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Abstract. Automatic Fingerprint Identification Systems (AFIS) have
various applications to biometric authentication, forensic decision, and
many other areas. Fingerprints are useful for biometric purposes be-
cause of their well known properties of distinctiveness and persistence
over time. Fingerprint images are characterized by alternating spatial
distribution of gray-level intensity values of ridges and ravines/valleys of
almost equal width. Most of the fingerprint matching techniques require
extraction of minutiae that are the terminations and bifurcations of the
ridge lines in a fingerprint image. Crucial to this step, is either detect-
ing ridges from the gray-level image or binarizing the image and then
extracting the minutiae. In this work, we focus on binarization of finger-
print images using linear time euclidean distance transform algorithms.
We exploit the property of almost equal widths of ridges and valleys for
binarization. Computing the width of arbitrary shapes is a non-trivial
task. So, we estimate width using distance transform and provide an
O(N?log M) time algorithm for binarization where M is the number
of gray-level intensity values in the image and the image dimension is
N x N. With M for all purposes being a constant, the algorithm runs in
near-linear time in the number of pixels in the image.

1 Introduction

Automatic fingerprint identification systems (AFIS) provide widely used bio-
metric techniques for personal identification. Fingerprints have the properties
of distinctiveness or individuality, and the fingerprints of a particular person
remains almost the same (persistence) over time. These properties make finger-
prints suitable for biometric uses. AFISs are usually based on minutiae matching
[9,14,17,18]. Minutiae, or Galton’s characteristics [11] are local discontinuities
in terms of terminations and bifurcations of the ridge flow patterns that consti-
tute a fingerprint. These two types of minutiae have been considered by Federal
Bureau of Investigation for identification purposes [29]. A detailed discussion
on all the aspects of personal identification using fingerprint as an important
biometric technique can be found in Jain et al. [17,19]. AFIS based on minutiae
matching involves different stages (see Figure 1 for an illustration):

1. fingerprint image acquisition;

2. preprocessing of the fingerprint image;



3. feature extraction (e.g. minutiae) from the image;
4. matching of fingerprint images for identification.

The preprocessing phase is known to consume almost 90-95% of the total time
of fingerprint identification and verification [3]. That is the reason a considerable
amount of research has been focussed on this area.
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Fig. 1. A flowchart showing different phases of fingerprint analysis. The highlighted
module shows the area of our work.

Our work proposed in this paper involves binarization of fingerprint images
that is to be preceded by an enhancement step. So, below we discuss briefly
enhancement. Also, we briefly discuss and review segmentation and binarization
methods applied to fingerprint images.

1.1 Enhancement of Fingerprint Images

Fingerprint images require specialised enhancement techniques owing to their
inherent characteristics like high noise content, particular structural content of
alternating ridges and valleys. Conventional image processing enhancement tech-
niques are not very suitable for a fingerprint image [8]. Fingerprint image en-
hancement algorithms are available both for binary and gray level images. A
binary fingerprint image consists of ridges marked as object (1) pixels and the



rest as background pixels (0). Hung [8] designed an algorithm for enhancing a
binary fingerprint image based on the structural information of its ridges. Ridge
widths are normalized based on some region index. Ridge breaks are corrected
using the dual relationship between ridge breaks and valley bridges. However,
obtaining a binary fingerprint image from a gray-tone image involves inherent
problems of binarization and thinning or ridge extraction procedures [6]. Thus,
most of the enhancement algorithms are designed for gray-level fingerprint im-
ages. The much widely used PCASYS package [5] uses an enhancement algorithm
described earlier [1]. It involves cutting out subregions of the images (a 32 x 32
block to be specific), taking their FFT and suppression of a band of low and high
frequency components followed by some non-linear operations in the frequency
domain and transforming it back to the spatial domain. This algorithm was also
used by Kovics-Vajna [18]. We have also used this enhancement algorithm in
our work owing to its simplicity and elegance.

