URL: http://www.elsevier.nl/locate/entcs/volume71.html 15 pages

Rewriting-Based Verification of
Authentication Protocols

Kazuhiro Ogata !

NEC Software Hokuriku, Ltd.
and
Japan Advanced Institute of Science and Technology (JAIST)

Kokichi Futatsugi?

Graduate School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

Abstract

We propose a method of formally analysing security protocols based on rewriting.
The method is roughly as follows. A security protocol is modeled as an observational
transition system, which is described in CafeOBJ. Proof scores showing that the
protocol has safety (security) properties are then written in CafeOBJ and the proof
scores are executed (rewritten) by the CafeOBJ system.

1 Introduction

Security protocols such as authentication ones are key technology if we ex-
change messages secretly and/or authentically over an open network such as
the Internet. But, they are subject to subtle faults that are especially difficult
to find by testing and usual operation. Even if cryptosystems used are hard
to break, there could be attacks to break security protocols that are seemingly
well designed such as Lowe’s attack[15] to the Needham-Schroeder Public-Key
authentication protocol (the NSPK protocol)[18]. Therefore, several methods
of formally analysing security protocols have been proposed[2,4,9,16,21,22].
In this paper, we propose a method of formally analysing security protocols
based on rewriting. The method is roughly as follows. A security protocol
is modeled as an observational transition system[19,20], which is described in
CafeOBJ[1,5]. Proof scores showing that the protocol has safety (security)

! Email: ogatak@acm.org
? Email: kokichi@jaist.ac.jp

(©2002 Published by Elsevier Science B. V.

N~EALA AL AV IALJUAL

properties are then written in CafeOBJ and the proof scores are executed
(rewritten) by the CafeOBJ system. The CafeOBJ system can be used as
an interactive proof-checker or verifier on several levels[10]. In the proposed
method, the CafeOBJ system is used as proof score executor. The NSPK
protocol corrected by Lowe[15] is used to show our method.

The rest of the paper is organized as follows. Section 2 mentions CafeOB.J.
Observational transition systems and a way of describing them in CafeOB.J
are written in Sect 3. Section 4 gives a brief description of the NSPK protocol
corrected by Lowe. Section5 describes the observational transition system
modeling the protocol and its specification in CafeOBJ. Section 6 shows (part
of) the proof that the protocol has a safety property. Section7 gives related
work, and we conclude the paper in Sect 8.

2 CafeOBJ in a Nutshell

CafeOBJ[1,5] is mainly based on two logical foundations: initial and hidden
algebra. Initial algebra is used to specify abstract data types such as integers,
and hidden algebra[6,11] to specify abstract machines. There are two kinds of
sorts (corresponding to types in programming languages) in CafeOBJ. They
are visible and hidden sorts. A visible sort represents an abstract data type,
and a hidden sort the state space of an abstract machine. There are basically
two kinds of operations to hidden sorts. They are action and observation
operations. An action operation can change a state of an abstract machine.
It takes a state of an abstract machine and zero or more data, and returns
another (possibly the same) state of the abstract machine. Only observation
operations can be used to observe the inside of an abstract machine. An obser-
vation operation takes a state of an abstract machine and zero or more data,
and returns a value corresponding to the state. An action operation is basi-
cally specified with equations by describing how the value of each observation
operation changes relatively based on the values of observation operations in
a state after executing the action operation in the state.

Declarations of visible sorts are enclosed with [and], and those of hidden
ones with *[and 1*. Declarations of observation and action operations start
with bop or bops, and those of other operations with op or ops. After bop
or op (or bops or ops), an operator is written (or more than one operator is
written), followed by : and a sequence of sorts (i.e. sorts of the operators’
arguments), and ended with -> and one sort (i.e. sort of the operators’ results).
Definitions of equations start with eq, and those of conditional ones with cegq.
After eq, two expressions, or terms connected by = are written, ended with
a full stop. After ceq, two terms connected by = are written, followed by if
and a term denoting a condition, and ended with a full stop.

The CafeOBJ system, an implementation of CafeOBJ, rewrites (reduces)
a given term by regarding equations as left-to-right rewrite rules. This exe-
cutability makes it possible to simulate described systems and to verify that

2

N~EALA AL AV IALJUAL

they possess some desired properties.

3 Observational Transition Systems

We assume that there exists a universal state space called Y. When we de-
scribe a system, the system is basically modeled by observing only quantities
that are relevant to the system and that interest us from the outside of each
state of T. An observational transition system (o1s)[19,20] can be used to
model a system in this way. UNITY][3] is an ancestor of ots’s, which are
reformalized by adopting the concept of hidden algebra[6,11].

An ors § = (O,Z,T) consists of:

* O: A set of observations. Each observation o € O is a function o : T — D
mapping each v € T into some typed value in D (D may be different for
each observation). The value returned by an observation (in a state) is
called the value of the observation (in the state).

