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Abstract

We report on a case study in which the Maude model
checker has been used to analyze the Suzuki-Kasami dis-
tributed mutual exclusion algorithm with respect to the
mutual exclusion property and the lockout freedom prop-
erty. Maude is a specification and programming lan-
guage/system based on membership equational logic and
rewriting logic, equipped with model checking facilities.
Maude allows users to use abstract data types, includ-
ing inductively defined ones, in specifications to be model
checked, which is one of the advantages of the Maude model
checker. Hence, queues, which are used in the case study, do
not have to be encoded in more basic data types. In the case
study, the Maude model checker has found a counterexam-
ple that the algorithm is lockout free, which has led to one
possible modification that makes the algorithm lockout free.

Keywords: counterexample, lockout freedom property,
model checking, mutual exclusion property, rewriting logic.

1. Introduction

Maude [1, 2] (see http://maude.cs.uiuc.edu/)
is a specification and programming language/system based
on membership equational logic and rewriting logic. Data
types are written in membership equational logic, and state
machines (or transition systems) are written in rewriting
logic. Maude can be characterized by fast (AC-)rewriting
and excellent reflective (meta-programming) facilities. It is
also equipped with a model checker. The model checker [5,
6] is an on-the-fly explicit state model checker whose as-
sertions are written in propositional LTL (Linear Tempo-
ral Logic). Unlike other existing model checkers such as
SMV [8], SPIN [7] and SAL [3], the state space of a state
machine to be model checked by the Maude model checker
does not necessarily have to be finite; the reachable states
should be finite. In addition, the Maude model checker
allows us to use abstract data types, including inductively
defined ones, in specifications to be model checked, while

other existing model checkers do not; complex data types
should be encoded in more basic data types, which can of-
ten result in a complicated and error-prone process. Hence,
queues, which are used in the case study described in this
paper, do not have to be encoded in more basic data types.

The Suzuki-Kasami algorithm [10] is a distributed mu-
tual exclusion algorithm. We have analyzed the Suzuki-
Kasami algorithm in a semi-formal way [9] with respect
to the mutual exclusion property and the lockout freedom
property. The lockout freedom property may be called the
starvation freedom property. We have partly written proofs
(or proof scores) in CafeOBJ [4], an algebraic specification
language, to show that the algorithm has the two properties.
In the analysis, we have found a hidden assumption that is
needed to make the algorithm lockout free. The assumption
is that each node must try to enter its critical section in-
finitely often. In a distributed setting where some nodes try
to enter their critical sections only finitely often, however, it
is not guaranteed that the algorithm is lockout free.

In this paper, we report on the case study in which the
Maude model checker has been used to analyze the Suzuki-
Kasami algorithm with respect to the two properties. The
Maude model checker has concluded that a model of the
algorithm, whose reachable state space is finite, has the mu-
tual exclusion property, but has found a counterexample that
the algorithm has the lockout freedom property. The coun-
terexample has led to one possible modification that makes
the algorithm lockout free. The Maude model checker has
finally concluded that a model of the modified algorithm,
whose reachable state space is finite, has both mutual ex-
clusion and lockout freedom properties. The modification
makes the algorithm lockout free even if some nodes try to
enter their critical sections only finitely often.

The rest of the paper is organized as follows. Section 2
describes the Suzuki-Kasami algorithm. Section 3 makes
a mathematical model of the algorithm as a transition sys-
tem. Section 4 specifies the transition system in Maude.
Section 5 model checks the transition system in which two
nodes are involved and each node makes at most two re-
quests with respect to both mutual exclusion and lockout
freedom properties. In the section, a possible modification



to make the algorithm lockout free is proposed, which has
been guided by counterexamples generated by the Maude
model checkers. Section 6 finally concludes the paper.

2. The Suzuki-Kasami Algorithm

Let us consider a computer network consisting of a fixed
number, say� �� ��, of nodes. The nodes have no memory
in common and can communicate only by exchanging mes-
sages. The communication delay is totally unpredictable,
namely that although messages eventually arrive at their
destinations, they are not guaranteed to be delivered in the
same order in which they are sent.

