

• Modularity of statistics types:
The total score of a parse derivation should be
decomposable into factors derived from differ-
ent types of statistics, which would facilitate
analysis of a model’s behavior in terms of each
statistics type.

• Probabilistically well-founded semantics:
The language model used in a statistical parser
should have probabilistically well-founded se-
mantics, which would also facilitate the analy-
sis of the model’s behavior.

• Trainability:
Since incorporation of lexical association statis-
tics would make the model prohibitively com-
plex, the model’s complexity should be flexibly
controllable depending on the amount of avail-
able training data.

However, it seems to be the case that no ex-
isting framework of language modeling [2, 5, 13,
15, 14, 18, 19] satisfies these basic requirements
simultaneously1. In this context, we newly designed
a framework of statistical language modeling tak-
ing all of the above four requirements into accoun-
t [10, 11]. This paper reports on the results of our
preliminary experiment where our framework was
applied to structural disambiguation of Japanese
sentences.

In what follows, we first briefly review our frame-
work (Section 2). We next describe the setting of

1For further discussion, see [10]. This is also the case with
recent works such as [4] and [6] due to the lack of modularity
of statistical types.

our experiment, including a brief introduction of
Japanese dependency structures, the data sets, the
baseline of the performance, etc. (Section 3). We
then describe the results of the experiment, which
was designed to assess the impact of the the incor-
poration of lexical association statistics (Section 4).
We finally discuss the current problems revealed
through our error analysis, suggesting some possible
solutions (Section 5).

2 Overview of our framework

As with the most statistical parsing frameworks,
given an input string A, we rank its parse deriva-
tions according to the joint distribution P (R,W ),
where W is a word sequence candidate for A, and R

is a parse derivation candidate for W whose termi-
nal symbols constitute a POS tag sequence L (see
Figure 12). We first decompose P (R,W ) into two
submodels, the syntactic model P (R) and the lexi-
cal model P (W |R):

P (R,W ) = P (R) · P (W |R) (1)

The syntactic model, which is lexically insensitive,
reflects both POS n-gram statistics and structural
preference, whereas the lexical model reflects lexical
association statistics. This division of labor allows
for distinct modularity between the syntactic-based
statistics and lexically sensitive statistics, while
maintaining the probabilistically well-foundedness
of the overall model.
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彼 女 が パ イ を 食 べ た

彼女 が パイ を 食べ た

kanojo ga
(pie)

o tabe ta
(she)

pai
(eat)(NOM) (ACC) (PAST)

Figure 1: A parse derivation for an input string “
彼女がパイを食べた (She ate a pie)”

2Although syntactic structure R is represented as a de-
pendency structure in this figure, our framework does not
impose any restriction on the representation of syntactic
structures.



2.1 The syntactic model

The syntactic model P (R) can be estimated using
a wide range of existing syntactic-based language
modeling frameworks, from simple PCFG models to
more context-sensitive models including those pro-
posed in [20, 15, 2]. Among these, we, at present,
use probabilistic GLR (PGLR) language modeling,
which is given by incorporating probabilistic distri-
butions into the GLR parsing framework [12, 22] 3.
The advantages of PGLR modeling are (a) PGLR
models are mildly context-sensitive, compared with
PCFG models, and (b) PGLR models inherently
capture both structural preferences and POS bi-
gram statistics, which meets our integration re-
quirement. For further discussion, see [12].

2.2 The lexical model

The lexical model P (W |R) is the product of the
probability of each lexical derivation li → wi, where
li ∈ L (L ⊂ R) is the POS tag of wi ∈ W :

P (W |R) =
∏

i

P (wi|R, w1, . . . , wi−1) (2)

The key idea for estimating each factor
P (wi|R, w1, . . . , wi−1) (a lexical derivation proba-
bility) is in assuming that each lexical derivation
depends only on a certain small part of its whole
context. We first assume that syntactic structure R

in P (wi|R, w1, . . . , wi−1) can always be reduced to li
(∈ R), which allows us to deal with the lexical mod-
el separately from the syntactic model. The ques-
tion then is which subset C of {w1, . . . , wi−1} has
the strongest influence on the derivation li → wi.
We refer to a member of such a subset C as a lexical
context of the derivation li → wi. As our point of
departure, we consider the following two types of
lexical associations in identifying lexical contexts:

• the lexical association between a head word
(verb, adjective, nominal predicate, etc.) and
its subordinated slot-marker,

• the lexical association between a head word
coupled with a slot-marker, and the filler of
that slot.