Given an ots § and two states vy, vy € T, the equality between two states,
denoted by vy =s vy, with respect to § is defined as follows:

V1 =8 VU2 iff Yo € O-O(Ul) = 0(U2)7

where ‘=" in o(vy) = o(vy) is supposed to be well defined for the range of

each 0 € 0. § may be removed from =g if it is clear from the context.

o 7: The initial condition. This condition specifies the initial value of each
observation that defines initial states of the os.

o T: A set of conditional transition rules. Each transition rule 7 € 7T is a
relation between states provided that, for each state v € T, there exists
a state v’ € T, called a successor state, such that 7(v,v’) and moreover,
for each state vy, vy, v],v) € T such that vy =g vy, T(v1,v]) and 7(vy, v}),
vy =s vy. T can be regarded as a function on equivalent classes of T with
respect to =s. Therefore, we assume that 7(v) denotes the representative
element of the equivalent class the successor states of v with respect to 7
belong to, and 7(v) is called the successor state of v with respect to 7.

The condition ¢, for a transition rule 7 € T is called the effective condi-
tion. Given a state, its truth value can be determined by only the values of
observations in the state. Predicates of this kind are called state predicates.
Given a state v € T, ¢, is true in v, namely 7 is effective in v, iff v #s 7(v).

Multiple similar observations or transition rules may be indexed. Gen-
erally, observations and transition rules are denoted by o;, . .
respectively, provided that m,n > 0 and we assume that there exist data
types Dy, such that k € Dy (k= 1t1,...,%m,J1,...,Jn). For example, an integer

and 7, .,

array a possessed by a process p may be denoted by an observation a,, and
the increment of the ith element of the array may be denoted by a transition
rule inca,,;.

Given an ots, a set of infinite sequences of states is obtained. The infinite

3

N~EALA AL AV IALJUAL

sequence of states is called an execution of the ors. More specifically, an
execution of an ots § is an infinite sequence sq, s1, . .. of states satisfying:

* Initiation: For each o € O, o(s¢) satisfies Z.
» Consecution: For each 1 € {0,1,...}, s;41 =s 7(s;) for some 7 € T.

o Fairness: For each 7 € T, there exist an infinite number of indexes 1 €
{0,1,...} such that s;41 =5 7(s;).

A state is called reachable with respect to S if it appears in an execution of S.

Important properties that an ors may have are basically classified into two
classes: safety and liveness (or progress) properties. We only describe safety
properties and how to prove that an ots has a safety property in this paper.
Safety properties are defined as follows: a predicate p: T — {true, false} is a
safety property with respect to S iff p is a state predicate and p(v) holds for
every reachable v € T.

If we prove that an ors has a safety property p, the following induction is
mainly used:

* Base case: For any state v € T in which each observation o € O satisfies Z,
we show that p(v) holds.

* Inductive step: Given any reachable state v € T such that p(v) holds, we
show that, for any transition rule 7 € T, p(7(v)) also holds.

An ors § is described in CafeOBJ. The universal state space T is denoted
by a hidden sort, say Sys, by declaring *[Sys] *.

An observation o;, . ;.. € O is denoted by a CafeOBJ observation oper-
ation. We assume that data types Dy (k = ¢1,...,4,,) and D are described
in initial algebra and there exist visible sorts Si (k = i1,...,4,) and S cor-
responding to the data types. The CafeOBJ observation operation denoting
Oiyi,, 18 declared as follows:

bop o : Sys S;, ... S;, => S

The initial condition Z, the value of each observation in any initial state,
is described by declaring a constant (an operator without any arguments)
denoting any initial state and specifying the value of each observation in the
state with equations. First, the constant init denoting any initial state is

declared as follows:
op init : -> Sys

Suppose that the initial value of 0;, ;. is f(i1,...,%m), this can be described

in CafeOBJ as follows:
eq o(init,Xil,. .. :Xim) = f(Xil g ,Xim)
where X; (k = 41,...,14,,) is a CafeOBJ variable with S, and £(X;,,...,X;.)

means a term (consisting of X;,,...,X;) corresponding to f(i1,...,%m).

A transition rule 7;, ;. € T is denoted by a CafeOBJ action operation.
We assume that data types Dy (k = j1,...,J,) are described in initial algebra

4

N~EALA AL AV IALJUAL

and there exist visible sorts Sy (k = ji1,...,jn) corresponding to the data
types. The CafeOBJ action operation denoting 7, ;. is declared as follows:

n

bop a : Sys S; ... S;, -> Sys

If 7, ;. 1s executed in a state in which it is eflective, the value of o;, ;.
may be changed, which can be described in CafeOBJ generally as follows:

ceqo(a(S,X;,,..., X0, % ,...,X.)
= e—a(S,le,... ,Xjn,Xil,... ,Xim) if c—a(S,le,... ,X]‘n)

where e-a(S8,X;,,...,X%;,,Xi,...,X;,) means a term (consisting of 8,X;,,...,
X;.,Xi,, .., X,) corresponding to the value of 0;, ;. in the successor state,
and c-a(S,X;,,...,X;,) means a term (consisting of S,X;,,...,X;,) corre-
sponding to ¢, .

