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ABSTRACT
Malware applies lots of obfuscation techniques, which are
often automatically generated by the use of packers. This
paper presents a packer identification of packed code based
on metadata signature, which is a frequency vector of occur-
rences of classified obfuscation techniques. First, BE-PUM
(Binary Emulator for PUshdown Model generation) disas-
sembles and generates the control flow graph of malware in
an on-the-fly manner, using concolic testing. Second, ob-
fuscation techniques in the generated control flow graph are
detected based on the formal criteria of each obfuscation
technique. Last, the used packer is identified with the chi-
square test on the metadata signature of a packed code. The
precision is evaluated with experiments on 12814 malware
from VX heaven and Virusshare, in which 608 examples are
detected inconsistent with commercial packer identification
at PEiD, CFF Explore, and VirusTotal. We manually con-
firm that, except for 1 example, BE-PUM is correct. The
only case that BE-PUM misunderstands is between MEW
and FSG, which are quite similar packers and current BE-
PUM extension does not support MEW.
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1. INTRODUCTION
Over the past decades, malware or malicious software has

been becoming a real threat to computer users. Malware
transparently infects nasty, unwanted and malicious code in-
side victim machine for illegal financial gain, personal infor-
mation thief and other malicious actions. In 2014, according
to a report from International Data Corporation (IDC) and
the National University of Singapore (NUS), more than 491
billion dollars has been consumed for the war against ma-
licious softwares [1]. To evade firewall and antivirus (AV)
scanners, malware authors utilize packer, a binary software
which employs code obfuscation techniques. According to [2,
3, 4, 5], over 80% of malware is obfuscated using packers
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for protecting against anti-virus systems, e.g. ASPACK1,
FSG2, PECOMPACT3, TELOCK4, UPX5, and YODA’s Crypter6.
Packers apply a lot of obfuscation techniques to avoid the
detection [25]. Hence, the identification and unpack of pack-
ing techniques are becoming vital for revealing a malicious
intention and conducting further analysis.

The packer transforms the targeted file into another com-
pressed executable, which preserves the original functional-
ity. Its first aim is to reduce the size of binary files. Another
aim is to evade reverse engineering, or protect the licensed
software from crackers, which is also favorable for generating
malware.

A packed binary contains an unpacking code (called a
restoration loader stub), which decrypts the original file with
different algorithms specific to each packer. After unpack-
ing the payload, it transfers the control flow to the origi-
nal entry point (OEP). Moreover, many packers, e.g., TE-
LOCK, YODA’s Crypter, provide armored stubs for pro-
tecting against reverse engineering, cracking, and tampering
with anti-debugging and anti-reversing techniques.

When the used packer is identified, we can use specialized
unpackers, as well as generic unpackers [13, 14, 16, 20, 26]
to obtain the original binary code, which closely relates to
the detection of the OEP. Most of the packer identification
are based on the binary signature, which is a packer-specific
binary sequence in a packed code. For instance, CFF Ex-
plorer7 and PEiD8 are popular tools for the packer identi-
fication by finding exact matching with the binary signa-
ture. There are several attempts to improve binary pattern
matching [7, 10, 15, 30, 34].

Contributions
Our key contributions are summarized as follows.

1. We newly propose the metadata signature of packers,
as an alternative to the binary signature, which is the
frequency vector of classified obfuscation techniques in
the unpacking code of a packed binary. First, we ex-
tend a binary model generator BE-PUM [22, 23], avail-
able online at bepum.jaist.ac.jp, for the obfuscation

1http://www.aspack.com
2http://fsg.soft112.com
3https://bitsum.com/pecompact
4http://www.telock.com-about.com
5http://upx.sourceforge.net
6http://www.yodas-crypter.com-about.com
7http://www.ntcore.com/exsuite.php
8http://www.secretashell.com/codomain/peid



technique detection. BE-PUM has strong disassemble
feature, e.g., it automatically detects the destination
server of information leak by EMDIVI9. Second, the
obfuscation techniques used in packers are classified
following to the survey [25] and chosen as indicators.
The formal criteria to detect them are carefully de-
fined based on manual observation on more than 40
malwares. Lastly, inspired by [27, 29, 28], we apply
the chi-square test for the packer identification based
on the metadata signature. The average and the mem-
bership thresholds for the chi-square test are set by
training on test sets, which are taken from packed toy
examples and real-world malware. BE-PUM generates
a control flow graph along the execution paths in an
on-the-fly manner, and it computes the membership
at each generation step. When the membership ex-
ceeds the threshold, it identifies the used packer. This
occurs around the end of the unpacking code. Thus,
BE-PUM detects a near region of the OEP, which is
often investigated by analyzing dynamic behavior [16,
20, 26] or statistic features [13, 14].

2. We have performed the experiments for evaluating the
precision of our approach on 5374 malware from VX
heaven10 and 7440 malware from Virusshare11, in which
608 inconsistent examples are detected with commer-
cial packer identification at PEiD, CFF Explore, and
VirusTotal. We manually investigate all and observe
that, except for 1 example, BE-PUM is correct. The
only case that BE-PUM misunderstands is between
MEW and FSG, which are quite similar packers and
the current BE-PUM does not cover MEW.

3. There are three different techniques for unpacking a
packed file, manual unpacking, static unpacking and
generic unpacking [8]. Manual unpacking is time con-
suming. Static unpacking can be evaded by unknown
or custom packer. Due to the nature of binary emula-
tor, we enhance BE-PUM as a generic unpacking tool
which is very important for unpacking custom packer.
BE-PUM can simultaneously unpack and detect cus-
tom packer based on the occurrence of packing/un-
packing and 2API techniques.

The paper is organized as follows. Section 2 and 3 present
preliminaries and BE-PUM, respectively. Section 4 gives the
formal criteria of the obfuscation techniques in packed code.
Section 5 defines the metadata signature. Section 6 shows
the experiments on the packer identification. Section 7 con-
cludes the paper.

Related Work
There are two main targets in the packer analyses. The first
one is packer identification, which is mostly by the binary
signature detection [15, 34, 30, 7]. The binary signature is
often located around the OEP, and this closely relates to
the OEP detection and unpacking. Li Sun, et. al. observed
the randomness profile on the whole binary code [34], apply-
ing various pattern matching techniques, e.g., the k-nearest

9http://blog.jpcert.or.jp/2015/11/emdivi-and-the-
rise-of-targeted-attacks-in-japan.html

10http://vxheaven.org
11https://virusshare.com

neighbor, the best-first decision tree, the sequential mini-
mal optimization, and the naive Bayes to classify packers.
It shows high accuracy, more than 95%. Unfortunately, the
datasets used for the experiments are no longer available for
comparison. Our approach focuses more on semantic fea-
tures based on precise control flow graphs, which is almost
100% precise at the cost of the execution time. We expect
our approach can be applied for automatic training set gen-
eration.

The second goal is to unpack the packed files. Some re-
markable tools following this goal include OllyBonE12, Ren-
ovo [16] and CoDisasm [11]. OllyBonE13, a plugin of Olly-
Dbg14 aims to unpack code by finding the OEP. This tools
consists of a Windows kernel driver for implementing the
page protection of an arbitrary region. The method to find
the OEP consists of several steps. It first selects the mem-
ory region and sets exception break-on-execute to protect
this region. Then, it waits for unpacking stub to finish. If
the control flow transfers to the address inside the protected
area, the exception occurs and the OEP is found. How-
ever, this plugin fails in many cases, when packers employ
anti-debugging techniques, e.g., exploiting the API IsDebug-
gerPresent@kernel32.dll.