Let us illustrate this through the previous exam-
ple shown in Figure 1. Suppose that the derivation

3The idea of PGLR modeling was originally proposed by
Briscoe and Carroll [3]. Inui et al. proposed a new formal-
ization of PGLR models, resolving the drawbacks of Briscoe
and Carroll’s model [12, 22].

order for W is head-driven, as given below, to guar-
antee that, for each of the words subordinated by
a head word, the context of the derivation of that
subordinated word always includes that head word.

ta (PAST) → tabe (eat) → ga (NOM) →
o (ACC) → kanojo (she) → pai (pie)

First, for each lexical item that is not either a
slot-marker or a slot-filler, we simply assume that
the probability of its derivation can be estimated
independently of the derivation of the other words:

P (ta|R) ≈ P (ta|Aux) (3)

P (tabe|R, ta) ≈ P (tabe|V ) (4)

Second, we estimate the probability of deriving
each slot-marker, e.g. “ga (NOM)” and “o (ACC)”,
by considering not only the dependency between the
head word and each of its slot-markers, but also the
dependency between slot-markers subordinated by
the same head:

P (ga|R, tabe, ta) � P (ga|P1[h(tabe, [P1, P2])]) (5)

P (o|R, ga, tabe, ta) � P (o|P2[h(tabe, [P1 :ga, P2])])
(6)

where h(h, [s1, . . . , sn]) is a lexical context denot-
ing a head word h that subordinates the set of s-
lots s1, . . . , sn, and P (wi|li[h(h, [s1, . . . , sn])]) is the
probability of a lexical derivation li → wi, given
that wi functions as a slot-marker of lexical head
h(h, [s1, . . . , sn]).

Finally, we estimate the probability of deriving
each slot-filler, e.g. “kanojo (she)”, in assuming
that the derivation of a slot-filler depends only on
its head word and slot:

P (kanojo|R, ga, o, tabe, ta) ≈
P (kanojo|N [s(tabe, ga)]) (7)

P (pai |R, kanojo, ga, o, tabe, ta) ≈
P (pai |N [s(tabe, o)]) (8)

where s(h, s) is a lexical context denoting a slot s

of a head word h, and P (wi|li[s(h, s)]) is the prob-
ability of a lexical derivation li → wi given that wi

functions as a filler of a slot s(h, s).
Combining equations (3), (4), (5), (6), (7) and

(8), we produce (9):

P (W |R) ≈
P (ta|Aux ) · P (tabe|V ) · P (ga|P [h(tabe, [P,P ])]) ·
P (o|P [h(tabe, [P :ga, P ])]) ·
P (kanojo|N [s(tabe, ga)]) · P (pai |N [s(tabe, o)])

(9)



Generalizing equation (9), we obtain the follow-
ing equations, which state that the lexical model
P (W |R) can be estimated by the context-free lex-
ical derivation model Pcf (W |L) and the lexical as-
sociation model D(W |R):

P (W |R) ≈ Pcf (W |L) · D(W |R) (10)

Pcf (W |L) =
m∏

i=1

P (wi|li) (11)

D(W |R) =
m∏

i=1

D(wi|li[cwi ]) (12)

where cwi is the lexical context of wi, and
D(wi|li[cwi ]) is what we call a lexical dependency
parameter, given by:

D(wi|li[c]) = P (wi|li[c]) / P (wi|li) (13)

D(wi|li[c]) measures the degree of dependency be-
tween the lexical derivation li → wi and its lexical
context c. It is close to one, which means it is negli-
gible, if wi and c are highly independent. It becomes
greater than one if wi and c are positively correlat-
ed, whereas it becomes less than one and close to
zero if wi and c are negatively correlated.

The formulation of the lexical model as in (10)
has two significant advantages. First, it localizes
lexical association statistics into the lexical associ-
ation model D(W |R), which allows us to analyze
the behavior of lexical association statistics in pars-
ing independently of the other statistics types. Sec-
ond, as we mention in Section 5, a lexical derivation
can be associated with more than one lexical con-
text (multiple lexical contexts) in such a case as
a coordinate structure, relative clause, etc., which
makes the space of lexical dependency parameters
prohibitively large. However, given the definition of
lexical dependency parameter (13), the parameter
space can be reduced as follows:

D(wi|li[C]) ≈
∏

c∈C

D(wi|li[c]) (14)

where C is the set of the lexical contexts associated
with the lexical derivation li → wi

4. Note that
P (wi|li[C]) cannot be decomposed in any similar
manner.

The modularity of the lexical model also facili-
tates parameter estimation. Although the syntac-
tic model ideally requires fully bracketed training
corpora, training it is expected to be manageable s-
ince the model’s parameter space tends to be only a

4For the proof, see [10].

small part of the overall parameter space. The lex-
ical association statistics, on the other hand, may
have a much larger parameter space, and thus may
require much larger amounts of training data, as
compared to the syntactic model. However, since
our lexical model can be trained independently of
syntactic preference, one can train it using partially
parsed tagged corpora, which can be produced at
a lower cost (i.e. automatically), as well as fully
bracketed corpora. In fact, we used both a full-
bracketed corpus and a partially parsed corpus in
our experiment.

