TRANSFORMATION OF STRICTNESS-RELATED ANALYSES
BASED ON ABSTRACT INTERPRETATION

Mizuhito OGAWA and Satoshi ONO
NTT Software Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo 180 Japan
CS-net : mizuhito@sonami-2.ntt.jp, ono@sonami-2.ntt.jp

Abstract

A new formalization method for strictness-related anal-
yses on first-order applicative languages is proposed.
For this purpose, the concept HOMomorphic Trans-
former (HOMT) is introduced. Intuitively speaking, a
HOMT is a special instance of abstract interpretation.
A set of HOMTSs, furthermore, is an algebraic space,
where equivalence relations (or reduction rules) are de-
fined. This paper clatifies that HOMTs can be used not
only as a formalization tool for possibly non-monotonic
strictness-related analyses, but also as a transforma-
tional mechanism between these analyses. Thus, equiv-
alent and hierarchical relationships among these analy-
ses can be discussed on a unified basis.

First. we show that an effective subset of strictness-
related analyses can be formalized as HOMTs. Next,
it is clarified that forward / backward conversion op-
erations can also be formalized as HOMTs named iso-
morphic converters. Finally, it is shown that transfor-
mational operations that induce weaker GDAs from a
GDA, can also be formalized as HOMTSs named projec-
tive inducers. Thus, the equivalence of GDAs can be
proved by the equivalence of HOMTs in the proposed al-
gebra, and hierarchical relationiships among GDAs can
be shown by the existence of projective inducers.

1 Introduction

Stimulated by an urgent need for efficient implementa-
tion of lazy applicative languages, many Global Data-
flow Analyses (GDAs) have been proposed [1,11,17].
Most notable GDAs are a class of Strictness-Related
GDAs (SRAs), that collect information on the strict-
ness of functions. SRAs [13] are classified into ei-
ther Strictness Analysis (SA) [2,3,7,10,19], Relevance
Analysis (RA) or Computation Path Analysis (CPA)
[14,15,16]. An SA detects a set of paramecters that
should be evaluated to obtain the resulting value of a
function. Conversely, an RA detects a set of parameters
that may be evaluated. CPA is a generalization of both

SA and RA, detecting a set of all possible computation
paths.

Abstract interpretation [1,4,9.10] has been proposed
as the basis for formalizing GDAs. In addition to con-
tinuous GDAs (e.g. SA), non-monotonic GDAs (e.g. RA
and CPA) can be uniformly formalized by extending the
framework of abstract interpretation [12]. The follow-
ing questions, however, remain to be solved:

- Some analyses can be formalized as forward as
well as backward [5,7,8]. How can the equivalence
between GDAs having different formalizations be
shown? (Equivalence problem)

- From the viewpoint of analytical power, there ex-
ist hierarchical relationships among SRAs. That is,
one analysis has more analytical power than oth-
ers, and the results of a weaker analysis can be
induced from those of a stronger one. How can
such hierarchical relationships be shown? (Hierar-
chy problem.)

These problems can not be answered by only provid-
ing a uniform formalization method. Apparently, we
require some transformational mechanisms that can in-
duce equivalent or weaker GDAs from a GDA.

This paper proposes a new formalization method for
SRAs, named HOMomorphic Transformer (HOMT). A
HOMT is a functional that maps a function on origi-
nal domains to a function on abstract domains. At this
point, HOMTs can be viewed as a subclass of abstract
interpretation. A set of HOMTSs, however, is also an
algebraic space, that has equivalence relations (or re-
duction rules) on integers, such as 1+2 — 3. A HOMT
is represented by a composition of Unit HOMTs (U-
ITOMTS), each of which, in turn, is specified by a newly
proposed Quadruplet Representation{QR). Reduction
rules on HOMTs are clarified in terms of QRs.

We solve the above problems as follows: First, we
show that an effective subset of SRAs can be formalized
as HOMTSs. Next, it is clarified that forward / backward
conversion operations can also be formalized as IOMTs
named isomorphic converters. Thirdly. it is shown that

transformational operations that induce weaker SRAs
from an SRA. can also be formalized as HOMTs named
projective inducers. Thus, the equivalence of SRAs can
be proved by the equivalence of HOMTs in the proposed
algebra, and hierarchical relationships among SRAs can
be shown by the existence of projective inducers.

2 Intuitive Comparison among
SRAs

2.1 SRAs as HOMTs

SRAs are made up of three kinds of GDAs. That is,
SAs, RAs, and CPAs [13]. CPA computes the Prop-
erty Dependency Parameter Set (PDPS), which is intu-
itively a set of all possible demand patterns of the func-
tion when demands are propagated to resulting value.
RA detects relevant parameters which may need to be
evaluated when demands propagate. SA detects req-
uisite parameters which always need to be evaluated
when demands propagate.