If 7, ;. 1s executed in a state in which it is not effective, the value of
any observation is not changed. Therefore, all we have to do is to declare the

following equation:
ceq a(s,X;,,...,X;,) = S if not c-a(S,X;,,...,X;,)

If the value of o, ;. 1s not affected by executing 7, ; 1in any state

m n

.....

€q o(a(S,le,... ,X]‘n) ,Xil,... :Xim) = O(S,Xil,... :Xim)

4 The NSLPK Protocol

Needham and Schroeder[18] proposed an authentication protocol, called the
NSPK protocol, with public-key cryptosystems in 1978. Lowe[15] found out
17 years later that there was a serious attack on the protocol that an intruder
could impersonate another agent to establish a session with yet another agent.
He also proposed one possible correction, which is called the NSLPK protocol
in this paper.

The NSLPK protocol uses public-key cryptosystems in order to establish
mutual authentication between two principals. For each principal p, there is a
public key denoted by k(p), which any principal can obtain from a key server.
Each principal p also has a private key that is the inverse of k(p). A message m
encrypted with a public key & is denoted by {m};. Any principal can encrypt
a message m with p’s public key to generate {m},), while only p can decrypt
this message, which ensures secrecy. The protocol also uses nonces that can
be represented by large random numbers.

The NSLPK protocol could be described as follows:
Messagel p1 — py :© prpaAnp,-P1 ()
Message2 pa = p1 @ pa-pr{np, Np, P2t k(p)
Message3 p; —p2 @ ¢ -p2-{np2}k(p2)

N~EALA AL AV IALJUAL

p1 is an initiator that tries establishing a session with a responder py. p; starts
a run of the protocol by creating a nonce n,, and sending it along with its
identity to p,, encrypted with py’s public key. This kind of messages are called
messages of type 1. When py receives the message, it decrypts the message
with its private key to obtain the nonce n,,. It then returns n, along with
a new nonce n,, as well as its identity to p;, encrypted with p;’s public key.
This kind of messages are called messages of type 2. When p; receives the
message, it decrypts the message with its private key to confirm that the
message contains n,, and py, which should make p; assured that p, is talking
to pg because only py should be able to decrypt the message of type 1 to obtain
ny,. p1 then returns n,, to py, encrypted with py’s public key. This kind of
messages are called messages of type 3. Receiving the message should make
pq assured that p, is talking to p; because only p; should be able to decrypt
the message of type 2 to obtain n,,.

The first and second fields of messages are called the source and destination
fields respectively. The last field of encrypted parts of messages of type 1 and

2 is called the principal field.

5 Modeling

Let us model a system in which an arbitrary number of principals take part
in the NSLPK protocol as an ors. One of the principals is assumed to be an
intruder. The intruder obeys the basic assumptions of the Dolev-Yao model[7].
All it can do illegally is enumerated as follows:

* It can intercept any message that is being delivered. If nonces included in
the message are encrypted with the intruder’s public key, the nonces are
gleaned, and otherwise the message is stored as it is.

» It can make fake messages of nonces or messages that are kept in store.
If a fake message is made of nonces, the nonces are encrypted with any
principal’s public key and any other field of the message is filled with any
principal. If it is made of a message, only the source and destination fields
are changed with any principal.

The following assumption on nonce creation is also used:

Nonce Creation Every time a principal creates a nonce, the nonce is really
fresh, which has never appeared in the system so far.

The following operations on messages are used in the rest of the paper:
isMsqgl, isMsg2 and isMsg3 are predicates checking if a message is type 1, type
2 and type 3, respectively, getS and getD return the source and destination
fields of a message respectively, getP returns the principal field of a message
if the message is either type 1 or type 2, getK returns the public key used in a
message, get N1 returns the (first) nonce of a message, and getN2 returns the
second nonce of a message if the message is type 2.

6

N~EALA AL AV IALJUAL

First the genuine parts of the system are modeled. For any pair of different
principals p, p, and any role r € {Ini, Res}, we have the following observa-
tions: Ly, pyry Plp, por and 02, 400 Ly oo i 1s used for py as initiator, having
one of the four possible values i1, i2, i3 and i4, while [, ,, Res is used for p; as
responder, having one of the four possible values r1, 12, r3 and r4. If [, ,, mi is
il, 12, 13 and i4, p; as initiator is ready for starting a new run of the protocol
with py, ready for receiving a message of type 2 from p,, ready for sending
a message of type 3 to p; and has a session with py, respectively. If [, ,, Res
is 1, r2, r3 and r4, p; as responder is ready for receiving a message of type
1 from py, ready for sending a message of type 2 to py, ready for receiving a
message of type 3 from p; and has a session with ps, respectively. nl,, ,, mi
and n2,, ,, mi are used for p; so as to record the nonce created by p; and the
nonce received from pq respectively when p; as initiator tries establishing or
has a session with p; as responder. nl, ,, res and n2,, ,, res are used for p;
so as to record the nonce received from p, and the nonce created by p; re-
spectively when p; as responder tries establishing or has a session with p, as
initiator. Initially [, ,, mi 18 11, [, », Res 1s 1, and nl,, ,, . and n2, ,, . are an
arbitrary value that is never used as nonce.

