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Abstract

We report on a case study in which the Maude model
checker has been used to analyze the Suzuki-Kasami dis-
tributed mutual exclusion algorithm with respect to the
mutual exclusion property and the lockout freedom prop-
erty. Maude is a specification and programming lan-
guage/system based on membership equational logic and
rewriting logic, equipped with model checking facilities.
Maude allows users to use abstract data types, includ-
ing inductively defined ones, in specifications to be model
checked, which is one of the advantages of the Maude model
checker. Hence, queues, which are used in the case study, do
not haveto be encoded in more basic data types. In the case
study, the Maude model checker has found a counterexam-
ple that the algorithm is lockout free, which has led to one
possible modification that makes the algorithmlockout free.

Keywords: counterexample, lockout freedom property,
model checking, mutual exclusion property, rewriting logic.

1. Introduction

Maude[1, 2] (seehtt p: // maude. cs. ui uc. edu/)
is a specification and programming language/system based
on membership equational logic and rewriting logic. Data
types are written in membership equational logic, and state
machines (or transition systems) are written in rewriting
logic. Maude can be characterized by fast (AC-)rewriting
and excellent reflective (meta-programming) facilities. It is
also equipped with amodel checker. The model checker [5,
6] is an on-the-fly explicit state model checker whose as-
sertions are written in propositional LTL (Linear Tempo-
ral Logic). Unlike other existing model checkers such as
SMV [8], SPIN[7] and SAL [3], the state space of a state
machine to be model checked by the Maude model checker
does not necessarily have to be finite; the reachable states
should be finite. In addition, the Maude model checker
alows us to use abstract data types, including inductively
defined ones, in specifications to be model checked, while
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other existing model checkers do not; complex data types
should be encoded in more basic data types, which can of-
ten result in a complicated and error-prone process. Hence,
queues, which are used in the case study described in this
paper, do not have to be encoded in more basic data types.

The Suzuki-Kasami algorithm[10] is a distributed mu-
tual exclusion algorithm. We have analyzed the Suzuki-
Kasami agorithm in a semi-formal way [9] with respect
to the mutual exclusion property and the lockout freedom
property. The lockout freedom property may be caled the
starvation freedom property. We have partly written proofs
(or proof scores) in CafeOBJ[4], an agebraic specification
language, to show that the algorithm has the two properties.
In the analysis, we have found a hidden assumption that is
needed to make the a gorithm lockout free. The assumption
is that each node must try to enter its critical section in-
finitely often. In adistributed setting where some nodes try
to enter their critical sectionsonly finitely often, however, it
is not guaranteed that the algorithm is lockout free.

In this paper, we report on the case study in which the
Maude model checker has been used to analyze the Suzuki-
Kasami agorithm with respect to the two properties. The
Maude model checker has concluded that a model of the
algorithm, whose reachabl e state spaceis finite, has the mu-
tual exclusion property, but has found acounterexamplethat
the algorithm has the lockout freedom property. The coun-
terexample has |led to one possible modification that makes
the algorithm lockout free. The Maude model checker has
finally concluded that a model of the modified a gorithm,
whose reachable state space is finite, has both mutual ex-
clusion and lockout freedom properties. The modification
makes the al gorithm lockout free even if some nodestry to
enter their critical sections only finitely often.

The rest of the paper is organized as follows. Section2
describes the Suzuki-Kasami algorithm. Section3 makes
a mathematical model of the algorithm as a transition sys-
tem. Section4 specifies the transition system in Maude.
Section5 model checks the transition system in which two
nodes are involved and each node makes at most two re-
guests with respect to both mutual exclusion and lockout
freedom properties. In the section, a possible modification



to make the algorithm lockout free is proposed, which has
been guided by counterexamples generated by the Maude
model checkers. Section 6 finally concludes the paper.

2. The Suzuki-Kasami Algorithm

Let us consider acomputer network consisting of afixed
number, say N (> 1), of nodes. The nodes have no memory
in common and can communicate only by exchanging mes-
sages. The communication delay is totally unpredictable,
namely that although messages eventualy arrive at their
destinations, they are not guaranteed to be delivered in the
same order in which they are sent.