Renovo [16] is built on the top of an emulated environ-
ment, TEMU15, which is a dynamic analysis component of
BitBlaze [31]. Renovo stores a shadow copy of memory space
of the targeted file for observing and monitoring program ex-
ecution to write on memory at run time. Renovo finds the
OEP by extracting the newly generated code and data. The
detection of the OEP is also used in [14, 13] with statistical
analyses. Polyunpack [26] and Omniunpack [20] detect the
original payload by observing dynamic behavior.

There are several static malware analyses, such as model
checking and symbolic execution. For instance, malware de-
tection by model checking is found in [32, 33], but they sim-
ply use IDApro to disassembly, which limits the capability to
handle packed code. Another example is McVeto [35], which
first collects candidate destinations of an indirect jump by
a static analysis, and check whether each is feasible by sym-
bolic execution. However, it also limits the handling capabil-
ity of packed codes, since static analyses are easily confused
by arithmetic operations. BE-PUM applies dynamic sym-
bolic execution (concolic testing) to decide the destinations
of an indirect jump, which is more robust.

More dynamic use of symbolic execution is CoDisasm [11],
which is built on Intel/PIN. Its ideas overlap with BE-PUM,
but more with a dynamic analysis. It proposed concatic
disassembly, which first dynamically executes on Intel/PIN
and retraces the path with symbolic execution. If possible
branches are found, it confirms with concolic testing.

BINSEC/SE [36] built on BINSEC applies syntactic dis-
assembly (similar to IDApro) to an intermediate represen-
tation DBA. BINSEC is prepared as a binary code analyzer
framework, and BINSEC/SE adds dynamic symbolic execu-
tion on BINSEC. Because of the syntactic disassembly, it
seems to target more on compiled binaries.

2. PRELIMINARIES
12http://www.joestewart.org/ollybone
13http://www.joestewart.org/ollybone
14http://www.ollydbg.de
15http://bitblaze.cs.berkeley.edu/temu.html



2.1 Chi-square test
When we observe the frequency of occurrences of features

of interest, the chi-square test is one of the standard sta-
tistical methods to profile and classify based on these fea-
tures. The chi-square test assumes that such features have
the degree k of freedom, which means the number of inde-
pendent random variables. Then, the standard chi-square
distribution is obtained, and the probability of failures (the
statistical significance) is a function of the given threshold
and the degree of freedom. For instance, the significance
0.05 (which is often a standard choice) is obtained with the
threshold ε “ 3.84 when the degree of freedom is 1.

Let f “ pf1, f2, ¨ ¨ ¨ , fnq be a natural number vector of
the dimension n. Given n-features, fi is the number of the
occurrences of the i-th feature. For instance, critical API
calls are such example features, used for malware profiling
in [27]. We will set obfuscation techniques as such features
for packer identification. Either case tries to say whether an
objective belongs to a specified class of malware or packed
code, respectively. Thus, k is set to 1 and their significance
become the allowance of the failure on the classification.

We first prepare the training set Tr, which are already
classified into some class C. The average vector E “ pE1, E2,
¨ ¨ ¨ , Enq of occurrences is defined by

Ei “
ΣxPTrfipxq

|Tr|

The chi-square test proceeds for a sampleO “ pO1, O2, ¨ ¨ ¨ , Onq

as follows. Let

χ2
i pOq “

pOi ´ Eiq
2

Ei
λpOq “

|U |

n

where U “ ti | χ2
i pOq ď ε and 1 ď i ď nu. The degree of

membership λpOq presents how likely it is for O to belong
to C.

Second, prepare the test set Te, which are also already
known to belong to C and Tr X Te “ H. The membership
threshold λ̄ is set to the average of the degree of membership
in Te, i.e.,

λ̄ “
ΣOPTeλpOq

|Te|

When a new sample x is examined, λpxq ě λ̄ concludes that
x is in C.

2.2 Structure of packed code and binary sig-
nature

Roughly speaking, a packed code has a PE (Portable Ex-
ecutable) header, the unpacking code, and the packed pay-
load. Their structures differ depending on used packers.
For instance, UPX produces the packed code below (Fig. 1
in [7]).

A packer packs the payload, and when the packed code
is executed, it first unpacks the packed payload. The OEP
is the entry of the packed payload. We focus on the un-
packing code, in which the use of obfuscation techniques is
quite independent from the payload content. The end of the
unpacking code is near to the OEP.

A popular approach of the packer identification is by the
binary signature, which is a binary pattern appearing in a
packed code. PEiD and CFF Explorer are popular exam-
ples of such tools. For instance, they check the use of the

its extraordinary generalization performance, LDSVM imposes
high computing cost in training and testing. Let 𝑁 be the
number of programs in the training dataset, and 𝐿 the length
of the input code segments. The time complexity of LDSVM
in training and testing is 𝑂(𝐿2𝑁3) and 𝑂(𝐿2𝑁), respectively
(See Section II-C2). While high computing cost in training
will elongate the system update time at back end, high cost
in testing will deter the application of LDSVM in end-user
systems as well.

In this paper, to alleviate the high computing cost of
LDSVM for packer identification, we propose to incorporate
the popular spectrum kernel [12] with SVM. The spectrum
kernel, also well known as 𝑛-gram kernel, has enjoyed great
popularity due to its simplicity and efficiency in modelling
processes where contiguity between items plays an important
role. The advantages of adopting a spectrum kernel instead
of LD kernel is summarized in the following aspects. First,
it helps to save computation cost in training and testing,
resulting in improved scalability and usability. The time
complexity in training an SVM with spectrum of order 𝑝
is 𝑂(𝐿 log(𝐿) + 𝑁𝐿), indicating a significant boost on the
scalability of a packer identification system. On the other hand,
the time complexity for predicting the packer of an previously
unknown program is 𝑂(𝐿 log(𝐿)), which is a reasonable cost
for real-time responding end-user clients. Second, it enables
the exploration of signatures that are located apart from the
starting point of the entry point containing section, and there-
fore could cope with packers with more complicated nature.
Finally, treatment of the unique 𝑝-spectrum as independent
features enables the application of advanced feature selection
methods, which can not only enhance the accuracy of the
system but also provide valuable hints to discover the most
representative signatures of packers.

The remainder of the paper is organized as follows. In
Section 2, we present related work and background information
regarding packer identification. In Section 3, we present SVM
with spectrum kernel function. In Section 4, we provide nu-
merical comparison between the proposed scheme and related
work. In section 5, we draw concluding remarks.

II. RELATED WORK

Packer identification is usually performed by careful exam-
ination of packer-identifying features in a packed file. In this
section, before introducing related work in packer identifica-
tion, we present basic background knowledge of packers.

In [10], Sun et al. proposed a static-analysis based scheme
for packer identification i.e., with the binary programs taken
as the input to the system, the analysis is performed without
actually executing the programs. Their study shows that the
packer can be identified with good accuracy using classifiers
such as 𝑘 nearest neighbors (𝑘NN), support vector machine
(SVM), and naive Bayes (NB) trained from statical features
extracted from the binary programs (See section II-C).

A. Background

A packer is a software program that compresses an ex-
ecutable file and combines the compressed data with a de-
compressing routine into a single executable file so that one
can seamlessly execute the packed file without having to

PE Header

Empty

Packed Data

Unpacker Code

UPX0

UPX1

rsrc

Hello_upx.exe

PE Header

Code Section

Data Section

Code Section

Data Section

Loading

Hello.exe

Resource Data

Fig. 1. The structure of a file packed by UPX.

decompress it beforehand. While such a technique can be
used by regular software developers for optimization purposes,
many malware authors use it to obfuscate their programs in
order to prevent analysis.