On the other hand, a HOMT. &y, is a functional
which maps continnous functions f on computationa:
domains to hy{f) on (possibly finite) abstract domains
(See Section 3.1). Thus, SRAs are formalized by
HOMTs as follows. Assume iy be a HOMT such that
hy(f) preserves the objective property of an SRA on
the original programn f. Note that hy(f) inay be not
computable even if abstract domains are finite, since
hy(f) reflects the exact run-time property which is
never clarified before actual execution. Thus. the al-
gorithms of SRAs are formalized according to the fol-
lowing two steps. First, compute the approximation
heg(f) of hy(f), where he(f) is the solution of some
recursive equation on abstract domains. This result is
called the computed HOMT (See Section 3.3). Next,
execute /i.;(f) for all possible instances on abstract do-
mains. As a result, the approximated property on f
is detected, instead of the exact but not computable
run-time property on f.

With the formalizations of SRAs as above, the equiv-
alence of two SRAs which have different corresponding
HOMTS, hy 4, hy 5. is clarified by finding HOMTs. hy,.
ha1, that transform to each other as

heo(f) 8 hyo(f) and
hpa(f) B hya(f)

for each continuous function f. Similarly, the hierarchi-
cal relationship between two SRAs is clarified by find-
ing a HOMT that transforms the stronger one into the
weaker one.

Section 2.2 and 2.3 examine both the equivalence
problem and the hierarchy problem of the already pro-
posed algorithms of SRAs.

2.2 Equivalent problems on SRAs

An SRA may be either forward or backward. An SRA
is said to be a forward analysis, if it clarifies the proper-
ties of results from the propertics of parameters. Con-
versely, an SRA is said to be a backward analysis, if it
clarifies the conditions satisfied by parameters from the
properties of results.

Forward SA (FSA) is an example of SA as a forward
analysis {10]. Similar algorithms are found in (1,3].

FSA interprets a function, f, on a flat domain (such
as Integer or, Boolean) to a {0,1}-valued function
fFsa» where 0 means totally undefined and 1 means
possibly defined. Thus, fgg, returns 1 if there possibly
exists a computable real instance of f, and returns O if
there never exists a computable real instance of f. For
instance, 2 f(z,y, z) is interpreted to

ifpsq + (1,1,1) = 1. (1,1.0) — 1,
(1,0,1) — 1. (0.1.1) — 0O,
(1,0.0) - 0 cte.

Then, requisite parameters can be detected by firstly
testing frgy for all {0,1}-input patterns, next collect-
ing the set of minimum input patterns that returns 1
(called 1-frontier in[1]}, and finally detecting requisite
parameters that are always required to be 1 in all pat-
terns in the 1-frontier. TFor instance, if(x,y,z), the
1-frontier is {(1,1,0),(1,0,1)}, and then, the requisite
parameters are {z}.

On the other hand, Boolean-algebraic SA (BSA)
[7.13] is an example of SA as a backward analysis. BSA
interprets a function, f, to a function fig4 which is a
symbolic manipulation on the set-characteristic expres-
sions of input paramelers. For example, if(z,y.2) is
interpreted to

ifpea(a ¥ 2) = Ay Z(2Uy)Nn(z'U)

Then. requisite parameters arc collected by sub-
stituting actual variable names to corresponding set-
characleristic expressions. For instance, requisite pa-
rameters of ¢ f(a,b,) are calculated as

(A'y'z'.(z"Uy) 0 (2'U 2))({a}, {0}, {b})
= ({a}u{thn({a}u{b}) = {«,b}

In both FSA and BSA, these interpretations for user
defined functions are indueed by ordinary fixpoint cal-
culus based on given interpretations on primitive func-
tions on abstract domains.

From an application view point, the analytical pow-
ers of FSA and BSA are equivalent except that FSA
can detect diverged functions when its 1-fronticr is an
empty set, whereas BSA cannot.

2.3 Hicrarchy problemns on SRAs

The hierarchy of SRAs arises from 2 reasons :

- Objective property of program is the same for
SRA, and SRA;, but abstraction is more accurate
on SRA, than SRA,. (Approximation hierarchy)

- Objective property of program itself is more infor-
mative on SRA; than SRA,. (Property hierarchy)

The approximation hierarchy arises from the fact that
an SRA is a compile-time technique whereas the objec-
tive property is a run-time property. Thus, approxi-
mation accuracy is traded off with computational com-
plexity (including termination). Therefore. even for the
same objective property. there are many selections for
approximation levels. These levels can be measured by
domain abstractions.