We have two more observations: nw and n. nw denotes the underlying
computer network connecting the principals. It is a multiset, or a bag of
messages. n denotes the nonce created next. Initially nw is empty and n is
an arbitrary value that can be used as nonce.

We have the transition rules shown in Table 1. msgi+,, ;) corresponds to
that p; sends a message of type i to py, while msgi—,, 1, my to that p; receives
message m of type i sent by py, where s € {1,2,3}. endy,, , -} finishes a session
of p; as r with p, as =r, where —Ini = Res and —Res = Ini. Their effective
conditions are shown in Table 1.

Table 1
Transition rules for any pair of different principals py, p2 and any message m and
their effective conditions.

Trans. rules Effective conditions

msgltp, py Ipy,po,ini =11 Ap1 # p2

m392+ b1 ps lpy,pa,Res = T2 A p1 # p2

msg3tp, py lpy,pa,ini =13Ap1 # p2

msgl—p. boom | lp1,pa,Res = TLAP1 Z p2 Am € nw A 1sMsg1 (m) A getS§(m) = p2A
getD(m) = py A getK (m) = k(p1) A getP(m) = p2

M892 = pom | lp1,po,Ini} =12ADP1 # P2 Am € nwA isMsg2(m) A getS(m) = paA
getD(m) = p1 A getK (m) = k(p1) A getP(m) = p2 A getN1(m) = nly, po i

msg3—p. pom | lpi,pa,Res =IT3AP1L £ p2 Am € nw A isMsg8(m) A getS(m) = paA
getD(m) = py A getK (m) = k(p1) A getN1 (m) = n2p,) Res

endp, ps,Ini lp) pa,Ini =14 Ap1 # p2

€ndp; py Res lpy,pa,Res = T4 A p1 # P2

N~EALA AL AV IALJUAL

Next the inherent parts of the intruder, say I, are modeled. For intruder
I, we have the four observations: nonces, msgls, msg2s and msg3s. nonces
is a set of nonces that the intruder has gleaned. msgis where 1 € {1,2,3} is a
set of messages of type ¢ that the intruder has gleaned. The initial values of
the four observations are empty.

For intruder 7, we have the transition rules shown in Table 2. intercept,,
intercepts message m if m € nw, and gleans nonces in the message if the
nonces are encrypted with the intruder’s public key and the message as it is
otherwise. fakei+, . uses message m in msgis to generate a message of
type i, and fakei'+, . . ., uses nonces ni [and ny] in nonces to generate a
message of type i, where i € {1,2,3}. Their effective conditions are shown in

Table 2.

Table 2
Intruder’s inherent transition rules for any pair of different principals pq, pa, any
message m and any nonces ni, ng and their effective conditions.

Trans. rules Effective conditions
intercept ., m € nw
fakeit,, b my i € {1,2,3} M € msgis Apy # p2
fakei'+ . b0 nilnals ¢ € 11,2,3} | 1 € nonces A [na € noncesAlp1 # p2

The ots is described in CafeOBJ. The signature is as follows:

pr(PRINCIPAL + NONCE + MSG + LOCATION + ROLE + SET(NONCE)*{sort Set -> SetOfNonces})
pr(SET(MSG)*{sort Set -> Set0fMsg} + BAG(MSG)*{sort Bag -> Network})

[Sys]

-- any initial state

op init : -> Sys

-- observation operations

bop 1 : Sys Prin Prin Role -> Loc

bops n1 n2 : Sys Prin Prin Role -> Nonce
bop nonces : Sys -> SetO0fNonces
bop msgls msg2s msg3s : Sys -> SetOflsg
bop nw : Sys -> Network
bop n : Sys -> Nonce

-- action operations

bop msgl+ msg2+ msg3+ : 8ys Prin Prin -> Sys

bop msgl- msg2- msg3- : Sys Prin Prin Msg -> Sys

bop end : Sys Prin Prin Role -> Sys

bop intercept : Sys MNsg -> Sys

bop fakel+ fake2+ fake3+ : Sys Prin Prin Msg -> Sys

bop fakel’+ fake3’+ : Sys Prin Prin Nonce -> Sys

bop fake2’+ : 8ys Prin Prin Nonce Nonce -> Sys

A comment starts with -- and terminates at the end of the line.