We take UPX [3] as an example to investigate the way
that a packer works. Fig. 1 shows how UPX transforms a
file ‘Hello.exe’ into a packed file ‘Hello upx.exe’ [1]. When
packing an executable file, UPX merges and compresses all its
three sections – the PE header, the code section, and the data
section – into one data block. It then attaches a new PE header,
an empty block padded with 0’s, a unpacker-code block, and
a resource block to the packed data. As shown in Fig. 1, the
empty area, packed data together with the unpacker code, and
the resource block are labeled as ‘UPX0’, ‘UPX1’, and ‘rsrc’,
respectively. Note that since a packer author can name each
section as he likes, no packer identification shall be done based
on information such as section names.

The PE header of the packed file contains an entry point
where it begins running. UPX puts the beginning address of the
unpacker code into the entry point so that the unpacker code
is executed at first. Then the unpacker code decompresses the
original code section and data section from the packed data
and overwrites the ‘UPX0’ section using these two sections.
The unpacker code passes over to the original code after the
unpacking is done.

B. Signature-based Packer Identification Tool

Since the original code of a packed file is usually com-
pressed or encrypted, an analyst cannot perform the analysis
unless it is unpacked. Packer identification when successfully
done can give valuable clues on how to unpack such obfuscated
specimens.

PEiD [6] is a widely used free-ware for packer identifica-
tion using exact match on predefined signatures. Given a set
of predefined packer signatures, e.g., one of the signatures for
UPX version 2.90 is ‘60 BE ?? ?? ?? ?? 8D BE ⋅ ⋅ ⋅
11 C0 01 DB’, where each byte is presented as a bidigitate
hexadecimal number and ‘??’ indicates a wild card, PEiD
searches over the packed file for the packer-specific signatures
and outputs the name of the packer at the first hit. PEiD
supports three different scanning methods, each suitable for a
distinct purpose. The normal mode scans the specified PE file
at its entry point for all designated signatures. The deep mode
scans the file’s entry point containing section. The hardcore
mode scans the entire file for all the documented signatures.

7070

Figure 1: Example of packed code in UPX

Model generation idea (1)  Dynamic interpretation

…

Until convergence
entry

Concolic testing

Figure 2: Model generation using concolic testing

packer UPX Protector v1.0x by detecting the binary sig-
nature below in the entire PE header. However, when the
self-modification mutates and/or the code layout of a file is
modified, they are confused. After the packing, the binary
signature can be easily modified by changing some bytes
manually.

EB ?? ?? ?? ?? ?? 8A 06 46 88 07 47 01 DB 75 07 8B 1E 83
EE FC 11 DB

3. BE-PUM
3.1 Disassembly by BE-PUM

A tool BE-PUM (Binary Emulator for PUshdown Model gener-
ation) generates a precise control flow graph (CFG) [23], as well
as precise disassembly of x86 binary code. It can handle typi-
cal obfuscation techniques of malware, e.g., indirect jump, self-
modification, overlapping instructions, and structured exception
handler (SEH), which cover obfuscation techniques introduced by
a packer (see Section 4).

BE-PUM generates a model of binary code in an on-the-fly
manner, following to the execution paths. The concolic testing
is used at each step for extending a model as presented in Fig-
ure 2. Compared to McVeto [35], which statically detects possible
destinations of indirect jumps and confirms their feasibility by
symbolic execution, BE-PUM decides the destinations of indirect
jumps by concolic testing as described in Figure 3.

The Figure 4 shows the architecture of BE-PUM, which con-
sists of three components: symbolic execution, binary emulation,
and CFG storage. It applies JakStab 0.8.3 [19, 18, 17] as a prepro-
cessor to compute a single step disassembly, and an SMT solver

Handling indirect jump by symbolic execution

Static
ψ & next=d1

ψ & next=d2

ψ & next=d3

d1

d3

d2

Statically detected

candidates

SAT

SAT

UNSAT

x d2

Dynamic
d1

ψ

ψ & next≠d1

SAT & test

SAT & test

UNSAT
ψ & next≠d1 & next≠d2

ψ

Figure 3: Comparison between static symbolic exe-
cution and dynamic symbolic execution



Figure 4: The architecture of BE-PUM

Figure 5: One-step concolic testing in BE-PUM

Z3 4.4 as a backend engine to generate test instances for concolic
testing.

The Figure 5 shows how BE-PUM executes one-step concolic
test. The binary emulation either interprets an x86 instruction,
or spawns to a Windows API stub, where the Windows API stub
calls JNA to execute a native shared library in real Windows envi-
ronment to obtain the return value and the environment update.

The binary emulation also transfers the pre-condition P to the
post-condition P 1. The path condition consists of arithmetic con-
straints on symbolic values only, and the memory model describes
the environment, which set up the value of registers, memory lo-
cations, and flags by arithmetic expressions of symbolic values.

If an exception like the division by zero occurs, BE-PUM de-
tects it at the binary emulator, which passes them to the Windows
system error handler.

3.2 Extensions of BE-PUM for packer identi-
fication

We observe that x86 instructions and APIs used in the packer
techniques are quite typical, but sometimes tricky. For instance,
the unpacking code first allocates a new virtual memory using
VirtualAlloc@kernel32.dll or reuses the empty section in a file. It
then decompresses the packed payload (including the import table
of Windows APIs that are used in the payload) into the new sec-
tion, and dynamically loads the imported libraries, using the two
APIs, GetProcAddress@kernel32.dll and LoadLibrary@kernel32.dll.

Some packers also contain techniques for the integrity checking,
the protection, and the anti-analysis, by using special x86 instruc-
tions and APIs. Timing check, which checks timing anomaly, e.g.,
the execution is too slow, uses the RDTSC instruction. The basic
debugger detection is to call IsDebuggerPresent@kernel32.dll to
detect whether currently executed in the debugged mode.

Instead of directly calling IsDebuggerPresent@kernel32.dll, so-
phisticated packers, like Yoda, directly access TIB (Thread Infor-

mation Block) to get the address of PEB (Process Environment
Block) at the offset 0x30, and check the BeingDebugged flag at
the offset 0x02 in the PEB.

To cover them, various extensions (compared to [23]) have been
contributed for improving BE-PUM.

‚ The binary emulation of BE-PUM additionally support 200
x86 instructions and 140 windows API stubs, which are
typically used in packers. Some of them needs special care
for specific obfuscation techniques. For instance, the anti-
tracing requires the stubs for GetProcAddress@kernel32.dll
and LoadLibrary@kernel32.dll. For the anti-tampering, like
timing check, an appropriate return value of the RDTSC
instruction is prepared, not to be judged in an emulation
environment.

‚ The memory model of the binary emulator in BE-PUM ac-
curately simulates the real memory allocation, e.g., PEB
and TIB. The PEB is created at the process initialization,
and contains the information, e.g., the global context, the
startup parameters, the image loader, and the image base
address. The TIB stores the information on the currently
running thread, e.g., the current thread ID, the PEB ad-
dress, and the environment pointer.

‚ The trap flags and the debug registers are introduced to the
binary emulator of BE-PUM. For instance, the hardware
breakpoint and the structured exception handler (SEH)
with the trap flags are used in TELOCK.