The notable examples are SAs on non-flat do-
mains (eg. lazy list structures, streams). [1.3,10,8,6).
The notable feature of non-flat domains is non-
strictness. That is, lazy functions such as cons-
stream(z, y), head(z), lail(z) (as in Schieme) admit par-
tially evaluated data for both inputs and outputs.

A trivial extension TSA1 (resp. TSA2) of FSA in-
terprets functions to {0,1}-valued functions where the
data structure is approximated as 1 if completely eval-
uated (resp. possibly evaluated), and as 0 if not com-
pletely evaluated (resp. never evaluated).

Conversely, SA on streams [1,6,8,19] called NSA in-
terprets functions as {0,1,2,3}-valued functions. In the
abstract domain {0,1,2,3}, 0 means never evaluated,
1 means values that are evaluated at least outermost
cons, 2 meaus values that are evaluated until the length
of list is clarified, and 3 means completely evaluated
values.

Thus, for instance, a parameter z in length(z) is ana-
lyzed as not requisite by TSA1 and as possibly requisite
by TSA2, whereas it is analyzed as requisite at level 2
by NSA.

The property hierarchy is found in the relation among
CPA, SA, and RA. [13]. For example,

f(z,y,2.p.9) =
if p>0then (if p=1
then (if z =0 then z else y)
else f(z,2,0,p — 1,7))
else f(0,0,2,1,y)

is analyzed as

PDPS

relevant parameters

{{z.z.p}. {y, 2, p}. {z,p}. {P}}
{z,4,2.p}
requisite parameters {r}

Roughly speaking, the union of all elements in PDPS
is a set of relevant parameters, and the intersection is

a set of requisite paramcters. Therefore, SA and RA
are the projections of CI’A. This fact arises from PDPS
itself being more informative than requisite parameters
and relevant parameters.

3 Algebraic
HOMTs

Structure on

3.1 Construction of U-HOMTs and
their Quadruplet Representations

A HOMT. hy, is defined to be a functional which
maps continuous functions on computational domains
to those on abstract domains. A HOMT is constructed
as a composition of U-HOMTs. A U-HOMT, hy, is a
functional from continuous functions on power domains
! PD[D] to those on power domains PD[Abs], where h;
is induced from the domain abstraction abs: D — Abs
as below.

|[Definition : domain abstraction]
A continuous, onto map abs :
be a domain abstraction iff

D — Abs is said to

{ Vz € abs~'(a,), 3y € abs™'(ny) st.xCpy

Vy € abs™'(az), 3z € abs™'(ay) st.zCpy

for Va,,a; € Abs s.t. «, Cus ag, is satisfied. The
domain Abs is said to be an abstract domain. If Abs is
a finite domain, abs : D — Abs is said to be a finite

domain abstraction.

Since, U-HOMTs are functionals on functions on
PD[D] to those on PD[Abs|, at first a lifting inter-
pretation is required. This interprets functions on D
to functions on PD[D]. This interpretation is natu-
rally induced from the commutative diagram shown in
Fig.1. We will use the lifting interpretation as a default.
Thus, we.do not denote it explicitly.

lifting interpretation

Dn S D
incl m linc : x = {x}
p[m —L PID] fu(X)=
proj repl UtxeX [o}
PD{D"] PDID]
Fig.1 Lifting interpretation.

YA power domain PD[D] is a power set P{D] = {X C D|X #
#} with definedness ordering C on it [18] .

Table 1. Typical selections of parameters of QRs.

domain abstraction direction
base domain abstraction covariant
bss - 1 (fx=1)
WHIT 2 V0 (Gfxgl) (+)

(where0 £'1.)
identical abstraction

(Vz € D)

contravariant

(-)

abs;: a — =z

where,

preorder {

XCeyY iff XCoVAXCY

Y i - (v RC(X)
XCo¥Y iff RC(X)2 RC(Y) { Roc),
XL Y iff LC(X)C LC(Y) { LC(X)'

Maz(X)
ACEY if XJY for C as ahove
- f

proif D Jren

I’[DT"] fu P[D]
Tihep— N
P[AbSn] f P[AbS]
projT rep
PD{Abs"] —2 L ppiAbs]

Fig.2 Construction of
a covariant U-HHOMT hy.

A U-HOMT &y is then naturally induced from do-
main abstraction abs as in the commutative diagrams
shown in Fig.2 and Fig.3.