The distributed mutual exclusion problem is to solve a
mutual exclusion requirement for such acomputer network,
namely to allow at most one node to stay in its critical
section at any given moment. The Suzuki-Kasami algo-
rithm[10] is a distributed algorithm solving the problem.
The algorithm may be called SKDM XA in this paper. The
basicideain the algorithmisto transfer the privilegefor en-
tering the critical sections. The node that ownsthe privilege
isonly allowed to enter its critical section. Figurel shows
the algorithm for node i € {1,2,..., N} in atraditiona
style.

requesting and have_privilege are Boolean variables. re-
guesting indicates whether or not node i wants to enter its
critical section, and have_privilege indicates whether or not
node ¢ owns the privilege. queueis a queue of integers de-
noting node identifiers. It contains identifiers of nodes that
wait to enter their critical sections. In and rn are integer ar-
rays of size N. In[j] for eachnode j € {1,2,...,N}is
the sequence number of the node j’s request granted most
recently. rn[j] for each node j € {1,2,...,N} — {i}
records the largest request number ever received from node
j. Node i uses rn[i] to generate the sequence numbers of
its own requests. For each node i € {1,2,...,N}, ini-
tially, requesting is false, have_privilegeistrueif i = 1 and
false otherwise, queueis empty, and In[;] and rn[;] for each
je{1,2,...,N} aeO.

There are two kinds of messages exchanged by nodes:
request and privilegemessages. A request message consists
of an integer (anodeidentifier) and a sequence number, and
a privilege message consists of a queue of integers (node
identifiers) and an integer array of size N. A request mes-
sage is used to let other nodes know that the sender wants
to enter its critical section, and a privilege messagesis used
to transfer the privilege to another node.

If node i wants to enter its critical section, it first calls
its own procedure P1, which first sets regquesting to true.
If it happens to own the privilege, it immediately enters
the critical section. Otherwise, it generates the next se-
guence number, namely, incrementing rn[:], and sends the
request message request(i,rn[:]) to al other nodes. When

procedure PI;
begin
requesting := true;
if not have_privilegethen
begin
rn[z] :=rnfi] + 1;
forall jin{12,...,.N} — {i} do
send request(i,rn[4]) to node j;
wait until privilege(queue,In) isreceived;
have_privilege := true
end;
Critical Section;
In[4] := rn[4];
forall jin {1,2,...,.N} — {i} do
if not in(queue,j) and (rn[j] =In[j] + 1) then
gueue := put(queue,j);
if queue # empty then
begin
have_privilege ;= falseg;
send privilege(get(queue),In) to node top(queue)
end;
reguesting := false
end;

{ requesting(j,n) isreceived; P2isindivisible }
procedure P2,
begin
rn[j] := max(rn[;].n);
if have_privilege and not requesting
and (rn[j] =In[;j] + 1) then
begin
have_privilege := falsg;
send privilege(queue,In) to node j
end
end;

Figure 1. The Suzuki-Kasami algorithm

it receives a privilege message privilege(queug,In), it enters
the critical section. When it finishes executing the critical
section, it sets In[7] to its current sequence number rn[i],
which means that the current request has been granted, and
updates queue, namely that identifiers of nodes that want to
enter their critical sections and are not in the queue yet are
added to the queue. After that, if queueis not empty, node
sets have_privilege to false and sends the privilege message
privilege(get(queue),In) to the node found in the front of the
gueue, where get(queue) is the queue obtained by deleting
the top element from queue. Otherwise, node i keeps the
privilege. Finally node i sets requesting to false and leaves
procedure P1.