Currently, BE-PUM is extended to support 300 popular IA32
(x86) instructions (amongą 1000) and 1500 Windows APIs (among
ą 4000), which are sufficient to trace the unpacking codes of many
packers.

3.3 BE-PUM as a generic unpacker
There are three different techniques for unpacking a packed file,

manual unpacking, static unpacking and generic unpacking [8].
Manual unpacking is time-consuming and requires deep under-
standing of kernel. Static unpacking with signature detection can
be applied for unpacking files packed by known packers. However,
virus developers can evade them using modified or custom pack-
ers. Thus, generic unpacking which emulates unknown packed
executables until they reveal their malicious behavior in memory
is becoming increasingly important for anti-virus providers [8].
Due to the nature of of symbolic dynamic emulator, BE-PUM also
works as a generic unpacker. In [9], Xabier, et. al. proposed a tax-
onomy for run-time packers to measure their structural complex-
ity. Following the classification, current BE-PUM can unpack the
Type-III packer containing PE Compact, ASPACK, FSG. For the
Type-IV, V and VI packers, BE-PUM needs more observed fea-
tures for unpacking and classifying. For example, current version
of BE-PUM does not support unpacking with multiple threads
and interleaved execution in Obsidium 1.2, a Type-IV packer.

Our notable example is EMDIVI, which was firstly explored on
October 2014 by Kaspersky Laboratory. It caused huge informa-
tion leak from Japanese governmental pension fund in 2015. BE-
PUM disassembles a variation indexed by MD5 code e9302fe774e
22e2b34a395f8e56c6976fe354bb88b5dcfda4ee36984eebd9340. Un-
til interrupted at PStoreCreateInstance@Pstorec.dll (which is
currently unsupported in BE-PUM), 20, 192 instructions are ex-
plored in approximately 2 minutes. During the disassembly, BE-
PUM automatically detects the destination server name, the user
name, and the password as the arguments of InternetConnectW@WinINet.dll.
They are obtained by inspecting the stack as

ServerName:www.n-fit-sub.com, ServerPort:80,
Username:null, Password:null, Service:3.

Current generic unpackers [13, 14, 16, 20, 26] focus on finding
the OEP by either statistical or dynamic analysis. BE-PUM di-
rectly disassembles without investigating the OEP, and as a result
of the packer identification, it will find a near region of the OEP.

For instance, after BE-PUM identifies that EMDIVI is packed
with UPX v3.0, BE-PUM detects the exact OEP by using the
fact that UPX v3.0 ends its unpacking code with the instruction
POPA. BE-PUM finds the POPA instruction in the near region,



0x0044d236: popa
0x0044d244: jmp 0x0041eec0

and the destination of the next JMP at 0x0044d244 shows the
OEP 0x0041eec0.

4. OBFUSCATION TECHNIQUES
4.1 Typical Obfuscation Techniques

Packers apply many obfuscation techniques, which make bi-
nary code difficult to explore. Packer techniques are investigated
in [25], and with our observation on malware, we focus on 14
obfuscation techniques, which are categorized into 6 groups. We
will briefly explain each technique with an example code.

1. Entry/code placing obfuscation (Code layout):
overlapping functions, overlapping blocks, and code chunk-
ing.

2. Self-modification code (Dynamic code: overwriting and
packing/unpacking.

3. Instruction obfuscation: Indirect jump.

4. Anti-tracing: SEH (structural exception handler) and 2API
(the use of special APIs, LoadLibrary and GetProcAddress
in kernel32.dll).

5. Arithmetic operation: Obfuscated constants and check-
summing.

6. Anti-tampering: Timing check, anti-debugging, anti rewrit-
ing, and hardware breakpoints. Anti-rewriting consists of
stolen bytes and checksumming.

Code layout
IA-32 (x86) has variable-length instruction sets, and overlapping
fragments of a binary sequence may be executed in different ways.
For instance, b8 eb 07 b9 eb and 0f 90 eb are read as mov eax,
ebb907eb and seto bl, respectively. However, the fragment eb
0f is also read as jmp 45402c. They are overlapping instructions.

When overlapping instructions occur among functions (resp.
blocks), they are called overlapping functions (resp. overlapping
blocks). The example below of the overlapping functions is gener-
ated by FSG. It has two functions F1 and F2. F1 ranges 004001E8
to 004001F1. At 004001EA, 75 05 8A 16 is interpreted as JNZ
SHORT api_test.004001F1 and MOV DL,BYTE PTR DS:[ESI]. F2 ranges
004001EB to 004001F6. At 004001EB, 05 8A 16 46 12 is inter-
preted as ADD EAX,1246168A.

00400160 FF13 CALL 004001EB
....
004001DF FF13 CALL 004001E8
004001E8 02D2 ADD DL,DL
004001EA 7505 JNZ SHORT 004001F1
004001EB 058A164612 ADD EAX,1246168A
004001EC 8A16 MOV DL, DS:[ESI]
004001EE 46 INC ESI
004001EF 12D2 ADC DL,DL
004001F0 D2C3 ROL BL,CL
004001F1 C3 RETN
004001F2 4B DEC EBX
004001F3 45 INC EBP
004001F4 52 PUSH EDX
004001F5 4E DEC ESI
004001F6 C3 RETN

When a code is divided into fragments that are connected by
the jump instructions, it is called code chunking. The examples
below are generated by YODA.

40446B JMP 40446E
...
40446E STC
...
404474 JMP 404477

...
404477 JMP 40447A
...
40447A JMP 40447D
...
40447D NOP

Dynamic code
Dynamic code consists of the overwriting and the packing/un-
packing. The latter is the same to the encryption/decryption.
The difference is that the latter occurs in a loop. The examples
below are generated by YODA. In Overwriting, the STOS instruc-
tion at 4040C3 modifies the CMP instruction at 4040C6 to MOV.

Overwriting Packing/unpacking

4040C3 STOS ES:[EDI]
4040C6 CMP ECX, EBP

404067 CALL 40406C
40406C POP EBP
40406D SUB EBP, 40286C
404073 MOV ECX, 40345D
404078 SUB ECX, 4028C6
...
404092 LODS BYTE PTR DS:[EDI]
404093 ROR AL, 0DB
...
4040C3 STOS BYTE PTR ES:[EDI]
4040C4 LOOPD 404092

Indirect jump
Indirect jump is a call, a jump, or a return of which the target
destination is stored in a register, a memory address, or a stack
frame, respectively. An indirect return is the case when the return
destination stored in the stack is modified. 54053FA CALL DWORD
PTR DS:[ESI+503C] is an example of indirect call in UPX.

Anti-tracing
‚ SEH: When an exception, e.g., the division by zero and

the write-on a protected memory area, occurs, the con-
trol is spawn to the system error handler, and the stack is
switched to another memory area in a user process. When
the system error handler ends, the control returns to the
instruction next to the exception and the stack is switched
to the original. Structured Exception Handler (SEH) is an
exception handler written in a user process, which prepares
for an exception and post-processes when it occurs. TE-
LOCK uses an SEH with the trap flag AL. It set AL to true
and causes a single step exception, as in the code.

‚ 2API: APIs, LoadLibrary and GetProcAddress in ker-
nel32.dll, are used to get the necessary dynamic link li-
brary, whose name is stored in eax.