Note that there are two types of U-HOMTs, covariant
U-HOMTs and contravariant U-HOMTs, correspond-
ing to forward analyses and backward analyses. There
are two differences between then.

- For covariant U-HOMTs, h(f) is induced from a
function, f, itsell. Conversely, for contravariant U-
HOMTs, hy(f) is induced from a function inverse
[

- Therefore. contravariant U-IIOMTs require an ap-
pendiculate power domain PD[D)* ¥ PD[D]U
{¢}. whereas covariant U-HOMTs require an ordi-
nary power domain PD[D] (= {X|X € D, X # ¢}
with preorder C) (The function inverse may require
¢ as a result value.)

def
def

power domain construction

closure invariant
preorder
rep. rep.
N C id id
Cear Conv Conv
o RC Min
5, LC Maz

closure rep. (€ —maximal rep.)

invariant rep. (€ —minimal rep.)

Conv(X) ¥ LC(X)Nn RC(X)

&f {xreD|3Jye XstyCrx)
def

{zeX|-FyeX st yCz}
{zxeD|3ye X st.zCy)
{zeX|-FyeX st.zaCy}

PD[Dn] f PDID]
proj H rep/(C) proj” rep
P(D"] Iy P(D]
absl h Oabs"”ahs
P[Abs"] \«—f" P[Abs]
proj T m lrep
PD[ADs") < ppyi Abs)

Fig.3 Construction of

a contravariant U-IIOMT hp.

The parameters which specify these constructions are
direction (that is. whether covariant or contravariant),
domain abstraction, and power domain construction.
Power domain construction is composed of the selec-
tion of preorder C on power set and its representative
function rep.

[Definition : Quadruplet representation.]

A U-HOMT, hy, is specified by a quadruplet ¢ =
(abs,dir,C,rep) which is a pair of domain abstrac-
tion abs: D — Abs, direction dir (whether covariant
(4) or contravariant (=)), preorder C, and representa-
tive function rep. A quadruplet q = (abs,dir,C, rep)
is called the quadruplet representation (QR) of a U-
HOMT, hy.

Table 1 presents typical selections for these param-
eters (QRs), although not all selections induce useful

SRAs.

Remark Appendiculate power domains PD*[D] =
PD|D}U {4} are constructed from the extension of or-
derings X Co ¢, ¢ &, X. ¢ € X. VX € PD[D]. At-
tention should be paid on that there is no well-defined
extension of Cpps on PD¥[D].

[Examples: FSA, Strictness Information Analysis
 (S1A))
FSA asa HOMT has QRpgsa = (absy. +.C;, Maz).

Strictness Information Analyses (SIA) [13], which
is the variation of backward SA, as a HOMT has
QRsra = (absy, —,C_g, Min). (Detailed discussion on
these formalization will be found in Section.4.1.)

3.2 HOMTs as a composition of U-
HOMTs

On the composition b} o hy of U-HOMTs hy and k7,
the problem is the difference of power domain construc-
tion between range(h;) and domain(h’), although they
have same base domain. That is, definedness (pre)order
may differ within the same power set. Therefore. some
special techniques, such as torsional composition, is re-
quired. This method first embeds the power domain
range(hy) to the power set, and then projects the power
set to the power domain domain(h}).

[Definition: Coinposition of U-HOMTs]
The composition b o hy of U-HOMTs hy and hf is
defined to be

hYyohs: f — hiy(proj' orepo hy(f)o projorep’)

for Vf : continuous function on D. (Fig.4.)

The composition of U-HOMTs is said to be a covari-
ant HOMT if the product of all directions is +, and a
contravariant HOMT if the product is —.

[Example: CPA]
CPA as a HOMT has

QRepa = (absy, +.C,id) o (id,—.C_o, Min) [12].

To clarify the hierarchy of analytical power among
SRAs, analytical order shown below is introduced.
This analytical order naturally induces extensional
equality among SR As. This equality is called algebraic
structure on SRAs.

[Definition: Analytical order on HOMTs]

HOMT, K HOMT,
<= 3HOMT s.t. HOMT, = HOMT o HOMT,

PD[Abs™] —l» PD{Abs]
h ;
f !

| PDTAbs") —= PDADbS]

Fig.4 (Torsional) Composition
of U-HOMTs.

[Definition: Analytical equivalence on HOMTs, alge-
braic structure on HOMTs]

HOMT, ~ HOMT,
< HOMT, X HOMT, A HOMT, < HOMT,

~ on HOMTs arc said to be algebraic structure on
HOMTs.