The distributed mutual exclusion problem is to solve a
mutual exclusion requirement for such a computer network,
namely to allow at most one node to stay in its critical
section at any given moment. The Suzuki-Kasami algo-
rithm [10] is a distributed algorithm solving the problem.
The algorithm may be called SKDMXA in this paper. The
basic idea in the algorithm is to transfer the privilege for en-
tering the critical sections. The node that owns the privilege
is only allowed to enter its critical section. Figure 1 shows
the algorithm for node � � ��� �� � � � � �� in a traditional
style.

requesting and have privilege are Boolean variables. re-
questing indicates whether or not node � wants to enter its
critical section, and have privilege indicates whether or not
node � owns the privilege. queue is a queue of integers de-
noting node identifiers. It contains identifiers of nodes that
wait to enter their critical sections. ln and rn are integer ar-
rays of size � . ln[�] for each node � � ��� �� � � � � �� is
the sequence number of the node �’s request granted most
recently. rn[�] for each node � � ��� �� � � � � �� � ���
records the largest request number ever received from node
�. Node � uses rn[�] to generate the sequence numbers of
its own requests. For each node � � ��� �� � � � � ��, ini-
tially, requesting is false, have privilege is true if � � � and
false otherwise, queue is empty, and ln[�] and rn[�] for each
� � ��� �� � � � � �� are 0.

There are two kinds of messages exchanged by nodes:
request and privilege messages. A request message consists
of an integer (a node identifier) and a sequence number, and
a privilege message consists of a queue of integers (node
identifiers) and an integer array of size � . A request mes-
sage is used to let other nodes know that the sender wants
to enter its critical section, and a privilege messages is used
to transfer the privilege to another node.

If node � wants to enter its critical section, it first calls
its own procedure P1, which first sets requesting to true.
If it happens to own the privilege, it immediately enters
the critical section. Otherwise, it generates the next se-
quence number, namely, incrementing rn[�], and sends the
request message request(�,rn[�]) to all other nodes. When

procedure P1;
begin
requesting := true;
if not have privilege then
begin

rn[�] := rn[�] + 1;
for all � in �1,2,. . . ,�� � ��� do
send request(�,rn[�]) to node �;

wait until privilege(queue,ln) is received;
have privilege := true

end;
Critical Section;
ln[�] := rn[�];
for all � in �1,2,. . . ,�� � ��� do

if not in(queue,�) and (rn[�] = ln[�] + 1) then
queue := put(queue,�);

if queue �� empty then
begin

have privilege := false;
send privilege(get(queue),ln) to node top(queue)

end;
requesting := false

end;

� requesting(�,�) is received; P2 is indivisible �
procedure P2;
begin
rn[�] := max(rn[�],�);
if have privilege and not requesting

and (rn[�] = ln[�] + 1) then
begin

have privilege := false;
send privilege(queue,ln) to node �

end
end;

Figure 1. The Suzuki-Kasami algorithm

it receives a privilege message privilege(queue,ln), it enters
the critical section. When it finishes executing the critical
section, it sets ln[�] to its current sequence number rn[�],
which means that the current request has been granted, and
updates queue, namely that identifiers of nodes that want to
enter their critical sections and are not in the queue yet are
added to the queue. After that, if queue is not empty, node �
sets have privilege to false and sends the privilege message
privilege(get(queue),ln) to the node found in the front of the
queue, where get(queue) is the queue obtained by deleting
the top element from queue. Otherwise, node � keeps the
privilege. Finally node � sets requesting to false and leaves
procedure P1.

Whenever request(�,�) is delivered to node �, node � ex-



Table 1. 13 parameterized transitions for each node � � ��� �� � � � � ��
transition label the corresponding part in the algorithm