1.2 Segmentation of Fingerprint Images

In literature concerning fingerprints, some authors have used the term segmen-
tation to mean the process of generating a binary image from a gray-level fin-
gerprint image. But, as suggested in [19], the most widely held view about seg-
mentation of a fingerprint image is the process of separation of fingerprint area
(ridge, valley and slope areas in between ridge and valley areas) from the image
background. The process of segmentation is useful to extract out meaningful
areas from the fingerprint, so that features of the fingerprint are extracted from
these areas only. Fingerprint images are characterized by alternating spatial dis-
tribution of varying gray-level intensity values of ridges and ravines/valley. This
pattern is unique to a fingerprint area compared to the background which does
not have this spatial distribution of gray-level values. Also, global thresholding
for segmentation does not work as the spatial distribution of gray-level values
keeping their alternating structure intact, can vary in the absolute magnitude of
their gray-level values. Thus, local thresholding is needed. Exploitation of these
property have been the key of most of the segmentation algorithms. O’Gorman
and Nickerson [24] used a k x k spatial filter mask with an appropriate ori-
entation based on user inputs for labeling the pixels as foreground (crest) or
background. Mehtre and Chatterjee [21] described a method of segmenting a
fingerprint image into ridge zones and background based on some statistics of
local orientations of ridges of the original image. A gray-scale variance method is
used in the image blocks having uniform gray-level, where the directional method
of segmentation fails. Ratha et al. [25] used the fact that noisy regions show no
directional dependence, whereas, fingerprint regions exhibit a high variance of
their orientation values across the ridge and a low variance along the ridge to
design a segmentation algorithm that works on 16 x 16 block. Maio and Maltoni
[20] used the average magnitude of gradient values to discriminate foreground
and background regions. The idea behind this is that fingerprint regions are
supposed to have more edges than background region and as such would have
higher gradient values.



1.3 Binarization of Fingerprint Images

The general problem of image binarization is to obtain a threshold value so
that all pixels above or equal to the threshold value are set to object pixel
(1) and below the threshold value are set to background (0). Thresholding can
be done globally where a single threshold is applied globally or locally where
different thresholds are applied to different image regions. Images, in general,
have different contrast and intensity, and as such local thresholds work better.
The thresholding problem can be viewed as follows. Given an image I with N x N
pixel entries, and gray-level intensity value g ranging from 0, 1, ... to M — 1,
select a value ¢ € [0, M — 1] based on some condition so that a pixel (i, ) is
assigned a value of 1 if the gray-level intensity value is greater or equal to t, else
assign 0 to the pixel (4, 7). The condition mentioned above is decided based on the
application at hand. The binarization methods applicable to fingerprint images
draw heavily on the special characteristics of a fingerprint image. Moayer and Fu
[23] proposed an iterative algorithm using repeated convolution by a Laplacian
operator and a pair of dynamic thresholds that are progressively moved towards
an unique value. The pair of dynamic thresholds change with each iteration
and control the convergence rate to the binary pattern. Xiao and Raafat [30]
improved the above method by using a local threshold, to take care of regions
with different contrast, and applied after the convolution step. Both of these
methods requiring repeated convolution operations are time consuming and the
final result depends on the choice of the pair of dynamic thresholds and some
other design parameters. Coetzee and Botha [7] proposed an algorithm based on
the use of edges in conjunction with the gray-scale image. The resultant binary
image is a logical OR of two binary images. One binary image is obtained by a
local threshold on the gray scale image and the other binary image is obtained by
filling in the area delimited by the edges. The efficiency of this algorithm depends
heavily on the efficiency of the edge finding algorithm to find delimiting edges.
Ratha et al. [25] proposed a binarization approach based on the peak detection
in the gray-level profiles along sections orthogonal to the ridge orientation. The
gray-level profiles are obtained by projection of the pixel intensities onto the
central section. This heuristic algorithm though working well in practice has a
deficiency that it does not retain the full width of the ridges, and as such is not
a true binary reflection of the original fingerprint image.

In this work, we propose a combinatorial algorithm for binarization of fin-
gerprint images based on Euclidean distance transform. Most of the previous
algorithms discussed here are heuristics in that they do not start with a defini-
tion of an optimal threshold. In contrast, we define a condition for an optimal
threshold based on equal widths of ridges and valleys. We show how distance
transform can be used as a measure for width and then design an algorithm to
efficiently compute the threshold for binarization. Using distance transform for
binarization has also got another distinct advantage. The next step following
binarization is ridge extraction and ridges can be efficiently extracted using dis-
tance transform values. As the same feature can be used for both binarization
and ridge extraction, a lot of time savings can be obtained in real applications.



The rest of the paper is organised as follows. In Section 2, we briefly review
FEuclidean Distance Transform algorithm. Section 3 has a discussion on measur-
ing width of shapes using average Distance Transform values. Section 4 discusses
the threshold criteria and discusses the algorithm for thresholding and shows re-
sults on different fingerprint images. Finally, we finish with some discussions in
Section 5.