3 A preliminary experiment

Let us first briefly describe some fundamental fea-
tures of Japanese syntax. A Japanese sentence
can be analyzed as a sequence of so-called bunsetu
phrases (BPs, hereafter) as illustrated in Figure 1.
A BP is a chunk of words consisting of a content
word (noun, verb, adjective, etc.) accompanied
by some function word(s) (postposition, auxiliary,
etc.). For example, the BP “kanojo-ga” (BP1) in
Figure 1 consists of the noun “kanojo (she)” fol-
lowed by the postposition “ga (NOM)”, which func-
tions as a case-marker. The BP “tabe-ta” (BP3),
on the other hand, consists of the verb “tabe (eat)”
followed by the auxiliary “ta (PAST)”.

Given a sequence of BPs, one can recognize de-
pendency relations between them as illustrated in
Figure 1. In Japanese, if BPi precedes BPj , and
BPi and BPj are in a dependency relation, then
BPi is always the modifier of BPj , and we say “BPi

modifies BPj .” For example, in Figure 1, both BP1

and BP2 modify BP3.
For the preliminary evaluation of our model, we

restricted our focus only on the model’s perfor-
mance for structural disambiguation excluding mor-
phological disambiguation. Thus, the task of the
parser was restricted to determination of the de-
pendency structure of an input sentence, which is
given together with the specification of word seg-
ments, their POS tags, and the boundaries between
BPs.

In developing the grammar used by our PGLR
parser, we first established a categorization of BP-
s based on the POS of their constituents: post-
positional BPs, verbal BPs, nominal predicative
BPs, etc. We then developed a modification con-
straint matrix that describes which BP category
can modify which BP category, based on examples



collected from the EDR Japanese corpus [7]. We
finally transformed this matrix into a CFG; for in-
stance, the constraint that a BP of category Ci can
modify a BP of category Cj can be transformed
into context-free rules such as 〈C̄j → Ci Cj〉,
〈C̄j → C̄i Cj〉, etc., where X̄ denotes a nonter-
minal symbol.

For the text data, we used roughly 22,000
sentences5 collected from the EDR bracketed cor-
pus for training the syntactic model, and the w-
hole EDR corpus and the RWC POS-tagged cor-
pus [17] for training the lexical model. For test-
ing, we used 784 sentences collected from the EDR
corpus with the average sentence length being 6.4
BPs. The data sets used for training and testing
are mutually exclusive. The grammar used by our
probabilistic GLR parser was a CFG automatical-
ly acquired from the training sentences, consisting
of 590 context-free rules containing 39 nonterminal
symbols and 30 terminal symbols (i.e. BP cate-
gories).

The baseline of the disambiguation performance
was assessed by way of a naive strategy which s-
elects the nearest possible modifiee (similarly to
the right association principle in English) under
the non-crossing constraint. The performance of
this naive strategy was 60.4% in BP-based accu-
racy, where BP-based accuracy is the ratio of the
number of the BPs whose modifiee is correctly i-
dentified to the total number of BPs (excluding the
two rightmost BPs for each sentence).

The contribution of the syntactic model P (R) to
structural disambiguation can be assessed by re-
moving the lexical association model, namely:

P (R,W ) ≈ P (R) ·
∏

i

P (wi|li) (15)

This lexically insensitive model achieved 74.3% in
BP-based accuracy, 13.9 points above the baseline.

4 The contribution of the lex-
ical model

In our experiment, we considered as the major fac-
tors of the lexical model (a) D(p|P [h(h, [s1,..., sn])]),
the dependencies between slot markers and their
lexical head, and (b) D(n|N [s(v, p)]), the dependen-
cies between case fillers and their head verb coupled
with the corresponding case markers.

5We collected only sentences associated with a complete
binary tree. The test set was collected according to the same
criterion.

D(p|P [h(h, [s1, . . . , sn])]) can be computed from
P (pn|Pn[h(h, [])]), the distribution of n postposi-
tions (case markers) given that all of them are sub-
ordinated by a single lexical head h. We trained
this distribution using 150,000 instances of pn-
{verb,adjective,nominal predicate} collocation col-
lected from the EDR full-bracketed corpus. For pa-
rameter estimation, we used the maximum entropy
estimation technique [1, 16]. For further details of
this estimation process, see [21].