Whenever request(j,n) is delivered to node i, node i ex-



Table 1. 13 parameterized transitions for each node i € {1,2,...,N}

transition |abel the corresponding part in the algorithm

1 try; rem | calling procedure P1

2. set_req; 11 reguesting := true;

3. check_priv; 12 conditionally branching based on not have privilege

4. inc_req_no, 13 rnfi] ;= rn[i] + 1;

5. send_req; 14 executing oneiteration of thefirst loop

6. wait_priv; 15 wait until privilege(queue,In) isreceived;
have_privilege := true

7. exit; cs leaving the critical section

8. complete_req; 16 In[4] :=rn[d];

9. update_queue; | 17 executing one iteration of the second loop

10. check _queue; | 18 conditionally branching based on queue # empty

11. transfer priv, | 19 have_privilege := falsg;
send privilege(get(queue),In) to node top(queue)

12. reset _req; 110 requesting ;= false

13. receive_req; - atomically executing procedure P2

ecutes its own procedure P2. But, procedure P2 has to be
atomically executed. When node i executes procedure P2,
it sets rn[j] to n if n is greater than rn[j]. Then, if node
1 owns the privilege, does want to enter its critical section,
and the nth request of node j has not been granted, that is,
rn[7] =In[7]+1, thenit setshave_privilegeto fal se and sends
the privilege message privilege(queug,In) to node 5.

3. Modeling the Suzuki-Kasami Algorithm

The agorithm is modeled as a transition system Saw™
that consists of aset Vg of variables, theinitial condition
75N andaset 70" of transitions. The way of modeling
theagorithm basically followstheoneusedin[9]. A transi-
tion may involve a condition called the effective condition.
A transition can be executed only if the effective condition
holds.

The set VS{V{(’N of variables consists of eight parameter-
ized variables and one non-parameterized variable. The
variables are as follows:

1. requesting; corresponds to requesting in the ago-
rithm for each nodei € {1,2,..., N}.

2. have_privilege,; corresponds to have _privilege in the
agorithmfor each nodei € {1,2,...,N}.

3. queue; correspondsto queue inthealgorithmfor each
node: € {1,2,...,N}.

4. In; corresponds to In in the agorithm for each node
ie{l,2,...,N}.

5. rn; corresponds to rn in the algorithm for each node
ie{l,2,...,N}.

6. idz; corresponds to j in the algorithm for each node
i€{l1,2,...,N}.

7. pc; indicates which part of the algorithm node ¢ will
execute next for each nodei € {1,2,...,N}.

8. num_of _regq; holds the number of requests node i has
made for each nodei € {1,2,..., N}.

9. nw denotesthe network; nw isamultiset of messages.

Whenever node i executes procedure P1, the sequence
number rn[i] is incremented. Therefore, in order to make
the reachable states of thetransition system Sa ™ finite, the
number of requests made by each node i should be finite,
say M (> 1). num_of _req; is used to alow nodei to make
at most M requests.

The set 743" of transitions consists of 13 parametrized
transitions. Tablel shows the 13 parameterized transitions
for each nodei € {1,2,..., N}. The transitions exhaus-
tively and exclusively correspond to parts of the algorithm
as described in Table1. Thefirst 12 transitions denote pro-
cedure P1 and the final one denotes procedure P2. Thefirst
12 transitions are given labels (rem, 11, 12, 13, 14, 115, cs, 16,
17,18, 19 and 110, respectively) as described in Tablel. pc,
is set to one of the labels.

The initial condition Z3P™ is that requesting, is false,
have_privilege,; istrueif i = 1 and false otherwise, queue;
is empty, each element of In; is 0, each element of rn; is
0, idz; is 1, pc; is rem, num_of _req; is O for each i €
{1,2,..., N}, and nw is the empty multiset.

We describe (1) the effective condition of each transi-
tion and (2) how the transition changes variablesin V3™
when the transition is executed; variables that the transition



does not change may not be described explicitly. For each
variable v, v and v’ denote the values before and after a
transition, respectively.
o try,: (1) pc; = rem. (2) If num_of req; < M,
then pc! = 11 and num_of -req; = num_of _req; +
1, and otherwise pc: = rem and num_of _req; =
num_of _regq;.

o set_req;: (1) pe; = L
requesting; = true.