PRINCIPAL, NONCE, MSG, LOCATION and ROLE are modules for principals,
nonces, messages, locations such as il and r1, and roles. Prin, Nonce, Msg, Loc
and Role are visible sorts denoting these data. These modules are imported
so that the data can be used. SET is a parameterized module for sets with
one parameter. Two instances of SET are imported. One is instantiated with
NONCE, and the other with Msg. Set0fNonces and Set0fMsg are visible sorts
denoting a set of nonces and a set of messages. BAG is also a parameterized
module for bags with one parameter. One instance is imported, instantiated

8

N~EALA AL AV IALJUAL

with MSG. Network is a visible sort denoting a bag of messages, namely the
underlying computer network. Note that BOOL that is a module for Boolean
values is implicitly imported and Bool is a visible sort denoting the values.

In the specification, msgl, msg2 and msg3 are the data constructors for
messages of type 1, 2 and 3, respectively. Suppose that p1,p2,p3 are terms
denoting principals pq, ps,p3, nl,n2 denoting nonces ny,n,, and k denot-
ing a public key &, terms msg1(p1,p2,k,n1,p3), msg2(pl,p2,k,n1,n2,p3)
and msg3(p1,p2,k,nl) denote messages py.pa.{n1.ps}r, p1-p2.{n1.n2.p3}r and
p1.p2-{n1 }tr, respectively.

In the specification, basically we have 15 sets of equations: one for any
initial state and the others for 14 action operations. In this paper, we show
two sets of equations for msgi+ and intercept.

In the rest of the section, S is a CafeOBJ variable for Sys, P1, P2, P3 and
P4 for Prin, N1 and N2 for Nonce, R1 and R2 for Role, and M for Msg.

The following is the equations for msg1+:

op cl-msgil+ : Sys Prin Prin -> Bool
eq cl-msgl+(S,P1,P2) = 1(S,P1,P2,Ini) = il and not(P1 = P2) .
ceq 1l(msgi+(S,P1,P2),P3,P4,R1)
= (if P1 = P3 and P2 = P4 and R1 = Ini then i2 else 1(S,P3,P4,R1) fi)
if cl-msgil+(S,P1,P2)
ceq ni(msgi+(S,P1,P2),P3,P4,R1)
= (if P1 = P3 and P2 = P4 and R1 = Ini then n(S) else ni1(S,P3,P4,R1) fi)
if cl-msgl+(S,P1,P2)
eq n2(msgi+(S,P1,P2),P3,P4,R1)
eq nonces (msgl+(S,P1,P2))

n2(S,P3,P4,R1) .
nonces(S) .

eq msgls(msgl+(S,P1,P2)) = msgls(S) .
eq msg2s(msgl+(S,P1,P2)) = msg2s(8) .
eq msg3s(msgl+(S,P1,P2)) = msg3s(8) .
ceq nw(msgi+(S,P1,P2)) = msgl(P1,P2,k(P2) ,n(8),P1),nw(8) if cil-msgi+(S,P1,P2)
ceq n(msgl+(S,P1,P2)) = new(n(8)) if cl-msgl+(S,P1,P2)

ceq msgil+(S,P1,P2) S if not cl-msgl+(S,P1,P2)

The term cl-msgl+(S,P1,P2) denotes the effective condition of transition
rule msgl 4, p, in state (denoted by) S. Comma *," is the data constructor for
bags. The term msg1(P1,P2,k(P2),n(S),P1) , nw(S) denotes the computer
network after putting the message of type 1 into the computer network denoted
by nw(S).

CafeOBJ provides built-in operator _==_, but it could be sometimes trou-
blesome unless you are certain that the CafeOBJ specification regarded as a
term rewriting system is confluent. Therefore, for each data structure used,
we define operator _=_ that checks if two values are equal. The operator
is given operator attribute comm declaring that the operator is commutative.
Necessary equations for defining operator _=_ should be described.

The following is the equations for intercept:

eq l(intercept(S,M),P1,P2,R1)
eq ni(intercept(S,M),P1,P2,R1)
eq n2(intercept(S,M),P1,P2,R1)
ceq nonces(intercept(S,M))
= (if getK(M) = k(I) and (isMsgl(M) or isMsg3(M))
then getN1(M) nonces(S) else nonces(S) fi) if M \in nw(S) .
ceq nonces(intercept(S,M))

1(S,P1,P2,R1) .
ni(S,P1,P2,R1) .
n2(S,P1,P2,R1) .

N~EALA AL AV IALJUAL

= (if getK(M) = k(I) and isMsg2(M)
then getN1(M) getN2(M) nonces(S) else nonces(S) fi) if M \in nw(8S) .
ceq msgls(intercept(S,M))
= (if not(getK(M) = k(I)) and isMsgil(M)
then M msgls(S) else msgis(S) fi) if M \in nw(S) .
ceq msg2s(intercept(S,M))
= (if not(getK(M) = k(I)) and isMsg2(M)
then M msg2s(S) else msg2s(S) fi) if M \in nw(S) .
ceq msg3s(intercept(S,M))
= (if not(getK(M) = k(I)) and isMsg3(M)
then M msg3s(S) else msg3s(S) fi) if M \in nw(S) .
ceq nw(intercept(S,M)) nw(S) - M if M \in nw(S) .
eq n(intercept(S,M)) n(s) .
ceq intercept(S,M) S if not M \in nw(S) .