D(n|N [s(v, p)]) was trained using 6.7 million in-
stances of noun-postposition-verb collocation col-
lected from both the EDR and RWC corpora. For
parameter estimation, we used 115 non-hierarchical
semantic noun classes derived from the NTT seman-
tic dictionary [8, 9] to reduce the parameter space:

D(n|N [s(v, p)]) ≈
∑

cn
P (cn|N [s(v, p)]) · P (n|cn)

P (n|N)
(16)

P (cn|N [s(v, p)]) was estimated using a simple back-
off smoothing technique: for any given lexical verb
v and postposition p, if the frequency of s(v, p) is
less than a certain threshold λ (in our experiment,
λ = 100), then P (cn|N [s(v, p)]) was approximated
to be P (cn|N [s(cv, p)]) where cv is a class of v whose
frequency is more than λ. Obviously, the more ab-
stract the class chosen for cv is, the closer to one
D(n|N [s(v, h)]) becomes.

Table 1 summarizes the results of the experiment.
“+filler” denotes the setting where dependency pa-
rameters for slot fillers are considered, but not those
for slot markers. “+marker” denotes the setting
where dependency parameters for slot markers are
considered, but not those for slot fillers. “+both”
denotes the setting where the both types of param-
eters are considered. As shown in the table, we
achieved a 12.3 point gain in BP-based accuracy
over the figure for the syntactic model of 74.3%, by
incorporating lexical association statistics.

Table 1: The contribution of the lexical model

accuracy
base line 60.4 %
syntactic model 74.3 %
+filler 75.7 %
+marker 86.5 %
+both 86.6 %



5 Error analysis

In the test set, there were 457 BPs whose modi-
fiee was not correctly identified by the system. A-
mong these errors, we particularly explored 169 er-
rors that were associated with postpositional BP-
s functioning as a case of either a verb, adjective,
or nominal predicate, since, for lexical association
statistics in the lexical model, we took only the de-
pendencies between cases (i.e. case markers and
case fillers) and their heads into account. In this
exploration, we identified three major error type-
s: (a) errors associated with a coordinate clause
(43 cases), (b) errors associated with relative claus-
es (34 cases), (c) errors associated with compound
predicates (28 cases).

5.1 Coordinate structures

Figure 2 illustrates a typical error associated with
a coordinate clause. The sentence in this fig-
ure has at least three alternative interpretations in
terms of which BP is modified by the left-most BP
“kanojo-wa (she-TOP)”: (a) “tabe-ta (eat-PAST)”,
(b) “dekake-ta (leave-PAST)”, (c) both “tabe-ta
(eat-PAST)” and “dekake-ta (leave-PAST)”. A-
mong these alternatives, the most reasonable inter-
pretation is obviously (c), where the two predicative
BPs constitute a coordinate structure.

N1 P1

BP1

P2N2

BP2

kanojo wa
(breakfast)

o tabe te
(she)

choushoku
(eat)(TOP) (ACC) (COORD)

gakkou e dekake ta
(school) (for) (leave) (PAST)

Aux2V2P3N3Aux1V1

BP3 BP4 BP5

(c)

(a)
(b)

Figure 2: An example sentence containing a coor-
dinate structure: “She ate breakfast and left for
school”

In our experiment, however, neither the train-
ing data nor the test data indicates such coordi-
nate structures. Thus, in the above sentence, for
example, the system was required to choose one
of two alternatives (a) and (b), where (b) is the
prefered candidate according to the structural pol-
icy underlying our corpora. However, this choice is
not really meaningful. Furthermore, the system sys-
tematically prefers (a), the wrong choice, since (i)
the syntactic model tends to prefer shorter-distance
modification relations (similarly to the right as-
sociation principle in English), and (ii) the lexi-

cal model is expected to support both candidates
because both D(kanojo|N [s(tabe,wa)]) in (a) and
D(kanojo|N [s(dekake,wa)]) in (b) should be high.
This problem makes the performance of our model
lower than what it should be.