1. ��� � rem calling procedure P1
2. ��� ��� � l1 requesting := true;
3. ����� 	�
� � l2 conditionally branching based on not have privilege
4. 
�� ��� �
� l3 rn[�] := rn[�] + 1;
5. ���� ��� � l4 executing one iteration of the first loop
6. ��
� 	�
� � l5 wait until privilege(queue,ln) is received;

have privilege := true
7. ��
� � cs leaving the critical section
8. �
�	���� ��� � l6 ln[�] := rn[�];
9. �	���� ������ l7 executing one iteration of the second loop
10. ����� ������ l8 conditionally branching based on queue �� empty
11. �������� 	�
� � l9 have privilege := false;

send privilege(get(queue),ln) to node top(queue)
12. ����� ��� � l10 requesting := false
13. ����
�� ��� � – atomically executing procedure P2

ecutes its own procedure P2. But, procedure P2 has to be
atomically executed. When node � executes procedure P2,
it sets rn[�] to � if � is greater than rn[�]. Then, if node
� owns the privilege, does want to enter its critical section,
and the �th request of node � has not been granted, that is,
rn[�] = ln[�]+1, then it sets have privilege to false and sends
the privilege message privilege(queue,ln) to node �.

3. Modeling the Suzuki-Kasami Algorithm

The algorithm is modeled as a transition system ����

��

that consists of a set ����

��
of variables, the initial condition

����

��
and a set 	 ���

��
of transitions. The way of modeling

the algorithm basically follows the one used in [9]. A transi-
tion may involve a condition called the effective condition.
A transition can be executed only if the effective condition
holds.

The set ����

��
of variables consists of eight parameter-

ized variables and one non-parameterized variable. The
variables are as follows:

1. �������
��� corresponds to �������
�� in the algo-
rithm for each node � � ��� �� � � � � ��.

2. ���� 	�
�
���� � corresponds to ���� 	�
�
���� in the
algorithm for each node � � ��� �� � � � � ��.

3. ������ corresponds to ����� in the algorithm for each
node � � ��� �� � � � � ��.

4. ��� corresponds to �� in the algorithm for each node
� � ��� �� � � � � ��.

5. ��� corresponds to �� in the algorithm for each node
� � ��� �� � � � � ��.

6. 
�� � corresponds to � in the algorithm for each node
� � ��� �� � � � � ��.

7. 	�� indicates which part of the algorithm node � will
execute next for each node � � ��� �� � � � � ��.

8. ��� 
� ��� � holds the number of requests node � has
made for each node � � ��� �� � � � � ��.

9. �� denotes the network; �� is a multiset of messages.

Whenever node � executes procedure P1, the sequence
number ����� is incremented. Therefore, in order to make
the reachable states of the transition system ����

��
finite, the

number of requests made by each node � should be finite,
say � �� ��. ��� 
� ��� � is used to allow node � to make
at most � requests.

The set 	 ���

��
of transitions consists of 13 parametrized

transitions. Table 1 shows the 13 parameterized transitions
for each node � � ��� �� � � � � ��. The transitions exhaus-
tively and exclusively correspond to parts of the algorithm
as described in Table 1. The first 12 transitions denote pro-
cedure P1 and the final one denotes procedure P2. The first
12 transitions are given labels (rem, l1, l2, l3, l4, ll5, cs, l6,
l7, l8, l9 and l10, respectively) as described in Table 1. 	� �
is set to one of the labels.

The initial condition ����

��
is that �������
�� � is false,

���� 	�
�
���� � is true if � � � and false otherwise, ����� �
is empty, each element of �� � is 0, each element of �� � is
0, 
�� � is 1, 	�� is rem, ��� 
� ��� � is 0 for each � �
��� �� � � � � ��, and �� is the empty multiset.

We describe (1) the effective condition of each transi-
tion and (2) how the transition changes variables in ����

��

when the transition is executed; variables that the transition



does not change may not be described explicitly. For each
variable �, � and � � denote the values before and after a
transition, respectively.


 ��� � : (1) 	�� � rem. (2) If ��� 
� ��� � � � ,
then 	� �

� � l1 and ��� 
� ��� �

� � ��� 
� ��� � �
�, and otherwise 	� �

� � rem and ��� 
� ��� �

� �
��� 
� ��� �.


 ��� ��� � : (1) 	�� � l1. (2) 	� �

� � l2 and
�������
�� �

� � true.


 ����� 	�
� � : (1) 	�� � l2. (2) If ���� 	�
�
���� � �
true, then 	� �

� � cs, and otherwise 	� �

� � l3.


 
�� ��� �
� : (1) 	�� � l3. (2) 	� �

� � l4, �� �

���� �
������ � � and 
�� �

� � �.