SEH 2API

404116 PUSH 4022E3
40411B PUSH FS:[0]
404122 MOV FS:[0], ESP
40421E MOV DS:[EDI], AL

4001C5 PUSH EAX
4001C6 CALL LoadLibrary
...
4001D4 PUSH EAX
4001D5 PUSH EBP2
4001D6 CALL GetProcAddress

Arithmetic operation
‚ Obfuscated Constants: Obfuscated constant replaces a

constant with arithmetic instructions resulting the same
value. The example below, generated by PETITE, is equiv-
alent to MOV eax 532F114C.

404C4B MOV EAX, DWORD PTR SS:[EBP+40D280]
404C51 PUSH EAX
404C52 XOR EAX, 7DCC805B
404C57 SUB EAX, 2A5DA2BD

‚ Checksumming: A typical example is the CRC checksum.
The example below is generated by TELOCK.



4047F5 XOR EAX, EAX
4047F7 LODS BYTE PTR DS:[EDI]
4047F8 XOR AL, DL
4047FA SHR EAX,1
404806 INC ECX
404812 JG 4047F5
404C4B MOV EAX, DWORD PTR SS:[EBP+40D280]
404C51 PUSH EAX
404C52 XOR EAX, 7DCC805B
404C57 SUB EAX, 2A5DA2BD
404C63 JNZ 40527B

Anti-tampering
‚ Anti-Debugging: Probe whether an execution is in the

debug mode. A typical instruction is CALL kernel32.IsDebug
gerPresent.

‚ Stolen bytes Stolen bytes allocates a buffer by calling Vir-
tualAlloc and copies the unpacked code there, instead of
overwriting the original one. The code below is generated
by PECOMPACT.

‚ Timing Check: Timing Check is used to detect timing
anomaly compared to the native Windows environment,
e.g., an execution is too slow.

‚ Hardware breakpoint Hardware breakpoints uses the de-
bug registers DR0, DR1, DR2, and DR3, as jump desti-
nations, instead of the standard ones, e.g., eax, ebx, and
ecx. The INT3 instruction prepares a hardware break point,
which set these debug registers and triggers a single step
exception. The code below is generated by TELOCK, in
which an exception is caused at 40408C and set the de-
bug registers DR0, DR1, DR2, and DR3 with 404090, 404099,
40409E, and 4040A3, respectively. These instructions pre-
pare an environment for later packing/unpacking.

Stolen bytes Hardware breakpoint

404899 PUSH EDX
40489A MOV EBP, EAX
40489C PUSH 40
40489E PUSH 1000
4048A3 PUSH DS:[EBX+4]
4048A6 PUSH 0
...
4048AF CALL kernel32.VirtualAlloc

40408C INT3
40408D NOP
40408E MOV EAX, EAX
404090 STC
404099 CLC
40409E CLD
4040A3 NOP

4.2 Obfuscation Technique Identification
By manually observing the disassembly results over 40 malware

by BE-PUM with the aid of OllyDbg16, we set the formal criteria
(listed below) of each obfuscation technique, so that BE-PUM
automatically locates them during the disassembly.

Code layout
‚ Overlapping functions: Each function body is placed

between CALL and RET instructions. When the overlapping
instructions are found between the pairs of CALL and RET,
they are identified as the overlapping functions.

‚ Overlapping blocks: Each block is delimited by the oc-
currences of jump instructions. When the destination of a
jump instruction overlaps with previously explored instruc-
tions, it is classified into overlapping blocks.

‚ Code chunking For identifying code chunking, our criteria
is whether there are 3 jump instructions with the distance
less than or equal to 20 bytes. This threshold (20 bytes) is
carefully decided from testing results.

Dynamic code
When modifications of binary code by values at some memory ad-
dresses are detected, they are classified as overwriting. If further
they occur in a loop, they are classified as packing/unpacking.
Note that BE-PUM observes the memory area whether modifica-
tion occurs in the code section.

16http://www.ollydbg.de

Table 1: List of obfuscation techniques
0 overlapping function 1 overlapping block 2 code chunking
3 overwriting 4 packing/unpacking 5 indirect jump
6 SEH 7 2API 8 obfuscated constant
9 checksumming 10 timing check 11 anti-debugging
12 stolen bytes 13 hardware break point

Indirect jump
The identification of an indirect call and jump is straightforward.
When the target is either a register or the dereference of a mem-
ory address, it is classified to them. For an indirect return, the
modification of the return destination is detected by recording
the top stack value when CALL occurs. When RET is encountered,
the top stack value is compared with the recorded one. If they
differ, it is classified into an indirect return.

Anti-tracing
‚ SEH: We observe that SEH always occurs with the follow-

ing instruction sequences (up to the use of different regis-
ters).

1. The sequence of the two instructions,

PUSH DWORD PTR FS:[0]
MOV DWORD PTR FS:[0],ESP

which replace the original address of the exception
handler, later followed by an exception.

2. An exception by the division by zero, or the single
step exceptions, INT1 and INT3.

‚ 2API: 2API is identified by detection of the consecutive
uses of LoadLibrary and GetProcAddress in kernel32.dll.

Arithmetic operation
‚ Obfuscated constants: We identify the obfuscated con-

stants when there are sequences of arithmetic instructions,
in which all operands are concrete values (not symbolic val-
ues) in symbolic execution.

‚ Checksumming: We identify the checksumming by two
features. First, a loop does not modify values in the code
section. (Otherwise, such a loop is identified as packing/un-
packing.) Second, the loop contains a comparison instruc-
tion that compares a register or a memory value with a
constant.

Anti-tampering techniques
We observe straightforward identification.

‚ Anti-debugging: An occurrence of a special API to probe
a system. They are, NtQueryInformationProcess, NtQuery
SystemInformation, IsDebuggerPresent, NtQueryObject, and
CheckRemoteDebuggerPresen.

‚ Stolen byte: An occurrence of a call of the API Virtu-
aAlloc.

‚ Timing check: An occurrence of either a special instruc-
tion RDTSC, or an API on time, e.g., GetTickCount, GetSys-
temTime, and GetLocalTime.

‚ Hardware breakpoint: When the debug registers are
used, the hardware breakpoint is identified.

5. METADATA SIGNATURE
5.1 Obfuscation technique identification and

its observation
For the obfuscation technique detection, we focus on the 14

obfuscation techniques in Section 4.2, which are numbered from
0 to 13 as in Table 1.

First, we prepare 4 toy assembly codes (without loops and ob-
fuscation techniques), and pack them with 12 different packers,



Figure 6: Obfuscation technique sequences for the
observed packers

ASPACK v2, CEXE v1.0b, FSG v2.0, KKRUNCHY v0.23a4,
MPRESS v2.19, NPACK v1.0, PECOMPACT v2.0x, PETITE
v2.1, TELOCK v0.99, UPX v3.0, YODA’s Crypter v1.3, and
UPACK v0.37-0.39. Following to the criteria in Section 4.2, we
observe that BE-PUM detects the series of the obfuscation tech-
niques (in Table 1).

We manually confirmed with OllyDbg that the criteria correctly
detect the obfuscation techniques. The series coincide among all
toy examples, which encourages our expectation that the occur-
rences of obfuscation techniques characterize packers.

5.2 Metadata signature
The metadata signature of a packed binary is, the frequency

vector of the numbers of occurrences of obfuscation techniques in
the unpacking code.

We select the 14 obfuscation techniques listed in Table 1. The
training set Tr and the test set Te with Tr XTe “ H are selected
from binaries of which the used packers are already identified.
During the process of the on-the-fly model generation, BE-PUM
counts the number of obfuscation techniques. If the frequency
vector has the membership beyond the membership threshold of
the chi-square test at certain generation step, BE-PUM identifies
the used packer.