Obviously, the first step to resolving this prob-
lem is to enhance our corpora and grammar to en-
able the parser to generate the third interpretation,
i.e. to explicitly generate a coordinate structure
such as (c) if needed. Once such a setting is estab-
lished, we then need to consider the lexical contexts
of each of the constituents modifying a coordinate
structure, such as “kanojo-wa (she-TOP)” in the
above sentence. In interpretation (c), since “kanojo-
wa (she-TOP)” modifies both predicative BPs, it
is reasonable to associate it with two lexical con-
texts, s(tabe,wa) and s(dekake,wa). As mentioned
in Section 2, our framework allows us to deal with
such multiple lexical contexts, namely:

D(kanojo|N [s(tabe,wa), s(dekake,wa)])

≈ D(kanojo|N [s(tabe,wa)]) ·
D(kanojo|N [s(dekake,wa)]) (17)

5.2 Treatment of correference

One may have already noticed that the issue dis-
cussed above can be generalized as an issue associat-
ed with the treatment of correference in dependency
structures. Namely, if a prepositional BP is corre-
ferred to by more than one clause as a participant, a
naive treatment of this correference relation could
require the parser to make a meaningless choice:
which clause subordinates that BP. This problem
in the treatment of correference is considered to
cause a significant proportion of errors associated
with relative/adverbial clauses or compound pred-
icates. Such errors are expected to be resolvable
through an extension of the model, as discussed in
Section 5.1.

Let us briefly look at another example in Figure 3,
where the matrix clause and relative clause corre-
fer to the leftmost BP “kanojo-wa (she-TOP)”, i.e.
interpretation (c). Without any refined treatmen-
t of this correference relation, the parser would be
required to make a meaningless choice between (a)
and (b).

5.3 Dependency between slot fillers

According to the results summarized in Table 1, the
contribution of the dependency between case fillers



BP1

N2

BP2

okat ta
(buy) (ACC)(PAST)

BP3 BP4

hon
(book)

wa
(TOP)

kanojo
(she)

P2N1 P1

kinou
(yesterday)

Adv

yon da
(read)

BP5

(PAST)

Aux2V2Aux1V1

(c)

(a) (b)

Figure 3: An example sentence containing a rela-
tive clause: “She read the book which she bought
yesterday”

and their heads seems to be negligibly small. We
can enumerate several possible reasons including:
(a) most of the sentences used for testing were fairly
short, and thus not ambiguous enough to need the
help of these types of dependencies, and (b) the
estimation of these types of dependency parameters
was not sufficiently sophisticated.

In addition to these reasons, we also found that
the lack of the consideration of dependency between
case markers was also problematic in some cases;
there are particular patterns where dependency be-
tween case fillers seems to be highly significant. For
example, in the clause “kanojo-wa (she-TOP) isha-
ni (doctor-DAT) nat-ta (become-PAST)” (she be-
came a doctor), the distribution of the filler of the
“wa (TOP)” slot is considered to be highly depen-
dent on the filler of the “ni (DAT)” slot, “isha (doc-
tor)”, since its distribution would be markedly dif-
ferent if “isha (doctor)” was replaced with “mizu
(water)”. Similar patterns include, for example,
“A-wo (ACC) B-ni (DAT) suru (make)”, where A
and B are highly dependent, and “A-ga (NOM) B-
wo (ACC) suru (do)”, where noun B indicating an
action strongly influences the distribution of A.

In our framework, this type of problem can be
treated by means of controlling the choice of lexi-
cal contexts. We are now conducting another ex-
periment in which the dependencies between case
fillers are additionally considered in particular pat-
terns. Note that the refinement of our model in this
manner illustrates that the modularity of lexical as-
sociation statistics facilitates rule-based control in
choosing the locations where lexical association is
considered. This rule-based control allows us to in-
corporate qualitative knowledge such as linguistic
insights and heuristics newly obtained from exper-
iments based on the model.

6 Conclusion

In this paper, we first presented a new framework of
language modeling for statistical parsing, which in-
corporates lexical association statistics while main-
taining modularity. We then reported on the results
of our preliminary evaluation of the model’s perfor-
mance, showing that both the syntactic and lexical
models made a considerable contribution to struc-
tural disambiguation, and that the division of labor
between those two models thus seemed to be work-
ing well to date. We also discussed the fact that
room remains for further improvement, suggesting
that, when considering lexical association, we need
to carefully deal with structures including correfer-
ence relations; constituents in correference relations
need to be associated with multiple lexical contexts,
which can be treated by introducing the notion of
lexical dependency parameters.

Many issues remain unclear. First, most of the
sentences used so far in testing are quite short, and
thus not highly ambiguous, which made difficult
the empirical evaluation of the model’s quality. As
such, we need to explore the model’s behavior when
it is applied to longer sentences. Second, we also
need to conduct experiments on the combination
of the morphological and syntactic disambiguation
tasks, which our framework intrinsically is designed
for. Third, empirical comparison with other lexical-
ly sensitive models is also strongly required. One
interesting issue is whether the division of labor
between the syntactic and lexical models present-
ed in this paper works well language-independently,
or conversely, whether the existing models designed
for English are equally applicable to languages like
Japanese.
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