(2 pc; = 12 and

e check_priv;: (1) pc, = 12. (2) If have_privilege,; =
true, then pc) = cs, and otherwise pc} = 13.

e inc_req-no;: (1) pc; = 13. (2) pc; = 14, mifi] =
rn;[i] + 1 and idz); = 1.

o send_req;: (1) pc; = 14. (2) If idz; = N, then pc} =
I5and idz; = idz;, and otherwise pc! = |4 and idz); =
idz; + 1. Besides, arequest message with i and rn ;i
is sent to node idz; (isput into nw) unless idz; = i.

e wait_priv;: (1) pc; = 15 and there exists a privilege
message with a queue () of integers and an integer ar-
ray LN of size N, whose destination is node i, in nw.
(2) pc!; = cs, have_privilege); = true, queue’; = @ and
In; = LN. Besides, the privilege message is removed
from nw.

o exit;: (1) pe; = cs. (2) pc; = 16.

e complete_req;: (1) pc; = 16. (2) pc} =17, In}[i] =
rn;[i] and idz! = 1.

e update_queue; . (1) pc; = 17. (2) If idz; = N then
pc; =18 and idz} = idz;, and otherwise pc’; = |7 and
ide; = idv; + 1. 1f rn;[idz;) = In;[idz;] + 1 and idz;
isnotin queue;, then queue; = put(queue;, idz;), and
otherwise queue);, = queue,;.

o check_queue;: (1) pc; = 18. (2) If queue; is empty,
then pc; = 110, and otherwise pc}; = 19.

o transfer_priv,: (1) pc; = 19. (2) pc; = 110
and have_privilege; = fase. Besides, the privilege
message with get(queue;) and In; is sent to node
top(queue;) (isputinto nw).

e reset_req;: (1) pc; = 110. (2) pc; = rem and

requesting, = false.

e receive_req; . (1) there exists a request message with
j (# i) and n in nw, whose destination is node i. (2)
rni[j] = max(rn;[j],n). Let C be have_privilege; A
—requesting; A rni[j] = In;[j] + 1. If C istrue, then
have_privilege;, = false and the privilege message
with queue; and In; is sent to node n (is put into nw),
and otherwise have_privilege;, = have_privilege,.
Besides, the request message is removed from nw.

4. Specification of Sg™
4.1. Specifying Queuesand Arrays

Maude allows usto use inductive data typesin specifica-
tions to be model checked. Therefore, it is not necessary to
encode queuesin more basic types. Queues of natural num-
bers are specified in amodule called QUEUE. In the module,
we declare constant enpt y denoting the empty queue and
operation _| _ denoting the data constructor of nonempty
gueues as follows:

-> Queue .

op enpty :
. Nat Queue -> Queue .

op _|_

Queue (declared in the module) and Nat are sorts denoting
queues and natural numbers. An underscore _ is the place
where an argument is put. Given natural numbersx, y and
z,teemx | y | z | enpty denotes the queue con-
taining the natural numbers, whose top and last elements
arex and z, respectively.

In module QUEUE, we declare operations t op, put,
get, \in_andenpty? correspondingto the usua func-
tions for queues, and define them with equations. Given a
queue ¢ and a natural number z, t op(gq) is the top element
of ¢, put (g, ) is the queue obtained by adding = into ¢
at the end, get (¢) is the queue obtained by deleting the
top element from ¢, z\'i n¢ checks if ¢ includes z, and
enmpt y?(q) checks if ¢ is empty. The five operations are
defined as follows:

op top Queue -> Nat .
op put Queue Nat -> Queue .
op get Queue -> Queue .
op _\in_ Nat Queue -> Bool
op empty? : Queue - > Bool

eq top(l | Q =1 .

eq put(enpty,l) =1 | enpty .
eq put(J | Q1) =1J ] put(Ql)
eq get(l | Q = Q.

eq | \in enpty = fal se

eq !l \in (I | Q =true .

eql \in(J] Q =1 \in Q[ow se]
eq enpty?(enmpty) = true .

eq enpty?(l | Q = false .

| and J are Maude variables of sort Nat , and QisaMaude
variable of sort Queue. Keyword owi se stands for oth-
erwise, which means that as long as the first and second
equations of operation _\'i n_ cannot be applied, then the
third equation is used.