This also indicates the end of the unpacking code, and as
byproduct BE-PUM detects a near region of the OEP. With addi-
tional knowledge on each packer, we can identify the exact OEP.
For instance, UPX v3.0 always ends its unpacking code with the
instruction POPA. Thus, by finding near POPA when the packer
identification has done, the destination of the next JMP instruc-
tion indicates the exact OEP.

We denote the target obfuscation techniques T “ tT1, T2, ¨ ¨ ¨ , Tnu,
the target packer set M “ tM1,M2, ...,Mmu, the average vector
Ei “ pE1, E2, ..., Enq and the membership threshold λ̄i for each
packerMi. OpBq is the frequency vector of obfuscation techniques
in the current control flow graph (CFG) of B.
On the fly Model GenerationpBq extends a CFG of B step-

wise by concolic testing. Model Generation StoppBq judges whether
the CFG generation terminates (possibly by unsupported instruc-
tions, unsupported APIs, or timeout).
Calculate Membership DegreepOpBq, Eiq computes the degree

of membership of OpBq for the average metadata signature Ei of
the packer Mi by the chi-square test. The membership thresh-
old λ̄i for each packer Mi is set to the average of the degree of
membership in the test set Te as described in Sections 2.1.
5.3 Statistical setting

To evaluate the effectiveness of the metadata signature, we se-
lect 12 packers, ASPACK v2, CEXE v1.0b, FSG v2.0, KKRUNCHY
v0.23a4, MPRESS v2.19, NPACK v1.0, PECOMPACT v2.0x,
PETITE v2.1, TELOCK v0.99, UPX v3.0, YODA’s Crypter v1.3,
and UPACK v0.37-0.39. Although the set of packers is quite
small, our method can be extended. Since the training set is
taken from packed toy examples, BE-PUM can determine the en-
try point of these toy examples for calculating the statistics of

Input: A packed binary B.
Output: Mi if the used packer is identified as Mi;
NONE otherwise.
Algorithm:
OpBq “ pO1, O2, ¨ ¨ ¨ , Onq :“ p0, 0, ¨ ¨ ¨ , 0q;
while TRUE do

On the fly Model Generation(B);
if Found New Obfuscation Technique() = Tj then

OpBq :“ pO1, ¨ ¨ ¨ , Oj ` 1, ¨ ¨ ¨ , Onq;
foreach i := 1 to m do

λ̄T “

Calculate Membership DegreepOpBq, Ei
q;

if λ̄T ě λ̄i then
Return Mi;

end
end

end
if Model Generation Stop(B) then

Return NONE;
end

end

the metadata signature. Then, we can apply the same method
for detecting new packer.

For each packer, the training set, the test set, and the mem-
bership threshold λ̄i of Mi are set as below.

Table 2: Training and test sets, and threshold

Packer Training set size Test set size Membership threshold
ASPACK v2.4 199 67 0.940299
CEXE 316 79 1
FSG v2.0 216 71 1
KKRUNCHY 0.23a4 143 56 1
MPRESS 2.19 181 63 1
NPACK v1.0 192 63 0.807738
PECOMPACT v2.0x 177 56 0.811847
PETITE v2.1 197 66 0.985294
TELOCK v0.99 201 64 0.98214
UPX v3.94 205 62 0.939421
YODA v1.3 208 65 0.90257
UPACK v0.37-0.39 187 60 0.96405

The training sets are taken from packed toy examples and real
world malware whose packers are identified. The latter are taken
from VX heaven and modern malware. Table 3 shows the average
of the metadata signatures in the training set, i.e., the average fre-
quency vectors of the 14 obfuscation techniques listed in Table 1.
Note that on our observation, the frequency vector of obfusca-
tion is quite the same regardless of different versions of packers,
e.g. UPX v3.0 and UPX v3.94 have the same frequency vector of
obfuscation.

Table 3: Metadata signatures for 12 packers
Packer Average frequency vector of obfuscation techniques (Table 1) in the test set
ASPACK (0, 0, 0, 13.261, 14.101, 0, 0, 11.206, 24.729, 0, 2.211, 0, 2.201, 0)
CEXE (0 0 0 3 14.16667 4 2 1 4.16667 0 0 0 0 0)
FSG (0, 0, 0, 12, 0, 0, 0, 1, 3.348, 0, 0, 0, 1, 0)
KKRUNCHY (0 0 1 0 13.60185 6 0 1 4 0 0 0 0 0)
MPRESS (0 0 1.94475 2.9558 5.75138 2 0 1 8.68508 0 0 0 0 0)
NPACK (0, 0, 0, 2, 6.114, 0, 0, 3.543, 4.829, 0, 2.286, 0, 3.057, 0)
PECOMPACT (0, 0, 0, 17.045, 9.611, 0, 0, 9.452, 24.420, 1, 2.299, 0, 1.962, 1)
PETITE (0, 1, 10, 7.882, 16.647, 0, 0, 9.765, 22.706, 2, 0, 0, 0.882, 0)
TELOCK (0, 0, 15, 21.286, 15.287, 0, 0, 0, 38.143, 20, 1.714, 0, 0.857, 1)
UPX (0, 0.893, 0, 3.735, 1.995, 0, 0, 2.923, 4.556, 0, 0, 0, 0.985, 0)
YODA (0.959, 1, 28.948, 65.763, 12.923, 0, 4.907, 1.155, 14.026, 3.933, 0, 1.644, 1.381, 1.072)
UPACK (0, 0.843, 0, 19.314, 3.902, 0, 0, 1.961, 7.941, 0, 0, 0, 0.941, 0)

5.4 Detection of custom packer
Most of the modern popular malwares are packed by packers.

As a counter solution, commercial anti-virus software tends to



detect packer signature for detecting and unpacking the packed
malware. However, this approach suffers the shortcoming that
signatures for packer detection can be easily modified and it is
not effective for detecting unknown or custom packers. This is
also a major problem since 35% of malware are packed by custom
packers [37, 38].

Inspired by [39], a custom packer might be identified by the
facts that it contains encrypted or compressed sections which is
a strong indication for a packed executable. A packer must also
have a bootstrap section containing a stub to decrypt or decom-
press the encrypted sections. BE-PUM detects the behavior of de-
crypting as packing/unpacking technique. This indication shows
that if the malware contains packing/unpacking techniques, it
might be considered as packed by custom packer by BE-PUM.
The Universal PE Unpacker17 plug-in of IDA Pro tends to recog-
nize the two APIs, LoadLibrary and GetProcAddress for unpack-
ing file in generic way. These APIs is mostly used in packers to
restore the original executable’s imports. BE-PUM detects the
employment of these two APIs as 2API technique. In summary,
if the malware contains packing/unpacking and 2API techniques,
BE-PUM detects it as custom packer.

6. EXPERIMENTS
All experiments are performed on Windows XP built on VMware

workstation 10.0. The host OS is Windows 8 Pro with AMD
Athlon II X4 635, 2.9 GHz and 8GB memory.

We focus on 12 packers, which are ASPACK v2, CEXE v1.0b,
KKRUNCHY v0.23a4, MPRESS v2.19, FSG v2.0, NPACK v1.0,
PECOMPACT v2.0, PETITE v2.1, TELOCK v0.99, UPX v3.0,
YODA v1.3, and UPACK v0.37-0.39. The experiments are car-
ried out on totally 15031 files in two types of the dataset, manually
packed non-malware and real world malware.