 ���� ��� � : (1) 	�� � l4. (2) If 
�� � � � , then 	� �

� �
l5 and 
�� �

� � 
�� �, and otherwise 	� �

� � l4 and 
�� �

� �

�� � � �. Besides, a request message with � and �� ����
is sent to node 
�� � (is put into �� ) unless 
�� � � �.


 ��
� 	�
� � : (1) 	�� � l5 and there exists a privilege
message with a queue 	 of integers and an integer ar-
ray LN of size � , whose destination is node �, in �� .
(2) 	� �

� � cs, ���� 	�
�
���� �

� � true, ����� �

� � 	 and
�� �

� � �� . Besides, the privilege message is removed
from �� .


 ��
� � : (1) 	�� � cs. (2) 	� �

� � l6.


 �
�	���� ��� � : (1) 	�� � l6. (2) 	� �

� � l7, �� �

���� �
������ and 
�� �

� � �.


 �	���� ������ : (1) 	�� � l7. (2) If 
�� � � � then
	��

� � l8 and 
�� �

� � 
�� �, and otherwise 	� �

� � l7 and

��

�

� � 
�� ���. If �� ��
�� �� � ����
�� �� � � and 
�� �
is not in ����� �, then ����� �

� � put�������� 
�� ��, and
otherwise ����� �

� � ������.


 ����� ������ : (1) 	�� � l8. (2) If ����� � is empty,
then 	� �

� � l10, and otherwise 	� �

� � l9.


 �������� 	�
� � : (1) 	�� � l9. (2) 	� �

� � l10
and ���� 	�
�
���� �

� � false. Besides, the privilege
message with get������ �� and �� � is sent to node
top�������� (is put into �� ).


 ����� ��� � : (1) 	� � � l10. (2) 	� �

� � rem and
�������
�� �

� � false.


 ����
�� ��� � : (1) there exists a request message with
� ��� �� and � in �� , whose destination is node �. (2)
�� �

���� � max��� ����� ��. Let 
 be ���� 	�
�
���� � �
��������
�� � � �� �

���� � ������ � �. If 
 is true, then
���� 	�
�
���� �

� � false and the privilege message
with ������ and �� � is sent to node � (is put into �� ),
and otherwise ���� 	�
�
���� �

� � ���� 	�
�
���� �.
Besides, the request message is removed from �� .

4. Specification of ����
��

4.1. Specifying Queues and Arrays

Maude allows us to use inductive data types in specifica-
tions to be model checked. Therefore, it is not necessary to
encode queues in more basic types. Queues of natural num-
bers are specified in a module called QUEUE. In the module,
we declare constant empty denoting the empty queue and
operation _|_ denoting the data constructor of nonempty
queues as follows:

op empty : -> Queue .
op _|_ : Nat Queue -> Queue .

Queue (declared in the module) and Nat are sorts denoting
queues and natural numbers. An underscore _ is the place
where an argument is put. Given natural numbers x, y and
z, term x | y | z | empty denotes the queue con-
taining the natural numbers, whose top and last elements
are x and z, respectively.

In module QUEUE, we declare operations top, put,
get, _\in_ and empty? corresponding to the usual func-
tions for queues, and define them with equations. Given a
queue � and a natural number �, top��� is the top element
of �, put��� �� is the queue obtained by adding � into �

at the end, get��� is the queue obtained by deleting the
top element from �, �\in � checks if � includes �, and
empty?��� checks if � is empty. The five operations are
defined as follows:

op top : Queue -> Nat .
op put : Queue Nat -> Queue .
op get : Queue -> Queue .
op _\in_ : Nat Queue -> Bool .
op empty? : Queue -> Bool .
eq top(I | Q) = I .
eq put(empty,I) = I | empty .
eq put(J | Q,I) = J | put(Q,I) .
eq get(I | Q) = Q .
eq I \in empty = false .
eq I \in (I | Q) = true .
eq I \in (J | Q) = I \in Q [owise] .
eq empty?(empty) = true .
eq empty?(I | Q) = false .

I and J are Maude variables of sort Nat, and Q is a Maude
variable of sort Queue. Keyword owise stands for oth-
erwise, which means that as long as the first and second
equations of operation _\in_ cannot be applied, then the
third equation is used.