Since Maude does not provide arrays as a built-in data
type, arrays should be specified. Arrays are modeled as
multisets whose el ements denote array elements. Integer ar-
raysare specified in amodule called ARRAY. In the module,
sorts AEl mand Ar r ay are declared, denoting elementsand
arrays, and AEl mis declared as a subsort of Array. We



declare constant i a, and operations_: _and _, . Con-
stant i a denotes an array whose elements are all 0, opera-
tion_: denotesthedataconstructor of array elements (the
first and second arguments are an index and a value stored),
and operation _, _ denotesthe data constructor of arrays (it
is given associativity, commutativity and i a asitsidentity).
The constant and operations are declared as follows:

op ia -> Array .
op _:_ : Nat Nat -> AEIm.
op _,_ : Array Array -> Array

[assoc commid: ia]

We also declare operations _[_] and _[_] :=_
Givenanarray a, anindexi andavauex, termali] de
notes the value stored at index i of array a andtermaf i ]
: = v denotesthe array obtained by storing valuev at index
i of array a. The operations are defined in equations. The
operations are declared and defined as follows:

op _[_] Array Nat -> Nat

op [_] :=_: Array Nat Nat -> Array .

eq ((I X) , All] = X.

eq All] = 0 [owi se] .
eq (((I =X, Al :=Y) = 1Y), A.
eq (AllI] :=Y) =(l:Y), A.

AisaMaudevariableof sort Array,andl ,J, XandY are
Maude variables of sort Nat .

4.2. Specifying the Networ k

Networks are modeled as a multiset of messages, speci-
fied in a module called NETWORK, which imports another
module called MESSAGE where sort Message denoting
messages is declared. In module NETWORK, we declare
sort Net wor k as a supersort of Message, constant voi d
denoting the empty multiset (the empty network), and jux-
taposition operation __ denoting the data constructor of
nonempty multisets (nonempty networks). The juxtapo-
sition operation is given associativity, commutativity and
voi d as its identity. The constant and juxtaposition op-
eration are declared as follows:

-> Network .
Net wor k Networ k -> Networ k
[assoc commid: void]

op void :
op __

In module MESSACE, we declare operation nsg that is
the data constructor of messages as follows:

op nsg :
op nBg :

Nat Request -> Message .
Nat Privil ege -> Message .

The operation takes a natural number and a message body
as its arguments. The natural number denotes the destina-
tion of a message. Module MESSAGE imports two mod-
ules REQUEST and PRI VI LEGE where we declare sorts

Request and Pri vi | ege denoting requests and privi-
leges, respectively. We declare operationsr eq and pri v
in REQUEST and PRI VI LEGE, respectively, asfollows:

op req : Nat Nat -> Request
op priv : Queue Array -> Privilege .

Operationsr eq and pri v are the data constructors of re-
guests and privileges, respectively.

4.3. Specifying the Behavior of each Node

The behavior of each node is written in a module
called SKDMXA, which imports two modules NETWORK and
LABEL. In module LABEL, we declare sort Label denot-
ing labels and 12 constants corresponding to the 12 labels.

In module SKDMXA, we declare sorts Var and Sys de-
noting variables and states of transition systems, respec-
tively. Var is also declared as a subsort of Sys. States of
transition systems are model ed as multisets of variables. To
this end, the following constant and operation are declared:

op none : -> Sys .
op __ : Sys Sys -> Sys
[assoc commid: none]

Constant none denotes the empty multiset (the empty
state), which is the identity of juxtaposition operation
that is the constructor of nonempty multisets (nonempty
states). The juxtaposition operation is given associativity,
commutativity and none asits identity.

In module SKDMXA, the following operations are de-
clared:

op requesting[_]:_ : Nat Bool -> Var .
op havePriv[_]:_ : Nat Bool -> Var .
op rn[_]:_ : Nat Array -> Var .
op In[_]:_ : Nat Array -> Var .
op queue[_]:_ : Nat Queue -> Var .
op idx[_]:_ : Nat Nat -> Var .
op pc[_]:_ : Nat Label -> Var .
op numdfReq[ _]: _ : Nat Nat -> Var .
op nw. _ : Network -> Var .

The operations correspond to the variables of transition sys-
tem Sgre" described in Sect. 3, whose names are almost
the same. For each of the operations, the last argument
is the place where the value of the corresponding variable
is put. For example, term requesting[ 1]: true
means that the value of requesting, is true. We also de-
clare two constants n and m which are the number of nodes
involved in SKDM XA and the number of requests made by
each node.