In most cases, analytical equivalence between SRAs
is easily found from the following reduction theorcm on

QRs of SRAs.

[Reduction Theorem)]

Let hy and 1y be U-HOMTs, and ¢ = (abs,dir,C
,rep) and ¢’ = (abs’,dir',C',rep’) be their QRs, re-
spectively. Then, the composition ko h; is analytically
equivalent to a U-HOMT, that is, the composition ¢’ oq
can be reduced to

(abs',dir',C',rep’) o (abs,dir,C,rep)
= (abs' o abs,dir' o dir,C’,rep’)

if one of following conditions are satisfied.
(1] For dir’ = +,
(a) C'«C or.
(b) E'<E.
where C'«Cif X CY = X C'Y (Fig.5).
{2] For dir' = —,
(a) (E,C) =(Ci0sCs1) Arep= Min

() (,C) = (Can Cao) A rep= Maz
(c) (E,E)=(S9)

L L

——l" 0 —I— 1
L [

— glb — lub
\[:/

— null

Fig.5 Relations among preorders.

3.3 Continuous HOMTs

There is a useful subclass called continuous HOMT.
The validity of this class is confirmed to include SAs.

[Definition: continuous HOMT.]

Let h = (h.,hy) be a HOMT. h is said to be con-
tinuous iff h; is continuous, that is, hy(lub{f™}) =
lub{h(f(™)} for arbilrary an ascending chain of con-
tinuous functions fO C fV C fOC ...

The following theorem is the sufficient condition for
continuity of HOMTs.

[Continuity Theorem|]
A HOMT, hy, is continuous if its QR (abs.dir,C

,rep) satisfies one of the following conditions.

dir =+ and C € {Co.C,,Cipr}-
or, dir=—and Ce{C_q,E_,}.
Remark 1 Continuity theorem gives the condition for

continuity on U-HOMTs. Conversely, all our known
HOMTs are non-monotonic if their QRs are irreducible,
such as CPA and RA.

In general, h;(f) that reflects a run-time property
of f is not computable, even if the abstract domain
Abs is finite. Therefore. instead of hy(f), we introduce
hes(f) which approximates h;(f), and is computable if
the abstract domain is finite.

[Definition: Computed HOMT]
A computed HOMT h.y is defined to be

hey(F) & fiz(h. (7))

forV f = fiz(7), VY7 : recursion equation, where h,(7)
is defined to be a syntactically indentical (resp. in-
verse) equation, but replaces each primitive function
priv with hy(priv), if hy is a covariant (resp. contravari-
ant) HOMT.

Remark 2l obviously satisfies the homomorphic
condition he (f 0 g) = hey(f) 0 hef(g). This is why it is

called a HOMomorphic Transformer.

The relation which justifies that a computed HOMT
h.y properly approximates a HOMT h; is called safe-
ness.

[Definition: Safeness)
A HOMT, hy, is said to be safe ift h;(f) C h.s(f) for

all continuous functions f.

Remark 3. Safeness hy € hyy. is easily proved if hy
is continuous, hy(2) = ', and hy(priv] o privy) C
hy(privi) o hy(priv;) for an arbitrary composition of
primitive functions privy, priv;. Thus, HOMTs which
are enumerated in continuity theorem satisfy safeness.

Remark 4. Though CPA is a non-monotonic SRA,
CPA has been proved to be safe, independently from
the framework of HOMTs [14].

3.4 Non-monotonic HOMTs

The reason why a HOMT is composed as the composi-
tion of U-HOMTs instead of a U-HOMT itself, is non-
continuity of some SRAs, such as CPA and RA.
The non-continuity of SRAs arises from two reasons.
- An approximating chain h;(f) (1 =0,1,2,---) is
non-monotonic.
- A HOMT hy and U (lub-operater) are not commu-
tative. (ie. hy(f) = hy(Uf?) £ Uh (fO))
For instance, the following two examples for CPA cor-
respond to the conditions above. The first example is

Jfooi(z,y) = pors(z,y, fooi(andy(not(zx),not(y)),
fooi(pandy(z,), pandy(z,y)))

where pors, andy, and pand, are parallel-or, strict-and,
and parallel-and, respectively.