Since Maude does not provide arrays as a built-in data
type, arrays should be specified. Arrays are modeled as
multisets whose elements denote array elements. Integer ar-
rays are specified in a module called ARRAY. In the module,
sorts AElm and Array are declared, denoting elements and
arrays, and AElm is declared as a subsort of Array. We



declare constant ia, and operations _:_ and _,_ . Con-
stant ia denotes an array whose elements are all 0, opera-
tion _:_ denotes the data constructor of array elements (the
first and second arguments are an index and a value stored),
and operation _,_ denotes the data constructor of arrays (it
is given associativity, commutativity and ia as its identity).
The constant and operations are declared as follows:

op ia : -> Array .
op _:_ : Nat Nat -> AElm .
op _,_ : Array Array -> Array

[assoc comm id: ia] .

We also declare operations _[_] and _[_] :=_ .
Given an array a, an index i and a value x, term a[i] de-
notes the value stored at index i of array a and term a[i]
:= v denotes the array obtained by storing value v at index
i of array a. The operations are defined in equations. The
operations are declared and defined as follows:

op _[_] : Array Nat -> Nat .
op _[_] :=_ : Array Nat Nat -> Array .
eq ((I : X) , A)[I] = X .
eq A[I] = 0 [owise] .
eq (((I : X) , A)[I] := Y) = (I : Y) , A .
eq (A[I] := Y) = (I : Y) , A .

A is a Maude variable of sort Array, and I, J, X and Y are
Maude variables of sort Nat.

4.2. Specifying the Network

Networks are modeled as a multiset of messages, speci-
fied in a module called NETWORK, which imports another
module called MESSAGE where sort Message denoting
messages is declared. In module NETWORK, we declare
sort Network as a supersort of Message, constant void
denoting the empty multiset (the empty network), and jux-
taposition operation __ denoting the data constructor of
nonempty multisets (nonempty networks). The juxtapo-
sition operation is given associativity, commutativity and
void as its identity. The constant and juxtaposition op-
eration are declared as follows:

op void : -> Network .
op __ : Network Network -> Network

[assoc comm id: void] .

In module MESSAGE, we declare operation msg that is
the data constructor of messages as follows:

op msg : Nat Request -> Message .
op msg : Nat Privilege -> Message .

The operation takes a natural number and a message body
as its arguments. The natural number denotes the destina-
tion of a message. Module MESSAGE imports two mod-
ules REQUEST and PRIVILEGE where we declare sorts

Request and Privilege denoting requests and privi-
leges, respectively. We declare operations req and priv
in REQUEST and PRIVILEGE, respectively, as follows:

op req : Nat Nat -> Request .
op priv : Queue Array -> Privilege .

Operations req and priv are the data constructors of re-
quests and privileges, respectively.

4.3. Specifying the Behavior of each Node

The behavior of each node is written in a module
called SKDMXA, which imports two modules NETWORK and
LABEL. In module LABEL, we declare sort Label denot-
ing labels and 12 constants corresponding to the 12 labels.

In module SKDMXA, we declare sorts Var and Sys de-
noting variables and states of transition systems, respec-
tively. Var is also declared as a subsort of Sys. States of
transition systems are modeled as multisets of variables. To
this end, the following constant and operation are declared:

op none : -> Sys .
op __ : Sys Sys -> Sys

[assoc comm id: none] .

Constant none denotes the empty multiset (the empty
state), which is the identity of juxtaposition operation __
that is the constructor of nonempty multisets (nonempty
states). The juxtaposition operation is given associativity,
commutativity and none as its identity.

In module SKDMXA, the following operations are de-
clared:

op requesting[_]:_ : Nat Bool -> Var .
op havePriv[_]:_ : Nat Bool -> Var .
op rn[_]:_ : Nat Array -> Var .
op ln[_]:_ : Nat Array -> Var .
op queue[_]:_ : Nat Queue -> Var .
op idx[_]:_ : Nat Nat -> Var .
op pc[_]:_ : Nat Label -> Var .
op numOfReq[_]:_ : Nat Nat -> Var .
op nw:_ : Network -> Var .