2 Distance Transform

A two-dimensional binary image I of N x N pixels is a matrix of size N x N
whose entries are 0 or 1. The pixel in a row ¢ and column j is associated with
the Cartesian co-ordinate (i,7). For a given distance function, the Fuclidean
distance transform of a binary image I is defined in [4] as an assignment to
each background pixel (i,j) a value equal to the Euclidean distance between
(,7) and the closest feature pixel, i.e. a pixel having a value 1. Breu et al. [4]
proposed an optimal O(N x N) algorithm for computing the Euclidean distance
transform as defined using Voronoi diagrams. Construction and querying the
Voronoi diagrams for each pixel (i, ) take time §(N?log N). But, the authors
use the fact that both the sites and query points of the Voronoi diagrams are
subsets of a two-dimensional pixel array to bring down the complexity to §(N?).
In [13], Hirata and Katoh define Fuclidean distance transform in an almost same
way as the assigment to each 1 pixel a value equal to the Euclidean distance to
the closest 0 pixel. The authors use a bi-directional scan along rows and columns
of the matrix to find out the closest 0. Then, they use an envelope of parabolas
whose parameters are obtained from the values of the bi-directional scan. They
use the fact that two such parabolas can intersect in at most one point to show
that each parabola can occur in the lower envelope at most once to compute the
Euclidean distance transform in optimal §(N?) time. In keeping with the above,
we define two types of Euclidean distance transform values. The first one DT o
is the same as the above. The second one is DTy which is the value assigned
to a 0 pixel equal to the FEuclidean distance to the nearest 1 pixel. Using the
results given in [13], we have the following fact:

Fact 1 Both DTy and DTy can be computed in optimal time O(N?) for an
N x N binary image. Also, the values of both DTy g and DTy 1 are greater than
or equal to 1.

3 Distance Transform and Width

The fingerprint images are characterized by almost equal width ridges and valleys
as shown in Figure 2. We will use this particular characteristic of the fingerprint
image for binarization. Measuring the width for arbitrary shapes is a difficult,
non-trivial problem. In this section, we model the problem in a continuous do-
main to show how distance transform can be used to find equal width ridges and
valleys.



Fig. 2. Magnified view of a part of the gray scale topology of a fingerprint image.

3.1 Model in the continuous domain

The fingerprint image can be modeled as shown in Figure 3. In the continuous
domain, the image is a continuous function f : (z,y) — IR. A cross section of this
function along a direction perpendicular to the ridge increases till it reaches the
ridge point which is a maxima, then decreases till it reaches the valley, which
is a minima; and this cycle repeats. Let ¢t € [0, M] be a threshold, such that
if f is thresholded at ¢, and if the value of f is greater than ¢, it is mapped
to 1, else to 0. See Figure 3. The highlighted part shown on the right is the
part mapped to 1. After thresholding, the parts would be rectangles as shown
in Figure 3. We compute the total distance transform values of the rectangles.
Consider a rectangular object ABCD of width w and height h, with A > w.
The medial axis of this object is given by the line segments AE, BE, EF, FD,
FC. The medial axis divides the rectangular shape into four regions such that
the nearest boundary line from any point in the region is determined. As an
example, the region 1 has AD as its nearest boundary line and region 3 has
AB as its nearest boundary line. The total distance transform value for region

1is Owi/2 ff’:ﬁ;;‘;’ﬂ)(w,ﬂ —y)dzdy = (w?h)/8 — w3 /12. Similarly, the total

distance transform value for region 3 is fw_j::%/ > 0"“/ *zdzdy = w3/24. So,
the total distance transform value ¢q;(w;) of the rectangle is w?h/4 — w3 /12
= w?/4(h — w;/3). Note that, the total distance transform value increases (de-
creases) with the increase (decrease) of width because ¢g:(w;)' > 0 and h > w.
Now, the total distance transform DT o is w}h/4 —w$ /12 +w?h/4 — w3 /12 and
the total distance transform DTy is wih/4 — w3 /12. Now, as t increases, both




Fig. 3. Diagram of the model.

Fig. 4. Diagram for computing total distance transform.

w; and w3 decrease and ws increases. This implies that with increase of ¢, DT o
decreases and DTy ; increases. So, DT} o and DT ; can intersect only once and
evidently, DT} o is equal to DTy ; when wy = ws. That is, the optimal value
of threshold is reached when DT, = DT, implying wy = ws. This simple
analysis shows that total distance transform can be used as a measure of finding
a threshold that gives equal width ridges and valleys. Our goal in this work is
to find an optimal threshold to binarize the fingerprint image. The optimality
criteria is given by the equal width of ridge and valley. So, more formally we
have the following definition.

Definition 1. The optimal threshold is a value t € [0, M] that binarizes the
image such that the ridge width is equal to the wvalley width or sum total of
distance transform values are equal.



3.2 Discrete image and distance transform

In the discrete model, the co-ordinates are discrete given by the pixel locations.
The gray-level values g are also discrete taking values from 0 to M — 1. So,
the observations from the previous subsection do not directly apply. But, the
crucial observation from the previous subsection is that sum total of DT} ¢ values
decreases with ¢ and the sum total of DTy ; values increases with ¢. Then, the
optimal threshold ¢ can be obtained as that value of ¢ that makes the width
of the 1 region and 0 region equal and can be computed from the intersection
of the curves of the sum total of D7y ; and DT o values. For, the analysis, we
make the following assumption. The pixels take the gray-level intensity values
such that all the intermediate gray-level values between the maximum and the
minimum are present. With that assumption, we have the following lemma.