6.1 Checking the accuracy with manually packed
non-malware

For checking the accuracy of our approach, we apply 12 packers
on 418 Windows executables taken from System32 in Windows
XP SP3. We obtain 2217 packed files, where 2019 cases are failed
to pack. For instance,

‚ ASPACK reports“Unrecognized file format”on append.exe,
debug.exe.

‚ FSG reports“FSG does not support IMAGE_SUBSYSTEM_NATIVE
file types” on edlin.exe.

‚ NPACK causes an error on dosx.exe.

‚ PETITE reports “Petite cannot compress this file” on ac-
cwitz.exe.

‚ TELOCK reports “This is no valid PE file” on edlin.exe,
exe2bin.exe.

‚ UPX fails to pack a file smaller than 1KB, e.g., share.exe
(882 bytes).

Table 4 shows the numbers of the successful packing, and BE-
PUM correctly identifies the used packer for all of successfully
packed files.

6.2 Packer identification on real malware
We have collected 5374 real malware from the VX Heaven

database18 and 7440 samples from Virusshare19. For compari-
son, each file is scanned by the three popular packer scanners,
PEiD, CFF Explorer, and VirusTotal. Unfortunately, we cannot
access to the dataset and source code of other generic unpack-
ers [13, 14, 20, 26] for comparison.

PEiD is considered as the most popular signature-based detec-
tor for packed files. VirusTotal is a free on-line malware scanner,
which combine the results from many AntiVirus sources, e.g.,

17https://www.hex-rays.com/products/ida/support/tutorials/
unpack pe/unpacking.pdf

18http://vxheaven.org
19https://virusshare.com

Table 4: Data set of manually packed files

Packer Version Number of successful packing
ASPack 2 183
CEXE 1.0b 52
FSG 2 348
KKRUNCHY 0.23a4 241
MPRESS 2.19 131
Npack 1 77
PECOMPACT 2 76
PETITE 2 12
TELOCK 0.99 37
UPX 3.94 360
YODA 1.3 308
UPACK 0.37 392

Kaspersky, Microsoft, and AVG. CFF Explorer is also a popular
tool, but its database is quite obsolete.

The time limit is set to 1 hour for each file, and the whole
experiments take about 10 weeks. Among 12814 examples, BE-
PUM reports

‚ 499 cases with 296 from VX Heaven and 203 from Virusshare
cause timeout. For instance, Email-Worm.Win32.Bagle.dw
has 4,294,867,296 iterations in its loop. Currently, BE-
PUM simply unholds loops during symbolic execution, which
causes timeout.

‚ 5923 with 1419 from VX Heaven and 4504 from Virusshare
are detected not packed, consistent with PEiD, CFF Ex-
plorer, and VirusTotal.

‚ 6392 are detected packed.

The details of the 6392 packed files are further observed.

‚ 5459 with 3270 from VX Heaven and 2189 from Virusshare
are detected packed by one of 12 packers, consistent with
PEiD, CFF Explorer, and VirusTotal. The details are sum-
marized in Table 5.

Table 5: Detection result on similar cases
Packer Version Number of files

ASPack 2 340
CEXE 1.0b 1
FSG 2 880
KKRUNCHY 0.23ab 15
MPRESS 2.19 2
Npack 1 14
PECOMPACT 2 410
PETITE 2 78
TELOCK 0.99 15
UPX 3.94 3432
YODA 1.3 16
UPACK 0.37 256

‚ 402 with 137 from VX Heaven and 265 from Virusshare are
detected packed by one of 12 packers, inconsistent among
PEiD, CFF Explorer, VirusTotal, and BE-PUM. Details
are analyzed in Section 6.3.

‚ 325 with 216 from VX Heaven and 109 from Virusshare are
classified as packed with custom packers, i.e., it contains
packing/unpacking and 2API techniques but the frequency
vectors match none of 12 packers. PEiD, CFF Explorer and
VirusTotal consistently identify their packers i.e., ACPro-
tect 1.3x (11 cases), AHpack 0.1 (1 case), ARM Protector
v0.1 (1 case), Armadillo v4.x (142 cases), BJFnt v1.1b (2
cases), CExe v1.0a (3 cases), CreateInstall Stub (1 case),
Crunch/PE (25 cases), EncryptPE 1.2003.5.18 (2 cases),



Table 6: Determination of packer name for real mal-
ware

Malware CFF Explorer PEiD VirusTotal BE-PUM
Backdoor
Win32.Rbot.apj

NONE NONE UPX UPX v3.0

Backdoor
Win32.VB.yo

NONE FSG v1.10 NONE UPX v3.0

Backdoor
Win32.Rbot.xf

NONE FSG v1.10 UPX UPX v3.0

Trojan-Dropper
Win32.Agent.uq

NONE
yoda’s Protector
v1.02

UPX UPX v3.0

Trojan-PSW
Win32.LdPinch.ei

NONE Morphine v1.2 UPX UPX v3.0

Email-Worm
Win32.NetSky.ab

PECompact 2.x PECompact 2.x PecBundle PECompact v2.0

Email-Worm
Win32.NetSky.ac

PECompact 2.x PECompact 2.x NONE PECompact v2.0

Email-Worm
Win32.Brontok.c

NONE FSG v1.10 MEW FSG v2.0

Enigma protector 1.10/1.11 (29 cases), EXE Stealth v2.71
(9 cases), EXE32Pack v1.37 (38 cases), EXECryptor 2.2.4
(38 cases), StarForce V3.X (11 cases) and Xtreme-Protector
v1.05 (12 cases). These packers are not supported in cur-
rent BE-PUM.

‚ 206 with 36 from VX Heaven and 170 from Virusshare
are detected packed by BE-PUM as custom packer, while
PEiD, CFF Explorer, VirusTotal detect NONE. Details are
analyzed in Section 6.3.

6.3 Manual inspection on inconsistency
There are 402 inconsistent examples among results of PEiD,

CFF Explorer, VirusTotal, and BE-PUM. We manually investi-
gate all disassembled results by BE-PUM of the 327 examples,
and observe that each unpacking code has

‚ a modified binary signature, and

‚ the same unpacking code with different offsets, except for
different prefixes of less than 5% code.

Table 6 picks up 8 inconsistent samples among 402 examples.

Modified binary signature
The binary signature of UPX v3.0 is compared with the binary
prefix of Backdoor.Win32.Rbot.apj.

UPX v3.0 (in CFF explorer) 60 BE 00 E0 95 00 8D BE 00 30 AA FF 57
Backdoor.Win32.Rbot.apj 68 C4 C2 41 00 67 64 FF 36 00 00

The latter is disassembled as push 0x41c2c4; push dword fs:[0x0].
Actually, the disassembly by BE-PUM clarifies that Backdoor.Win32.
Rbot.apj has extra 8 instructions at the top, which mislead PEiD
and CFF Explorer.

(a) Backdoor.Win32.Rbot.apj (b) common prefix of UPX
PUSH 41C2C4
PUSH FS:[0]
MOV FS:[0], ESP
NOP
PUSH 491110
JMP 4922F6
NOP
RET

PUSHA PUSHA
MOV ESI, 476000 MOV ESI, 405000
LEA EDI, -479232(ESI) LEA EDI, -16384(ESI)
PUSH EDI PUSH EDI
JMP 491132 JMP 4052FA

Another example Backdoor.Win32.VB.yo replaces the first in-
struction PUSHA in the common prefix of the code packed by UPX,
with JMP 42C791. In both cases, the following unpacking codes
are the same except for the differences of offsets.