Then, an approximating chain hf(foog")) (that is, real
PDPS of fool! for i = 0,1,2.---) is non-monotonic as

h(Q) hy(fool”) hy(fool™) hy(fool)
¢ {{=Hu}} ezl ({=}w))

whereas an approximating chain /. 4(foof)) (that is,
computed PDPS of foo(,‘) for i = 0,1,2,.-+) is mono-
tonic as

hn:! (fooss))
{zHyHz=,y}}

hey(Q) heg(fool") heg(fool®)
¢ {{=My} {z){yMaz,v}}

The second example is

Foos(z,y) = poralgle,y), gate(irue, = + 1))
a(z.y) if © = 0 then true else g(z — 1,y)

Then,

h,(foog’.)) = {{z}(when z < 1), {z,y}(otherwise)}

and consequently, Ll{h,(foog))} = {{z}.{=.v}}.
whereas h;(U{foog'))}) = {{z}} (real PDPS).
Conversely, h.c,(foog')) = {{z}, {=.y}} and con-

sequently, U{he(food”)} = {{z},{z,y}} (computed
PDPS).

4 Isomorphic Conversion
and Projective Induction
among SRAs

4.1 SRAs as HOMTs, revisited

This section induces two special kind of HOMTs as
transformation methods among SRAs in order to solve
both the equivalence problem and the hierarchy prob-
lem. They are called the isomorphic converter and the
projective inducer. An isomorphic converter transforms
a forward (resp. backward) SRA into an analytically
equivalent backward (resp. forward) SRA. On the other
hand. a projective inducer transforms a forward (resp.
backward) SRA to a weaker forward (resp. backward)
SRA.

Thus, the equivalence problem is clarified as the exis-
tence of an isomorphic converter. Similarly, the hierar-
chy problem is clarified as the existence of a projective
inducer.

For this purpose. SRAs are redefined in terms of
HOMTs. :

[Definition: base domain abstraction.]
The base domain abstraction absy: D — Abs is ex-
tended inductively according to structure of domain D.

constructor(absg(y), absp(z))
{ = = constructor(y, z))
absy(x)
(otherwise)

absp:z —

Intuitively speaking, base domain abstraction con-
cerns whether the value is defined or not, but ignores
the value itself.

[Definition: SRA]

Let hy be a HOMT, and abs: D — Abs be a domain
abstraction. Then, hy is said to be an SRA iff there
exists abss s.t. abs = abss o absp. (abss is said to be
structural domain abstraction.)

4.2 Isomorphic conversion between

forward/backward SRAs

[Definition: Isomorphic converter.]

Let 7y 5, hy y be HOMTs. Contravariant HOMTs hy
and Iy are said to be isomorphic converter iff b ; =
hyohy yand hy y ~ hY o hy ; are satisfied.

Let us consider an example of isomorphic conversion
between FSA (forward SA) and SIA (backward SA)
which is a natural extension of BSA. First, a QR of FSA
is presented. Next, a QR of SIA is presented. Finally,
isomorphic conversion is given from reduction theorem.

A QR of FSA is qrsp = (absy, +,C,, Maz). This is
shown from the correspondence among interpretations
on primitive functions and definedness ordering on ab-
stract domains.

Let hpss y be a HOMT whose QR is grsa. Equiv-
alence among interpretations on primitive functions is
checked by testing all possible values on abstract do-
mains. For example. by FSA. if(z,y, z) are interpreted
to

ifrsa + (1,1,1) — 1, (1,1,0) — 1,
(1,0.1) - 1, (0,1,1) — O,

(1,0,0) — o, ete.

and by hrpsa,

hpsa fGN): Mas({(1L,L1)}) — Maz({1}),
Maz({(1,1,0)}) — Maz({1}),
Maz({(1,0,1)}) — Maz({1}),
Maz({(0,1,1)}) — Maz({0}),
Mas({(1,0,0))) — Mas({0}).

cte.

Thus. equivalence among i frg, and hrsa ((if) is eas-
ily shown from an embedding : z € {0,1} — {z} €
PD({0,1}). And, equivalence of definedness order is
obvious fromz Cy = {a}C, {y}.

SIA, the extension of BSA, is a HOMT hgs ; whose
QR is gsi4 = (absy,—,C_o, Min). The main differ-
ence between BSA and SIA is that SIA can detect
diverged functions whereas BSA cannot. This is be-
cause a totally undefined function Q(zy,...,z,) is in-
terpreted to Azy...z UNDEF by SIA with a special
value UNDEF, whereas §(zy,...,2,) is simply inter-
preted to Az} ... z},.z]U. ..Uz, (strict function) by BSA.
Except Q(z1,...,zn), other functions are interpreted to
the samme abstract functions on both BSA and SIA. For

example, primitive functions i f(x,y, z) and +(z,y) are
interpreted to

hpsa ;(if) = Az'y2'(FUY)N(2'U2')
hsia sGf) {1} = Min({(1,1,1).(1,1,0),(1,0,1)})

Thus, equivalence except Q(zy.....xz,) is casily
shown under one-to-one mapping such as
(z'uy)N(z'uz) = {(1,1,0),(1,0,1)}

Uy {1, 1)}
UNDEF o ¢

!