Lemma 1. The sum total of DTy values decreases with the threshold t. Simi-
larly, the sum total of DTj 1 values increase with the threshold t.

The proof is easy. We know that each of the Euclidean distance transform
values in the discrete domain is greater than or equal to 1 (see Fact 1). So, with
the threshold ¢ increasing, pixels in the binary image move from the regions of 1
to 0, thus making DT o and DTy, decreasing and increasing respectively. Also,
note that the assumption that the pixels take the gray-level intensity values
such that all the intermediate gray-level values between the maximum and the
minimum are present, ensures the strictly decreasing and increasing relations
of sum total of DTy and DTp; values. Otherwise, it would have been non-
increasing and non-decreasing respectively.

Also, in the discrete case, we may not be able to locate a single value, where
the functions of sum total of DT} o and DT} ; meet. So, we modify the definition
of the optimal threshold in the discrete case as follows.

Definition 2. The optimal threshold can be two values t1 and t2 such that t2 —
t1 = 1 and the sum total of DTy o values is greater than the sum total of DT
values at t; and their relation reverses at to.

With this definition in place, we are in a position to design the algorithm in
the next section.

4 Algorithm and Results

4.1 Algorithm for Binarization

To take care of different contrast and intensity across different image regions,
we apply local thresholding. We cut out sub-blocks of image region and apply
the enhancement algorithm due to [1] followed by our binarization algorithm.

Algorithm for binarization

Input: A gray-level fingerprint image I with gray-level intensity
varying from 0 to M — 1, and of size N x N;

Output: A thresholded binary image



1. do for all sub-block B; of the image I;
2 Apply the enhancement algorithm given in [1];
3 t1=0,t2=M—1;mid(—[(t1+t2)/2];
4. do
5. mid + [(t; +t2)/2];
6 Compute SumDTs¢ and Sum DT
7 if(SumDT{§¢ > SumDT§H) ty + mid;
8 else ty + mid,
while(t, —t; > 1)
9. Threshold obtained for binarization is #; or ts;

The loop originating in Step 4 runs O(log M) times and the dominant com-
putation is the computation of Fuclidean Distance Transform and its sum which
takes O(N?) time (see Fact 1). Thus the total time complexity of the binarization
process is O(N2log M). With M, the number of gray-levels, being a constant for
all practical purposes, the algorithm for binarization runs in time that is linear
in the number of pixel entries which is O(N?).

4.2 Results on Fingerprint Images

We used the fingerprint images from (i) NIST Special Database 4[28], (ii) NIST
Special Database 14[5], (iii) Database B1 of FVC2000[10], and (iv) Database B2
of FVC2000[10]. The images of (i) and (ii) are of size 480 x 512. The images
of (iii) are of size 300 x 300 and (iv) are of size 364 x 256. All of the images
are of 500 dpi resolution. Figures 5-8(a) show the original image, Figures 5-8(b)
show the enhanced image due to [1] and Figures 5-8(c) show the resultant binary
image obtained by application of our algorithm.

(a) Original image.

(c) Binary image

Fig. 5. Binarization on an image sample from NIST-4 fingerprint image database.
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(a) Original image. (b) Enhanced image. (c) Binary image

Fig. 6. Binarization on an image sample from NIST-14 fingerprint image database.

(a) Original image. (b) Enhanced image. (c) Binary image

Fig. 7. Binarization on an image sample from FVC2000 DB1 fingerprint image
database.

5 Discussions and Conclusions

We have developed a combinatorial algorithm for binarization of fingerprint im-
ages expoiting the fingerprint characteristics of equal width ridge and valleys.
We used Euclidean Distance Transform as a measure of width as determining
width for arbitrary discrete shapes is a non-trivial task. We have reported rel-
evant results from standard image databases widely used. But, the definition 2
used for our algorithm has a drawback in realistic terms. During the acquisition
of fingerprints, ridges, being the elevated structures on the finger, exert more
pressure on the device making the acquisition. And as such, the widths of the
ridges should be greater than the width of the valley for a more realistic model.
But, still the lemma 1 will hold and the algorithm instead of trying to find the
crossover point of sum total of SumDT o and SumDT,; will terminate when
SumDT g is greater than SumDTp 1 by a certain e. Determining this € from real
fingerprint images is a future problem we would like to address. Also, note that
our binarization algorithm using distance transform has a distinct benefit. Please
refer to Figure 1. The module following binarization is ridge extraction. Ridge
is the skeleton of the thick binary structures obtained from the binarization.
Euclidean Distance Transform can be effectively used to find the skeleton [31].
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(a) Original image. (b) Enhanced image. (c) Binary image

Fig. 8. Binarization on an image sample from FVC2000 DB2 fingerprint image
database.

Thus the same feature of distance transform can be used for both binarization
and ridge extraction which in real applications can save a lot of time.
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