Juxtaposition operation is the data constructor for sets. The term M msg1s(S)
denotes the set obtained by putting M into the set denoted by msgis(S).

The specification has 10 modules, and is of about 400 lines. The main
module is NSLPK in which the signature and equations that have been just
described are written, and is about of 300 lines.

6 Verification

Claim 6.1 In any reachable state, the inlruder cannol impersonale another
principal p to establish a session with yet another principal q.

Proof. All we have to do is to show that, in any reachable state, the intruder
never obtains nonces generated by either p or q to establish sessions with each
other, which immediately follows from Lemma 6.2. O

Let n be an arbitrary one of nonces generated by either p or q to establish
sessions with each other.

Lemma 6.2 For any reachable state S, any principals P1,P2,P3, any public
key K, any nonce N, any message M,

prl A pr2 A pr3 A prd A prb5 A pré A priA
pr8 A pr9 A pr10 A prll A pri2 A pri3 A prl4

where
prl = —(n € nonces(8)), pr2 = —(msg1 (P1,P2,K,n,I) € msgls(S)),
pr3 = —(msg2(P1,P2,K,N,n,I) € msg2s(8)), pr4 = —(msg1(P1,P2,K,n,I) € nu(8)),
pr5 = —(msg2(P1,P2,K,N,n,I) € nu(8)), pr6 = —(msg1(P1,P2,k(I),n,P3) € nu(8)),
pr7 = —(msg2(P1,P2,k(I),n,N,P3) € nu(8)), pr8 = ~(msg2(P1,P2,k(I),H,n,P3) € nu(8)),
pr9 = —(msg3(P1,P2,k(I),n) € nu(8)), pr10 = n1(S,P1,I,Res) # n,
pr1l =n2(S,P1,I,Ini) # n, pr12 = M € msgls(S) = getK(M) # k(I),
pr13 = M € msg2s(S) = getK(M) # k(I), prld = M € msg3s(S) = getK(M) # k(I).

Proof. The lemma is proved with the CafeOBJ system as proof score execu-
tor. The proof is done by induction described in Sect. 3.

First we write a module in which the predicate to be proved is defined.
The module looks like as follows:

10

N~EALA AL AV IALJUAL

mod PRED1 {
pr (NSLPK)
op prl : Sys -> Bool
op pr2 : Sys Prin Prin Key -> Bool

op pr : Sys Prin Prin Prin Key Nonce Msg -> Bool
op n : -> Nonce

eq (non = n)
eq pri(s)
eq pr2(s,P1,P2,K)

false . -- non is any value never used as nonces.
not(n \in nonces(S)) .
not(msg1(P1,P2,K,n,I) \in msgls(S)) .

eq pri4(s,M)
eq pr(s,P1,P2,P3 K,N,M)
}

In this section, S is a CafeOBJ variable for Sys, P1, P2 and P3 for Prin, N for
Nonce, K for Key, and M for Msg.

M \in msg3s(S) implies not(getK(M) = k(I)) .
p1(S) and p2(S,P1,P2,K) and ... and p14(S,M) .

For the base case, all we have to do is to have the CafeOBJ system execute
the following proof score:
open PRED1
red pr(init,P1,P2,P3,K,N,M)
close
By opening a module with CafeOBJ command open, we can use the opera-
tions, variables and equations declared in the module.
For the inductive step, given an arbitrary reachable state s in which the
predicate holds, for any transition rule, we show that the predicate is still true
in the successor state s’. We write a module describing what state s looks

like. The module looks like as follows:

mod ISTEP1 {
pr (PRED1)
ops s s’ : -> Sys

-- inductive hypothesis

eq n \in nonces(s) = false .
eq msgl(P1,P2,K,n,I) \in msgis(s) = false .
eq M \in msg3s(s) and (getK(M) = k(I)) = false .

}

If a logical formula is described as an equation, the formula is converted into
an exclusive-or canonical form a la Hsiang[14] because the CafeOBJ system
reduces a logical formula into such an exclusive-or canonical form.

One of the crucial activities in the inductive step is doing case analysis.
Case analysis is done based on the effective conditions of the transition rules
shown in Table1 and Table 2.

We describe the proof that the predicate pr is still true in the the successor
state msgi+(s,pl,p2) for any principals p1,p2. We first consider two cases.
One corresponds to states in which transition rule msgl +, , is effective, and
the other to ones in which it is not. The proof score for the former case is as
follows:

open ISTEP1
-- arbitrary chosen objects
ops pl p2 : -> Prin .

11

N~EALA AL AV IALJUAL

-- assumption
eq 1(s,pl1,p2,Ini)
eq (p1 = p2)

-- facts, etc.

i1 .
false .