Correspondence among definedness orderings is also
casily checked from the fact X CY = X GoY.

Remark. FSA and SIA are continuous SRAs from con-
tinuity theorem (See Section 3.3).

[Example: Equivalence of FSA and SIA.]
The equivalence of FSA and SIA is proved from re-
duction theorem (See Section 3.2). That is,

(id,—,C_o, Min) o (abs,. +,E,, Maz)
= (absy,—,C_o, Min)

(id,—,C,, Maz)o (absy, —,C_o, Min)
= (abSb, +1[;_‘l)Maz)

Thus, equivalence between FSA and SIA is clarified
as the existence of underlined QRs which are isomorphic
converters.

4.3 Projective induction among SR As

[Definition : Projective inducer.]

Let hy 5, hy y be HOMTs. Covariant HOMTs hy is
said to be a projective inducer from h; y to hy y iff
hog=hjohy yand hy ;% hy g

There are two cases that cause hierarchy of analyti-
cal power among SRAs : approximation hierarchy and
property hierarchy, as mentioned in Section 2.3. These
are clarified by the existence of projective inducers.

The first example is the relation among SAs on non-
flat domains (e.g. streams), such as NSA, TSA1 and
TSA2.

Let absysp : D — {0,1,2,3}, absrsay : D — {0,1},
and abstsa, : D — {0,1}, be as shown in Section 2.3.

Then, their QRs as HOMTs are

(absnsa, +.C,. Maz),
(absrsar, +.Cy, Maz),
(absrsaz, +.C1, Max).

gNSA
qTsAl
and grsq2 =

Let abstraction maps be

z— 0 (forze€{0,1,2})
z—1 (forze{3))
z— 0 (for z € {0})
z—1 (for z € {1,2,3})

absysa—Tsm
absysAwTSA2

From reduction theorem,

17541

(a‘bsTSAlv +y [;h AI(I..’C)
(absysa—rsar, +.Ci, Maz)
(o) (absNSA, +, [;1. AJGI)

1i

aT5A2

(absrsaz, +,Cy, Max)
(absnsa~rsaz, +,E1, Maxz)
o (absysa, +,Ci, Maz)

1l

Thus, approximation hierarchy among NSA, TSA1,
and TSA2 is clarified as the existence of underlined QRs
which are projective inducers.

The second example is the relation among SRAs such
as CPA, SIA, and RA on flat domains.

A QR of CPA is (absy, +, Egey, id)o(id, —, E_g, Min).
From reduction theorem, SIA is induced from CPA as

(id,+,Co, Min) o CPA
= (id,+,Co, Min) o

((absy, +,Coer.id) o (id,—,C_o,Min))
= ((id.+,Cp. Min) o (absy, +,C,.,td))

o (id. —,E_o, Min)
(abss, +,E0, Min) o
(absp, —,Co, Min)

= SIA

(id. —,Co, Min)

Similarly, a pseudo-safe RA (which is safe on non-
recursive functions, but not on recursive functions)
called PRA has a QR (absy,+,Cy,Maz) o (id,—,E_o
,Min) [12]. PRA is induced from CPA as

(id,+,C,, Maz) o
= (id,+,;1,l‘fa:t) [o]

((abs;,, +, c_:achid) o
= ((id,+.C,,Maxzx))
o (id,—,Co, Min)
(absy. +,C4,Maz) o

CPA

(id,—,Co,Min))
(abSb, +v Esehid))

(id, —,C_o, Min)

These property hicrarchies are clarified as the exis-
tence of QRs which are projective inducers.

5 Conclusion

A new formalization method for SRAs on first-order ap-
plicative languages was proposed. For this purpose, the
concept called HOMomorphic Transformer (IIOMT)
was introduced. Intuitively speaking, a HOMT is a

special instance of abstract interpretation. A set of
HOMTs is an algebraic space, where equivalence re-
lations (or reduction rules) are defined. This paper has
clarified that HOMTs can be used not only for a for-
malization of possibly non-monotonic SRAs, but also as
a transformational mechanism between these analyses.
Thus, equivalent and hierarchical relationships among
these analyses can be discussed on a unified basis.
There are two directions for further works :

- Relation between algebraic formalization and ab-
stract interpretation.
- Safeness of non-monotonic SRA.