The 13 kinds of transitions described in Sect. 3 are writ-
ten as rewriting rules. Figure2 shows the rewriting rules
corresponding to send_req;, wait_priv;, transfer_priv,
and receive_req;. send_req; iS written using two rewrit-
ing rules. The remaining transitions are written as rewriting
ruleslikewise.



rl [sendReql] :
(pc[1]: 14) (idx[I]: 1)

=> (pc[l]: if I == n then |5 else 14 fi)

(idx[I1]: if I ==n then |
crl [sendReq2]

(pc[l]: 14) (idx[l]: X) (rn[1]:

elsel +1fi) .

RN (nw NW

=> (pc[l]: if X==n then |5 else 14 fi)
(idx[1]: if X==nthen 1 else X+ 1 fi)
(rn[1]: RN) (nw (nsg(X,req(l,RN[1])) NW) if X =/=1

ri [waitPriv]

(pc[l]: 15) -(havePriv[I]: F) (In[I]: LN) (queue[l]: Q)

(nw. (msg(l, priv(QLN)) NW)
=> (pc[l]: cs) (havePriv[I]:

(nw. NW .

ri [transferPriv]

true) (In[1]: LN (queue[l]: Q

(pc[l]: 19) (havéPriv[I]: F) (In[I]: LN) (queue[l]: Q (nw. NW

=> (pc[l]: 110) (havePriv[I]:

false) (In[l]: LN (queue[l]: Q

(nw. (meg(top(Q,priv(get(Q,LN) NW) .

crl [receiveReq]

(requesting[l]:.F) (havePriv[I1]:

F') (rn[1]: RN (In[I]: LN

(queue[I]: Q (nw (msg(l,req(J, X)) NwW) _
=> (requesting[l]: F) (havePriv[I]: if Cthen false else F fi)

(rn[1]: RN[J] := Max) (In[I]:

LN) (queue[l]: Q

(nw. if Cthen (nmeg(J,priv(QLN)) NW else NWTfi)

if 1 =/=J31/\

Max :=if (RN[J]) < X then X else RN[J] fi /\

C:=F and not(F) and Max

(LN[J]) + 1 .

Figure 2. Rewriting rules for send_req;, wait_priv;, transfer_priv, and receive_reg;

5. Model Checking Sa™

The Maude model checker searches for all reachable
states from a given initial state. We then define an initial
state of transition system Saic”, which is written in amod-
ule called SKDMXA- | STATE importing module SKDMVXA.
Module SKDMXA- | STATE has operation node declared
and defined as follows:

op node : Nat -> Sys .

eq node(l) = (nunOFReq[1]: 0) (pc[l]: rem
(requesting[l]: false)
(havePriv[I]: (I == 1))
(rn[1]: ia) (In[l]: ia)
(queue[l]: enpty) (idx[I]: 1) .

Term node( 1) denotes the initial state of node | . The
module also has constant i ni t whose sort is Sys. The
constant is defined as follows:

eq init = node(l) node(2) (nw void) .

Constant i ni t denotes an initial state of S3;c where two
nodes are involved. In the module, both constants n and m
are defined as 2.

The properties to be checked are the mutual exclu-
sion property and the lockout freedom property. We first

write state predicates to write the properties as proposi-
tional LTL formulas, The state predicates are written in
a module called SKDMXA- PREDS importing two mod-
ules SKDMXA and SATI SFACTI ON (which is in the file
nodel - checker . maude included in the Maude distri-
bution). Module SATI SFACTI ON imports module LTL
where propositional LTL is specified. Module LTL de-
clarestwo sortsPr op and For mul a that denote state pred-
icates and LTL formulas. Pr op is a subsort of For mul a.
Module SATI SFACTI ON declares sort St at e denoting
states and operation _| =_ that takes a state pattern and
a state predicate to be defined as its arguments. In mod-
ule SKDMXA- PREDS, we declare four operations wai t ,
crit,existPriv andexistReq denoting state pred-
icates and define them as follows:

eq (pc[l]: I5) S|=wait(l) = true .
eq (pc[l]: cs) S|=crit(l) = true .
eq (nw (msg(1,P) NW) S

| = existPriv(l) = true .