The operations correspond to the variables of transition sys-
tem ����

��
described in Sect. 3, whose names are almost

the same. For each of the operations, the last argument
is the place where the value of the corresponding variable
is put. For example, term requesting[1]: true
means that the value of �������
�� � is true. We also de-
clare two constants n and m, which are the number of nodes
involved in SKDMXA and the number of requests made by
each node.

The 13 kinds of transitions described in Sect. 3 are writ-
ten as rewriting rules. Figure 2 shows the rewriting rules
corresponding to ���� ��� �, ��
� 	�
� �, �������� 	�
� �
and ����
�� ��� �. ���� ��� � is written using two rewrit-
ing rules. The remaining transitions are written as rewriting
rules likewise.



rl [sendReq1] :
(pc[I]: l4) (idx[I]: I)
=> (pc[I]: if I == n then l5 else l4 fi)

(idx[I]: if I == n then I else I + 1 fi) .
crl [sendReq2] :
(pc[I]: l4) (idx[I]: X) (rn[I]: RN) (nw: NW)
=> (pc[I]: if X == n then l5 else l4 fi)

(idx[I]: if X == n then 1 else X + 1 fi)
(rn[I]: RN) (nw: (msg(X,req(I,RN[I])) NW)) if X =/= I .

rl [waitPriv] :
(pc[I]: l5) (havePriv[I]: F) (ln[I]: LN’) (queue[I]: Q’)
(nw: (msg(I,priv(Q,LN)) NW))
=> (pc[I]: cs) (havePriv[I]: true) (ln[I]: LN) (queue[I]: Q)

(nw: NW) .

rl [transferPriv] :
(pc[I]: l9) (havePriv[I]: F) (ln[I]: LN) (queue[I]: Q) (nw: NW)
=> (pc[I]: l10) (havePriv[I]: false) (ln[I]: LN) (queue[I]: Q)

(nw: (msg(top(Q),priv(get(Q),LN)) NW)) .

crl [receiveReq] :
(requesting[I]: F) (havePriv[I]: F’) (rn[I]: RN) (ln[I]: LN)
(queue[I]: Q) (nw: (msg(I,req(J,X)) NW))
=> (requesting[I]: F) (havePriv[I]: if C then false else F fi)

(rn[I]: RN[J] := Max) (ln[I]: LN) (queue[I]: Q)
(nw: if C then (msg(J,priv(Q,LN)) NW) else NW fi)

if I =/= J /\
Max := if (RN[J]) < X then X else RN[J] fi /\
C := F’ and not(F) and Max == (LN[J]) + 1 .

Figure 2. Rewriting rules for ���� ��� �, ��
� 	�
� �, �������� 	�
� � and ����
�� ��� �

5. Model Checking ����
��

The Maude model checker searches for all reachable
states from a given initial state. We then define an initial
state of transition system ����

��
, which is written in a mod-

ule called SKDMXA-ISTATE importing module SKDMXA.
Module SKDMXA-ISTATE has operation node declared
and defined as follows:

op node : Nat -> Sys .
eq node(I) = (numOfReq[I]: 0) (pc[I]: rem)

(requesting[I]: false)
(havePriv[I]: (I == 1))
(rn[I]: ia) (ln[I]: ia)
(queue[I]: empty) (idx[I]: 1) .

Term node(I) denotes the initial state of node I. The
module also has constant init whose sort is Sys. The
constant is defined as follows:

eq init = node(1) node(2) (nw: void) .

Constant init denotes an initial state of ����
��

where two
nodes are involved. In the module, both constants n and m
are defined as 2.

The properties to be checked are the mutual exclu-
sion property and the lockout freedom property. We first

write state predicates to write the properties as proposi-
tional LTL formulas, The state predicates are written in
a module called SKDMXA-PREDS importing two mod-
ules SKDMXA and SATISFACTION (which is in the file
model-checker.maude included in the Maude distri-
bution). Module SATISFACTION imports module LTL
where propositional LTL is specified. Module LTL de-
clares two sorts Prop and Formula that denote state pred-
icates and LTL formulas. Prop is a subsort of Formula.
Module SATISFACTION declares sort State denoting
states and operation _|=_ that takes a state pattern and
a state predicate to be defined as its arguments. In mod-
ule SKDMXA-PREDS, we declare four operations wait,
crit, existPriv and existReq denoting state pred-
icates and define them as follows:

eq (pc[I]: l5) S |= wait(I) = true .
eq (pc[I]: cs) S |= crit(I) = true .
eq (nw: (msg(I,P) NW)) S

|= existPriv(I) = true .
eq (nw: (msg(I,req(J,X)) NW)) S

|= existReq(I,J) = true .

