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Abstract

Voronoi diagram for a set of geometric objects is a par-
tition of the plane (or space in higher dimensions) into dis-
joint regions each dominated by some given object under
a predetermined criterion. In this paper we are interested
in various measures associated with criteria on goodness of
an input line segment with respect to each point in the plane
as the ”point of view”. These measures basically show how
the segment or information displayed on the segment can be
seen from the point. Mathematically, the measures are de-
fined in terms of the shape of the triangle determined by the
point and the line segment. Given any such measure, we can
define a Voronoi diagram for a set of line segments. In this
paper we are interested in investigating their common com-
binatorial and structural properties. We investigate condi-
tions for those measures to define regular Voronoi diagrams
and also conditions that local optima on the measures lie
only on Voronoi edges, not in the proper interior of Voronoi
regions.

1. Introduction

Given a set of points in the plane, we can partition the
plane into regions in such a way that any point in a region
associated with some given point is closer to the point than
to any other point in the set. The resulting partition of the
plane is called a Voronoi diagram for the point set. Re-
placing the relation ”closer to” with some other criteria we

could define a number of variations of the diagram (see e.g.
[3, 10]).

In this paper we propose a yet another abstraction of
those Voronoi diagrams for a set of non-intersecting line
segments possibly forming a polygon. We consider a mea-
sure associated with a criterion on how an input segment can
be seen from a point in the plane as a point of view. There
are several possible criteria. Naturally, the distances from
the segments and the lengths of segments are important fac-
tors. If two segments are of the same length, one may con-
clude that the nearer one should be seen better; however, it
is not always the case, since if we see a blackboard from
the leftmost seat in the first row of a classroom, we have
difficulty to read letters written on the blackboard. Also,
liquid-crystal display of a laptop computer can be only seen
from points in a limited region. Basically, the visual quality
of information given on a line segment s seen from a point
p depends on the shape of triangle ��p�s� defined by s and
p such that ��p�s� has s as an edge and p as its opposite
vertex. We consider µ�p�s� to measure how the visual in-
formation on s can be obtained at p, and naturally, µ�p�s�
is defined as a function from the set of all triangles to the set
of all nonnegative real numbers. Such a measure is not only
useful in vision applications but also has potential applica-
tions to evaluation of quality of some geometric structures
(e.g. polygonal meshes) related to input set of segments and
also generation of a good geometric structure. One such ex-
ample is the following. Suppose we have a point p and
a line segment s. The internal angle θ p�s� of the triangle
��p�s� at p is called a visual angle of s from p. Suppose



the goodness µ�p�s� of the triangle is given by θ p�s�. Then,
we can define a max-min type optimization problem using
this measure. In this particular case, given a set S of line
segments, we want to find a point that maximizes the mini-
mum measure µ�p�s� over all s � S. We can show that such
an optimal point can be found on edges of the correspond-
ing Voronoi diagram.

With a different criterion we can define a similar but dif-
ferent Voronoi diagram. Voronoi edges are characterized
in a different manner. The purpose of this paper is to find
combinatorial and structural properties common to those
Voronoi diagrams associated with measures µ defined for
a pair of point and line segment. We describe basic proper-
ties to be satisfied by the measures to possess those common
properties. It is important for practical use. There may be a
number of problems falling into a class which can be solved
using our framework of Voronoi diagrams. Although it is
impossible to enumerate all possible optimization criteria,
it is possible to investigate basic conditions for those crite-
ria to satisfy to have their corresponding Voronoi diagrams
bear the same combinatorial properties. All the measures
considered in this paper are associated with goodness of a
triangle.

An original motivation of this Voronoi diagram comes
from applications to mesh improvement and robotics. Mesh
generation/improvement [4, 5, 9, 11, 12] is an impor-
tant process for many purposes including Finite Element
Method. In a simple setting, a given simple polygon is parti-
tioned into many small triangles after inserting an appropri-
ate number of points in its interior as vertices of triangular
meshes. Several different criteria have been considered to
evaluate the quality of such a triangular mesh. One of them
is to maximize the smallest internal angle (or to minimize
the largest internal angle). Since polygon vertices are fixed,
the only way to improve the quality of triangular mesh is ei-
ther to move internal points or to insert new internal points
(or even delete existing internal points). In robotics, locat-
ing a robot in the amidst of many polygonal obstacles by
computing its relative position to the most outstanding poly-
gon or line segment in a criterion on visual information.