eq (nw (msg(l,req(J, X)) NW) S
| = existReq(l,J) = true .

wai t (1) andcrit(l) holdif nodel isatl5 andcs,
respectively. exi st Pri v( 1) holdsif there exists a priv-
ilege message in the network that is addressed to node | .



count er exanpl e(

{... (pc

{... (pc[1]: I1)
{... (pc[1]: I1)
{... (pc[1]: 12)
{... (pc[1]: 12
{... (pc[1]: cs)
{... (pc[1]: cs)
{... (pc[1]: cs)
{... (pc[1]: cs)
{... (pc[1]: cs)
{... (pc[1]: 186)
{... (pc[1]: |7
{... (pc[1]: I7)
{... (pc[1]: 1I8)
{... (pc[1]: 110)
{... (pc[1]: rem
{... (pc[1]: I1)
{... (pc[1]: 12
{... (pc[1]: cs)
{... (pc[1]: I®6)
{... (pc[1]: I7)
{... (pc[1]: |7
{... (pc[1]: 18)
{... (pc[1]: I10)
{... (pc[1]: 110)
{... (pc[1]: rem

[1]: rem) (pc[2]:

rem ..., 'try}

(pc[2]: rem ..., "try}
pc[2]: I1) ..., 'setReq}
pc[2]: I1) ' set Req}
pc[2]: 12) " checkPriv1}
pc[2]: 12) ..., 'checkPriv2}
pc[2]: 13) ..., "incRecNo}
pc[2]: 14) ..., 'sendReq2}
pc[2]: 14) ..., ’sendReql}
pc[2]: I5) “exit}
pc[2]: 15) ' conpl et eReq}
pc[2]: I5) ..., ’updateQueuel}
pc[2]: I5) ..., ’'updateQueue2}
pc[2]: I5) ..., ’checkQueue}
pc[2]: I5) ..., 'resetReq}
pc[2]: I5) ..., "try}
pc[2]: I5) ..., 'setReq}
pc[2]: I5) ..., ’checkPrivil}
pc[2]: I5) ..., "exit}
pc[2]: I5) ..., ’conpleteReq}
pc[2]: I5) ..., ’'updateQueuel}
pc[2]: I5) ..., ’updateQueue2}
pc[2]: I5) " checkQueue}
pc[2]: I5) ..., ’receiveReq}
pc[2]: I5) ..., 'resetReq},
pc[2]: 15) "try} )

Figure 3. An excerpted counterexample to the lockout freedom

exi st Req( |, J) holdsif there exists a request message
in the network that is sent to node | by nodeJ.

The propositional LTL formulas denoting the two
properties are written in amodul e called SKDMXA- CHECK.
The module imports four modules SKDMXA- | STATE,
SKDWMXA- PREDS, MODEL- CHECKER (which is in
nodel - checker. maude) and LTL-SI MPLI FI ER
(which is in nodel - checker . maude). Module
MODEL - CHECKER has operation nodel Check that takes
two arguments dencting an initial state and a propositional
LTL formula and returns the result of model checking.
In LTL- SI MPLI FI ER, operations and equations to
simplify propositional LTL formulas are declared. It
is optional to import LTL- SI MPLI FI ER. In module
SKDMXA- CHECK, we declare three constants mut ex,
| of ree andf ai r ness that denote the mutual exclusion
property, the lockout freedom property and the weak
fairness assumption given to transitions corresponding
to the wai t Priv and recei veReq rewriting rules,
respectively. The operations are defined as follows:

eq nutex
eq |l ofree

[T “(erit(1) /\ crit(

(wait(1l) |->crit(1))

(wait(2) |->crit(2))

eq fairness

= (wait(1) /\ existPriv(1l) |->crit(1)) /\
(existReq(1,2) |-> "(existReq(1,2))) [/\
(wait(2) /\ existPriv(2) |->crit(2)) /\
(existReq(2,1) |-> "(existReq(2,1))) .

2)) .
I\

Operations[] _, <>_and _| - >_ denote Henceforth (Al-
ways), Eventually and L eads-to, respectively.