wait(I) and crit(I) hold if node I is at l5 and cs,
respectively. existPriv(I) holds if there exists a priv-
ilege message in the network that is addressed to node I.



counterexample({... (pc[1]: rem) (pc[2]: rem) ..., ’try}
{... (pc[1]: l1) (pc[2]: rem) ..., ’try}
{... (pc[1]: l1) (pc[2]: l1) ..., ’setReq}
{... (pc[1]: l2) (pc[2]: l1) ..., ’setReq}
{... (pc[1]: l2) (pc[2]: l2) ..., ’checkPriv1}
{... (pc[1]: cs) (pc[2]: l2) ..., ’checkPriv2}
{... (pc[1]: cs) (pc[2]: l3) ..., ’incRecNo}
{... (pc[1]: cs) (pc[2]: l4) ..., ’sendReq2}
{... (pc[1]: cs) (pc[2]: l4) ..., ’sendReq1}
{... (pc[1]: cs) (pc[2]: l5) ..., ’exit}
{... (pc[1]: l6) (pc[2]: l5) ..., ’completeReq}
{... (pc[1]: l7) (pc[2]: l5) ..., ’updateQueue1}
{... (pc[1]: l7) (pc[2]: l5) ..., ’updateQueue2}
{... (pc[1]: l8) (pc[2]: l5) ..., ’checkQueue}
{... (pc[1]: l10) (pc[2]: l5) ..., ’resetReq}
{... (pc[1]: rem) (pc[2]: l5) ..., ’try}
{... (pc[1]: l1) (pc[2]: l5) ..., ’setReq}
{... (pc[1]: l2) (pc[2]: l5) ..., ’checkPriv1}
{... (pc[1]: cs) (pc[2]: l5) ..., ’exit}
{... (pc[1]: l6) (pc[2]: l5) ..., ’completeReq}
{... (pc[1]: l7) (pc[2]: l5) ..., ’updateQueue1}
{... (pc[1]: l7) (pc[2]: l5) ..., ’updateQueue2}
{... (pc[1]: l8) (pc[2]: l5) ..., ’checkQueue}
{... (pc[1]: l10) (pc[2]: l5) ..., ’receiveReq}
{... (pc[1]: l10) (pc[2]: l5) ..., ’resetReq},
{... (pc[1]: rem) (pc[2]: l5) ..., ’try} )

Figure 3. An excerpted counterexample to the lockout freedom

existReq(I,J) holds if there exists a request message
in the network that is sent to node I by node J.

The propositional LTL formulas denoting the two
properties are written in a module called SKDMXA-CHECK.
The module imports four modules SKDMXA-ISTATE,
SKDMXA-PREDS, MODEL-CHECKER (which is in
model-checker.maude) and LTL-SIMPLIFIER
(which is in model-checker.maude). Module
MODEL-CHECKER has operation modelCheck that takes
two arguments denoting an initial state and a propositional
LTL formula and returns the result of model checking.
In LTL-SIMPLIFIER, operations and equations to
simplify propositional LTL formulas are declared. It
is optional to import LTL-SIMPLIFIER. In module
SKDMXA-CHECK, we declare three constants mutex,
lofree and fairness that denote the mutual exclusion
property, the lockout freedom property and the weak
fairness assumption given to transitions corresponding
to the waitPriv and receiveReq rewriting rules,
respectively. The operations are defined as follows:

eq mutex = [] ˜(crit(1) /\ crit(2)) .
eq lofree = (wait(1) |-> crit(1)) /\

(wait(2) |-> crit(2)) .
eq fairness
= (wait(1) /\ existPriv(1) |-> crit(1)) /\

(existReq(1,2) |-> ˜(existReq(1,2))) /\
(wait(2) /\ existPriv(2) |-> crit(2)) /\
(existReq(2,1) |-> ˜(existReq(2,1))) .