Algebraic formalization was, also. used to investigate
the relationship among SRAs [13]. However, the rela-
tionship between algebraic formalization and our frame-
work is still open.

As shown in Section 4.3, HOMTSs are not enough to
formalize some safe non-monotonic SR As, such as RA.
For instance, PRA is not totally safe, although it is
safe on non-recursive functions. In fact., hppa of(2) C
hpra f(Q) holds, and it causes an interruption on safe-
ness. Therefore. some other transformational method
is required in addition to HOMTs under the restriction
of safeness. Such a method must extract a totally un-
defined function §)(x,,...,z,) to a strict function (such
as for BSA). or a constant function (such as for RA).
without seriously affecting the other functions.

Acknowledgments

The authors would like to thank Dr. Katsuji
Tsukamoto, Director of NTT Software Research Labo-
ratory, for his guidance and encouragement. They also
wish to thank Masaru Takesue and Dr. Naohisa Taka-
hashi, for their useful discussions.

References

[1] Abramsky,S. and Hankin,C.(eds.). “Abstract inter-
pretation of declarative languages,” Ellis Horwood
Limited (1987)

[2] Bloss,B. and Hudak,l., “Variations on strictness
analysis,” ACM Conf. on LISP and Functional
Programming, pp.132-142 (1986)

(3] Clack,C. and Peyton Jones,S.L., “Strictness anal-
ysis — a practical approach.” Functional Pro-
gramming Languages and Computer Architecture,
LNCS 201, Springer-Verlag, pp.35-49 (1985)

[4] Cousot,P. and Cousot,R.,“Abstract Interpretation:
a unified lattice model for static analysis of pro-
grams by construction or approximation of fix-

points,” 4th ACM POPL. pp.238-252 (1977)

[5] Dybjer,P., “Inverse Image Analysis,” 4th ICALP,
LNCS 267, Springer-Verlag. pp.21-30 (1987)

(6] Hankin,C.L., Burn,G.L.. and Peyton Jones,S.L.,
“A Safe Approach to Paralle] Combinator Reduc-
tion.” Theoretical Computer Science, 56, pp.17-36
(1988)

(7] Hudak.P. and Young,R., “Higher-order strictness
analysis in untyped lambda calculus,” 13th ACM
POPL, pp.97-109 (1986)

(8] Hughes,J., “Strictness Detection in Non-Flat Do-
mains,” LNCS 217, Springer-Verlag, pp.112-135
(1985)

[9] Mishra,P. and Keller,A.M.. “Static Inference of
Properties of Applicative Programs,” 11th ACM
POPL, pp.235-244 (1984)

[10] Mycroft,A., “The theory and practice of trans-
forming call-by-need into call-by-value,” LNCS 83,
Springer-Verlag, pp.269-281 (1980)

[11] Nielson.F. “A Bibliography on abstract interpre-
tation,” ACM SIGPLAN Notices, 21, 5, pp.31-38
(1986)

[12] Ogawa,M. and Ono,S., “Extension of abstract in-
terpretation of functional programs and its appli-
cation to global data flow analysis,” Symp. on
Functional Programs, Institute of Physical and
Chemical Research Japan, pp.28-37 (1987) (in
Japanese)

[13] Ono,S., “Computation Path Analysis : Towards an
Autonomous Global Dataflow Analysis” The Sec-
ond France-Japan Artificial Intelligence and Com-
puter Science Symposium, Sophia, France (1987)

[14] Ono,S. and Takahashi,N., “Algorithm for comput-
ing dependency property sets in recursive function
systems,” Trans. IEICE Japan, J69-D, 5, pp.714-
723 (1986) (in Japanese)

[15] Ono,S., Takahashi,N. and Amamiya,M., “Non-
strict partial computation with a dataflow ma-
chine,” 6th RIMS Symposium on mathemati-
cal methods in software science and engineering,
TR.547, RIMS Kyoto Univ.,pp.196-229 (1984)

[16] Ono.S., Takahashi,N. and Amamiya,M., “Opti-
mized demand-driven evaluation of functional pro-
grams on a dataflow machine,” IEEE ICPP‘86,
pp.421-428 (1986)

[17] Peyton Jones,S.L., “The implementation of func-
tional programming languages.” Prentice-Hall
(1987)

(18] Smyth,M.B., “Power Domains,” JCSS 16, pp.23-
36 (1978)

[19] Wadler,P., and Hughes,R.J.M., “Projections for
Strictness Analysis,” Functional Programming
Languages and Computer Architecture, LNCS
274, Springer-Verlag, pp.385-407 (1987)