-- the successor state
eq s’ = msgil+(s,pl,p2)
-- check if the predicate is true in s’.
red pr(s’,P1,P2,P3,K,N,M)
close
Having the CafeOBJ system execute the proof score, it returns the following
term:

msgl(P1,P2,k(I),n,P3) \in (msgl(pl,p2,k(p2),n(s),pl) , nw(s)) and

msgl(P1,P2,K,n,I) \in (msgi(pl,p2,k(p2),n(s),pl) , nu(s)) xor

msgl(P1,P2,k(I),n,P3) \in (msgl(p1l,p2,k(p2),n(s),p1) , nu(s)) xor

msgl(P1,P2,K,n,I) \in (msgl(pl,p2,k(p2),n(s),pl) , nu(s)) xor true

The term means that neither the message msg1(P1,P2,k(I),n,P3) nor the
message msgl(P1,P2,K,n,I) isin the network (msgi(p1,p2,k(p2),n(s),pl)
, nw(s)) because =(pV q) = pA gD p @ q & true. Therefore, if neither p1
nor p2 equals intruder I, the term should be true. Hence, the case is split
into three subcases: the first one in which p1 # I and p2 # I, the second
one in which p1 = I, and the last one in which p2 = I. The result of the
case analysis for checking if the predicate is still true in the successor state
msgl+(s,pl,p2) is shown in Table 3.

Table 3
Case analysis for checking if the predicate is still true in the successor state
msgl+(s,pl,p2) for any reachable state s in which the predicate holds and any
principals p1,p2.

no. | the successor state cases subcases

1 PLAIAP2#I
2 msgl+(s,pl,p2) 1(s,pl,p2,Ini) = i1 A pl # p2 pt=1

3 p2=1

4 —(1(s,p1,p2,Ini) = i1 A p1 # p2) —

We show the proof corresponding to case 2 in Table3. The proof score is
as follows:

open ISTEP1
-- arbitrary chosen objects
ops pl p2 : -> Prin .

-- assumption
eq 1(s,I,p2,Ini) = il . -- for p1 = I
eq (I = p2) = false . -- for P1 =1
eq pl =1.

-- facts, etc. (n(s) is created by I and I cannot create the same nonce as n
-- due to Nonce Creation. So, it must be different from n.)
eq (n = n(s)) = false
-- the successor state
eq s’ = msgl+(s,pl,p2)
-- check if the predicate is true in s’.
red p(s’,P1,P2,P3,K,N,M) .
close

In the proof score, we use the assumption on Nonce Creation. Having the
CafeOBJ system execute the proof score, it returns true.

12

N~EALA AL AV IALJUAL

The proof corresponding to case 4 in Table3 is not necessary so long as
the specification is intentionally and correctly written because there must be
no difference between s and msgi+(s,pl,p2) in this case. However, it is
helpful to do the proof corresponding to this case so as to find errors in the
specification.

We can prove that any other transition rule preserves the predicate in a
similar way. We have considered 39 cases all together for the inductive step.O

All the proof scores are of about 800 lines. It took about 12 seconds to
have the CafeOBJ system load the specification and execute the proof scores
on a laptop with 850MHz Pentium III processor and 512MB memory.

7 Related Work

Several methods of formally analysing authentication protocols have been pro-
posed. Among them are methods using model checkers[4,16], ones using theo-
rem provers[21,22], ones based on strand spaces[8,9] and ones based on multiset
rewriting[2,4].

Our approach is similar to methods using theorem provers, especially Paul-
son’s Inductive Method[21]. Inductive Method models an authentication pro-
tocols by inductively defining traces of messages from a set of rules that corre-
spond to the possible actions of the principals including the intruder, and secu-
rity properties can be stated as predicates over the traces. You can inductively
prove that a certain property holds of all possible traces for an authentication
protocol with the theorem prover Isabelle/HOL. In our approach, sequences of
states (of an authentication protocol) instead of messages are defined, and an
implementation (the CafeOBJ system) of an algebraic specification language
instead of a general theorem prover is used to support verification. Since our
approach uses only rewriting to prove that an authentication protocol has
a safety property and does not use any heavy and slow operation such as
(higher-order) unification, we may expect that our approach executes proof
scores faster than methods using general theorem provers.

As concerns modeling sending and receiving messages, our approach is
similar to the method based on strand spaces[8,9]. We model each of sending
and receiving a message as an independent atomic action as the strand space-
based method.

We model a computer network as a bag of messages, which has been af-
fected by object-oriented specification in Maude[17]. Maude is also a member
of OBJ language family as CafeOBJ. G.Denker, et al.[4] describe a finite
state system of the NSPK protocol in Maude and automatically finds Lowe’s
attack[15] using the Maude rewrite engine as a model checker.

We should notice that writing proof scores in algebraic specification lan-
guages was first advocated by Goguen’s group and developed for more than
15 years in OBJ community[12]. This paper also shows that the approach can

13

N~EALA AL AV IALJUAL

be applied to analysing security protocols.