Operations []_, <>_ and _|->_ denote Henceforth (Al-
ways), Eventually and Leads-to, respectively.

We use the Maude model checker to check if � ���

��
in

which two nodes are involved and each node makes at most
two requests has the two properties by reducing the follow-
ing two terms respectively:

1. modelCheck(init,mutex)

2. modelCheck(init,(fairness =>
lofree))

The Maude model checker concludes that � ���

��
has the mu-

tual exclusion property but presents a counterexample that
����
��

has the lockout freedom property.
A counterexample generated by the Maude model

checker is the form counterexample�
���, where 


and � are lists of pairs, each of which consists of a state
and the label of the rewriting rule applied to reach the state
of the next pair. The next of the last pair of 
 is the first
of � and the next of the last pair of � is the first of �. 

corresponds to a finite path beginning in an initial state and
leading to a loop represented by �. The loop represents a
state or a transition sequence that violates a given LTL for-
mula.

Figure 3 shows an excerpted counterexample that � ���

��

has the lockout freedom property; the counterexample has
been generated by the Maude model checker. The coun-
terexample says that node 2 never enters its critical section



crl [receiveReq] :
(requesting[I]: F) (havePriv[I]: F’) (rn[I]: RN) (ln[I]: LN)
(queue[I]: Q) (nw: (msg(I,req(J,X)) NW))
=> (requesting[I]: F) (havePriv[I]: if C then false else F fi)

(rn[I]: RN[J] := Max) (ln[I]: LN) (queue[I]: Q)
(nw: if C then (msg(J,priv(Q,LN)) NW) else NW fi)

if I =/= J /\ L =/= l7 /\ L =/= l8 /\ L =/= l10 /\
Max := if (RN[J]) < X then X else RN[J] fi /\
C := F’ and not(F) and Max == (LN[J]) + 1 .

Figure 4. Finally revised rewriting rule corresponding to ����
�� ��� �

even though it wants to do. Taking a closer look at the coun-
terexample lets us know that if node 1 receives a request
message from node 2 at label l10, then node 2 may have
to wait for a privilege message forever at label l5. This is
because

1. when node 1 receives a request message from node 2
at label l10, node 1 does not transfer the privilege to
node 2 because its requesting is true, and

2. if node 1 will not execute procedure P1 anymore, then
node 1 will never transfer the privilege to node2.

The counterexample suggests that each node should not
receive any request messages at label l10. Therefore,
L =/= l10 is added to the condition of the rewriting
rule labeled receiveReq. However, this is not enough.
Model checking the revised � ���

��
also generates a coun-

terexample that the revised � ���
��

has the lockout freedom;
the counterexample suggests that each node should not
receive any request message at label l8 either. Hence,
L =/= l8 is also added to the condition of the rewrit-
ing rule labeled receiveReq. Moreover, model check-
ing the further revised � ���

��
generates a counterexample

that the further revised � ���
��

has the lockout freedom; the
counterexample suggests that each node should not receive
any request message at label l7 either. Consequently, L
=/= l7 is added to the condition of the rewriting rule la-
beled receiveReq as well. The finally revised rewrit-
ing rule labeled receiveReq is shown in Fig. 4. The
Maude model checker concludes that the finally revised
����
��

has both mutual exclusion and lockout freedom proper-
ties by reducing terms modelCheck(init,mutex) and
modelCheck(init,(fairness => lofree)).

6. Conclusion

We have reported on the case study in which the Maude
model checker has been used to analyze the Suzuki-Kasami
algorithm with respect to the mutual exclusion property and
the lockout freedom property. In the case study, the Maude
model checker has presented a counterexample that the al-
gorithm has the lockout freedom. The counterexample has

led to a possible modification that makes the algorithm lock-
out free even if some nodes try to enter their critical sections
only finitely often.

The case study also demonstrates that the state space of
a state machine to be model checked by the Maude model
checker does not necessarily have to be finite and inductive
data types can be used in a specification of a state machine
to be model checked by the Maude model checker. The state
space of ����

��
is infinite because a queue of integers is used,

although the reachable state space is finite, and queues of in-
tegers are inductively defined in the specification of ����

��
.
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