We use the Maude model checker to check if Sgi; in
which two nodes are involved and each node makes at most
two requests has the two properties by reducing the follow-
ing two terms respectively:

1. model Check(i nit, mut ex)

2. nodel Check(init, (fairness =>
| of ree))

The Maude mode! checker concludes that S3; has the mu-
tual exclusion property but presents a counterexample that
S;2 has the lockout freedom property.

A counterexample generated by the Maude model
checker is the form count er exanpl e(P, L), where P
and L are lists of pairs, each of which consists of a state
and the label of the rewriting rule applied to reach the state
of the next pair. The next of the last pair of P is the first
of L and the next of the last pair of L isthefirst of L. P
correspondsto afinite path beginning in aninitial state and
leading to a loop represented by L. The loop represents a
state or atransition sequence that violates a given LTL for-
mula.

Figure3 shows an excerpted counterexample that S2;
has the lockout freedom property; the counterexample has
been generated by the Maude model checker. The coun-
terexample says that node 2 never entersits critical section



crl [receiveReq]

(requesting[l]: F) (havePriv[Il]:

F') (rn[1]: RN (In[l]: LN)

(queue[l1]: Q (nw (msg(l,req(Jd, X)) NW) .
=> (requesting[l]: F) (havePriv[l]: if Cthen false else F fi)

(rn[1]1: RN J]

= Max) (In[l]:

LN) (queue[l]: Q

(nw. if Cthen (meg(J,priv(QLN) NW else NWfi)

if 1 =/=J3/\ L=/=171/\

L=/=18/\L=/=110/\

Max = if (RN[J]) < X then X else RN[J] fi [\

C:= F and not(F) and Max

(LN[J]) + 1 .

Figure 4. Finally revised rewriting rule corresponding to receive_reg;

even thoughit wantsto do. Taking acloser look at the coun-
terexample lets us know that if node 1 receives a request
message from node 2 at label | 10, then node 2 may have
to wait for a privilege message forever at label | 5. Thisis
because

1. when node 1 receives a request message from node 2
at label |1 10, node 1 does not transfer the privilege to
node 2 becauseitsr equest i ng istrue, and

2. if node 1 will not execute procedure P1 anymore, then
node 1 will never transfer the privilege to node2.

The counterexampl e suggests that each node should not
receive any request messages at label 1 10. Therefore,
L =/= 110 is added to the condition of the rewriting
rule labeled r ecei veReq. However, this is not enough.
Model checking the revised S2;7 aso generates a coun-
terexample that the revised SZ;; has the lockout freedom;
the counterexample suggests that each node should not
receive any request message at label |1 8 either. Hence,
L =/= 18 is aso added to the condition of the rewrit-
ing rule labeled r ecei veReq. Moreover, model check-
ing the further revised S3;7 generates a counterexample
that the further revised S3; has the lockout freedom; the
counterexampl e suggests that each node should not receive
any request message at label | 7 either. Consequently, L
=/ = 17 is added to the condition of the rewriting rule la-
beled r ecei veReq as well. The finaly revised rewrit-
ing rule labeled r ecei veReq is shown in Fig.4. The
Maude model checker concludes that the finally revised
S2;2 hasboth mutual exclusion and lockout freedom proper-
tiesby reducingtermsnodel Check(i ni t, mut ex) and
nodel Check(init, (fairness => lofree)).

6. Conclusion

We have reported on the case study in which the Maude
model checker has been used to analyze the Suzuki-Kasami
algorithm with respect to the mutual exclusion property and
the lockout freedom property. In the case study, the Maude
model checker has presented a counterexample that the al-
gorithm has the lockout freedom. The counterexample has

led to apossible modification that makesthe al gorithm lock-
out freeeven if some nodestry to enter their critical sections
only finitely often.

The case study also demonstrates that the state space of
a state machine to be model checked by the Maude model
checker does not necessarily have to be finite and inductive
data types can be used in a specification of a state machine
to be model checked by the Maude model checker. The state
space of S3;; isinfinite because a queue of integersis used,
athough thereachable state spaceisfinite, and queuesof in-
tegers are inductively defined in the specification of S3i™ .
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