8 Conclusion

A system in which an arbitrary number of principals, one of which is an
intruder, take part in the NSLPK protocol has been modeled as an ors and
the ots has been specified in CafeOBJ. we have proved that the intruder cannot
impersonate another principal to establish a session with yet another principal
by writing proof scores and having the CafeOBJ system execute them. We
expect that our approach may model and verify other authentication protocols
adequately.

In this case study, writing the proof scores was done by hand, which was
less time-consuming than expected though. It took a couple of days to write
the proof scores. Since the proof scores are very stylized as you have seen,
however, we hope that writing proof scores can be automated to some extent.
The point of writing proof scores for a proof is case analysis and to find lemmas
to make progress on the proof. The former can be done based on the effective
condition of each transition rule, which is expected to be performed auto-
matically. We may have to split the case corresponding to states in which a
transition rule is effective into multiple subcases, which is related to the latter
and done by repeatedly writing proof scores and having the CafeOBJ system
execute them. We are going to design and implement a software tool sup-
porting writing proof scores. A proof assistant such as the Kumo system][13]
developed by Goguen’s group could also be used to generate proof scores.

References

[1] CafeOB.J web page.
URL http://www.1dl.jaist.ac.jp/cafeobj/

[2] Cervesato, 1., H. Durgin, P. Lincoln, J. Mitchell and A. Scedrov, A meta-
notation for protocol analysis, in: 12th IFFE CSFW, 1999, pp. 55—69.

[3] Chandy, K. M. and J. Misra, “Parallel program design: a foundation,” Addison-
Wesley, Reading, MA, 1988.

[4] Denker, G., J. Meseguer and C. Talcott, Protocol specification and analysis in
Maude, in: Formal Methods and Security Protocols Workshop, 1998.
URL http://www.cs.bell-labs.com/who/nch/fmsp/

[5] Diaconescu, R. and K. Futatsugi, “CafeOBJ report,” AMAST Series in
Computing, 6, World Scientific, Singapore, 1998.

[6] Diaconescu, R. and K. Futatsugi, Behavioural coherence in object-oriented
algebraic specification, J. Universal Computer Science 6 (2000), pp. 74-96.

14

N~EALA AL AV IALJUAL

[7] Dolev, D. and A. C. Yao, On the security of public key protocols, IEEE Trans.
Inform. Theory IT-29 (1983), pp. 198-208.

[8] Fabrega, F. J. T., J. C. Herzog and J. D. Guttman, Strand space pictures, in:
Formal Methods and Security Protocols Workshop, 1998.
URL http://www.cs.bell-labs.com/who/nch/fmsp/

[9] Fabrega, F. J. T., J. C. Herzog and J. D. Guttman, Strand spaces: Proving
security protocols correct, J. Computer Security 7 (1999), pp. 191-230.

[10] Futatsugi, K. and K. Ogata, Rewriting can verify distributed real-time systems,
in: Int’l Symposium on Rewriting, Proof, and Computation, 2001, pp. 60-79.

[11] Goguen, J. and G. Malcolm, A hidden agenda, Theor. Comput. Sci. 245 (2000),
pp- 55-101.

[12] Goguen, J. and G. Malcolm, editors, “Software Engineering with OBJ: algebraic
specification in action,” Kluwer Academic Publishers, 2000.

[13] Goguen, J. A. and K. Lin, Web-based support for cooperative software
engineering, Annals of Software Engineering 12 (2001), pp. 167-191.

[14] Hsiang, J., “Refutational Theorem Proving using Term Rewriting Systems,”
Ph.D. thesis, University of Illinois at Champaign-Urbana (1981).

[15] Lowe, G., An attack on the Needham-Schroeder public-key authentication
protocol, Inf. Process. Lett. 56 (1995), pp. 131-133.

[16] Lowe, G., Breaking and fizing the Needham-Schroeder public-key protocol using
FDR, in: TACAS 96, LNCS 1055 (1996), pp. 147-166.

[17] Maude web page.
URL http://maude.csl.sri.com/

[18] Needham, R. M. and M. D. Schroeder, Using encryption for authentication in
large networks of computers, Comm. ACM 21 (1978), pp. 993-999.

[19] Ogata, K. and K. Futatsugi, Modeling and verification of distributed real-time
systems based on CafeOB.J, in: ASE 01 (2001), pp. 185-192.

[20] Ogata, K. and K. Futatsugi, Formal analysis of SuzukiéKasami distributed
mutual exclusion algorithm, in: FMOODS 02 (2002), pp. 181-195.

[21] Paulson, L. C.; The inductive approach to verifying cryptographic protocols, J.
Computer Security 6 (1998), pp. 85-128.

[22] Schneider, S., Verifying authentication protocols in CSP, IEEE Trans. on Softw.
Eng. 24 (1998), pp. 741-758.

15