Figure 7: Comparison between FSG and MEW

(a) Backdoor.Win32.VB.yo (b) common prefix of UPX
JMP 42C791

PUSHA
MOV ESI, 41B000 MOV ESI, 405000
LEA EDI, -106496(ESI) LEA EDI, -16384(ESI)
PUSH EDI PUSH EDI
JMP 42C7B2 JMP 4052Fa
MOV EBX, (ESI) MOV EBX, (ESI)
SUB ESI, FFFFFFFC SUB ESI, FFFFFFFC
ADC EBX, EBX ADC EBX, EBX
JB 42C7A8 JB 42C7A8
MOV AL, (ESI) MOV AL, (ESI)

One example is malware 01ad1a71389bf3f0ed5ae2558033c5102
7fb750df8c75a2d28119af1d15fc91d 6 (MD5: 990fd836de4291909e
8bdef1c0b55efe) which modifies the second instruction MOV ESI,
407000 in the common prefix of the code packed by UPX, with
MOV ESI, 26781000. The instruction MOV ESI, 407000 takes 5
bytes, BE 00 50 40 00 while MOV ESI, 26781000 contains the hex
value, BE 00 10 78 26. Note that the difference in the last byte
between 00 and 26 leads to the failure of detecting this malware.
In both cases, the following unpacking codes are also the same
except for the differences of offsets.

(a) 01ad1a71389bf3f0ed5ae2558033c5 (b) common prefix of UPX
1027fb750df8c75a2d28119af1d15fc91d6
PUSHA PUSHA
MOV ESI, 26781000 MOV ESI, 405000
LEA EDI, -65536(EDI) LEA EDI, -16384(ESI)
PUSH EDI PUSH EDI
JMP 2678fA0A JMP 4052FA
MOV EBX, (ESI) MOV EBX, (ESI)
SUB ESI, fffffffC SUB ESI, fffffffC
ADC EBX, EBX ADC EBX, EBX
JB 2678FA00 JB 4052F0
MOV AL, (ESI) MOV AL, (ESI)

Unsupported packers in BE-PUM
We emphasize that BE-PUM misunderstands only Email-Worm.Win32
.Brontok.c. VirusTotal correctly labels packed by MEW, whereas
BE-PUM labels packed by FSG. The first reason is that the cur-
rent BE-PUM does not cover MEW, and we further observe that

‚ MEW and FSG use exactly the same set of obfuscation
techniques as presented in Figure 7.

‚ The unpacking codes of MEW and FSG consist of 107 and
86 lines, respectively, and 72 lines among them are shared.
Below, the common prefixes of MEW and FSG are com-
pared with the disassembled code of Email-Worm.Win32.Brontok.c.

(a) Brontok.c (b) Prefix of MEW (c) Prefix of FSG
JMP 400154

XCHG 4052D4, ESP
POPA
XCHG ESP, EAX
PUSH EBP

MOV ESI, 42501C MOV ESI, 40401C
MOV EBX, ESI MOV EBX, ESI
LODS EAX, DS:[ESI] LODS EAX, DS:[ESI]
PUSH EAX PUSH EAX
LODS EAX, DS:[ESI] LODS EAX, DS:[ESI]
XCHG EDI, EAX XCHG EDI, EAX
MOV DL, 80h MOV DL, 80h
MOVS [EDI], [ESI] MOVS [EDI], [ESI] MOVS [EDI], [ESI]
MOV DH, 80h MOV DH, 80h MOV DH, 80h
CALL 40012C CALL 40012C CALL 4001E8
ADD DL, DL ADD DL, DL ADD DL, DL
... ... ...



Note that BE-PUM labels 325 examples with packed with un-
known packers. PEiD, CFF Explorer and VirusTotal consistently
label all of them with different packers from what BE-PUM sup-
ports.

Detection of custom packer
BE-PUM detect custom packer on 206 cases while other tools de-
tect NONE. Consider the malware, plt127.bin (MD5: bfdd1b7c6b
501c517c3ae9a3ef03a43f) in the figure below. It is embedded in a
malicious PDF file(MD5: aaf8534120b88423f042b9d19f1c59ab).
This malware is packed by a custom packer which is unknown
to VirusTotal. This malware utilizes the encryption/decryption
technique. The encryption/decryption technique occurs at de-
cryption loop from 40101c to 401023 with XORing key 87AB9F95
that modifies the opcodes from 401025 to 4017A5. Thus, the
instruction ADD EAX, 9587430F at address 00401025 is con-
verted to NOP. Note that this modification only occurs at run
time, allowing the malware to hide the main intension. The mal-
ware continues to restore the import tables by calling 2 special
APIs LoadLibrary@KERNEL32.dll at 401073 and GetProcAd-
dress@Kernel32.dll at 401097. Since there are packing/unpack-
ing and 2API technique, BE-PUM detects this malware as custom
packer.

Another example is malware VirusShare 12ac2650ff96a37e602a944
12ba3b757 (MD5: 12ac2650ff96a37e602a94412ba3b757). This mal-
ware is detected NONE by VirusTotal, CFF Explorer and PEID.
However, it contains the the decryption loop as described below.

404623 IMUL EDI, 343FDh
404629 ADD EDI, 269EC3h
40462F MOV EDX, EDI
404631 SHR EDX, 10h
404634 XOR [EAX], DL
404636 INC EAX
404637 DEC ESI
404638 JNZ 404623

This malware also employs 2API technique for restoring the
import table.

403DA5 PUSH OFFSET ProcName
403DAA PUSH OFFSET ModuleName
403DAF CALL GetModuleHandleA
403DB5 PUSH EAX
403DB6 CALL GetProcAddress

BE-PUM detects this malware as custom packer.

7. CONCLUSION
This paper proposed the metadata signature of packers, as an

alternative to the binary signature. It is the frequency vector of
the classified obfuscation techniques in the unpacking code of a
packed binary. A binary model generator BE-PUM was extended
to support the formal criteria to detect obfuscation techniques,
which are carefully defined by observing more than 40 real world
malware. The chi-square test was applied to decide the likelihood
of the metadata signature of a packed code.

Experiments were performed on 12814 real malware with 12
packers. The accuracy of the metadata signature outperforms the

state-of-the-art tools, like PEiD, CFF Explorer, and Virus Total,
as long as these 12 packers are concerned. Note that extensions
to cover more packers are not difficult by giving enough packed
examples as the training set. They are easily generated by packing
toy programs if we have the same packer.

The drawback is that BE-PUM is quite heavy. We are improv-
ing BE-PUM in two views, the algorithms and the implemen-
tation. Current BE-PUM simply unholds loops in binary code
during symbolic execution. Although most of loops in malware
are bounded their iterations by constants, sometimes they are
quite huge. We are trying to introduce an automatic generation
of loop invariant to BE-PUM. The data structure for the memory
model in BE-PUM is also under consideration. We also tried a
multi-threaded implementation [24], which requires further inves-
tigation.

We are also interested in the ratio of the obfuscation techniques
to the program size. Currently, the detection of unpacked code
depends only on the presence of packing/unpacking code. Adding
to the non-existence of the packing/unpacking code, if the ratio
is enough small, we can convince more that it is not packed.

There are two directions for future work.

‚ By manual observation, we found that BE-PUM detects
near the OEP of the payload. By analyzing the payloads,
malware would be characterized in two steps, by the used
packer and the payload characteristics.

‚ The packer identification by BE-PUM is precise, but quite
slow. It will be useful to apply on automatic training set
generation for statistical methods, like [34].
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