Let µ be a measure of max-min type on goodness of
a triangle defined by a point and a line segment. That is,
µ�p�si�� µ�p�s j� means that the triangle defined by �p�si�
is worse in the measure µ than the triangle �p�s j�. Then,
a point p belongs to a Voronoi region of a line segment
si if µ�p�si� is worst among given line segments. A min-
max type measure µ can be similarly treated by replacing
µ�p�si� by �µ�p�si�. A partition of the plane (or space)
into such regions defines a Voronoi diagram associated with
µ . The Voronoi diagram is also given as the lower envelope
of terrains, where a terrain for a line segment s i is defined
using µ�p�si� as height at the point p. A general theory on
terrains by Halperin and Sharir [6] yields an upper bound

O�n2�ε� on the complexity of the lower envelope of those
terrains that is Voronoi diagram, where ε is an arbitrarily
small positive constant. In other words, the Voronoi dia-
gram has O�n2�ε� Voronoi edges, and vertices. Despite the
high complexity in the worst case, actual complexity seems
to be low by our experiments for a number of polygons.

2. Voronoi diagrams for various criteria on tri-
angles

A classic Voronoi diagram for a point set S is a partition
of the plane into disjoint regions of points which are closer
to one element of S than to any other element. We can re-
place this relation ”closer to” with some other relations de-
fined by points and a set of given geometric objects. Geo-
metric objects considered in this paper are non-intersecting
line segments. Given an arbitrary point p in the plane and
a line segment si in a given set S, the pair �p�si� determines
a triangle ��p�si�. Here we assume that line segments are
transparent, that is, the triangle ��p�si� is defined even if
there is another line segment s j � S intersecting the trian-
gle. Let µ�p�si� be any measure on ”goodness” of the tri-
angle. Then, given n line segments, for each point p we can
compute n values µ�p�s1�� � � � �µ�p�sn�. Among them we
take the worst value as the value at the point p, and we say
that the point is dominated by the element giving the worst
value.

On a max-min type measure we are interested in a point
that maximizes the minimum value of the measure on the
criterion. A point p is dominated by a line segment s i if

min�µ�p�si��si � S�� µ�p�si�

and p belongs to a region dominated by s i, which is a
Voronoi region V �si� of si. In other words, a Voronoi re-
gion V �si� is defined by

V �si� � �p � �2 �µ�p�si�� µ�p�s j� for any j �� i��

Voronoi edges are defined by curves which are domi-
nated by exactly two elements of S. Formally, a Voronoi
edge E�si�s j� is defined by

E�si�s j� � �p � �2 �µ�p�si� � µ�p�s j�� µ�p�sk�

for any k �� i� j��

Two Voronoi edges may meet at one point, that is a
Voronoi vertex. It is defined by

v�si�s j �sk� � �p � �2 �µ�p�si� � µ�p�s j� � µ�p�sk�

� µ�p�sl� for any l �� i� j�k��

which is a set of points dominated by exactly three elements
of S.



This is a basic definition of our Voronoi diagram on a
measure µ . In practice, we need some minor modifications
of the definition. We implicitly assume that the measure µ
is described by a combination of a constant number of al-
gebraic functions and µ�p�si� is continuous in the region
�

2 ��si�.. Some Voronoi edges may be described by a sin-
gle algebraic function and others by more than one function.
If E�si�s j� is decomposed into parts each described by a
single algebraic function, then we cut it into those pieces as
individual Voronoi edges and put Voronoi vertices at those
endpoints. We say a Voronoi diagram on µ is regular if
every Voronoi edge is a curve without any area.

We also put another implicit assumption on a set S of line
segments. In our definition, a set of points dominated by
exactly two elements of S can form curves but not regions
with positive area. A set of points dominated by exactly
three elements of S must be a set of individual points not
forming curves or regions. Otherwise, we have degeneracy.
If degeneracy cannot be broken by small perturbation of an
input set S then we say that the measure causes degeneracy
and we exclude the measure from our considerations.

Consider a max-min type measure µ�p�si� that is the dis-
tance from a point p to the line including a line segment s i.
If two line segments si and s j lie on a line l, any point p has
the same distance to si and s j . This violates the condition
(2) above. So, this is a degeneracy. But it can be resolved
by rotating or translating one of them. Thus, this is not a de-
generacy caused by the measure. Let us modify the measure
slightly by introducing some upper bound on the measure.
That is, µ�p�si� is the distance from p to the line containing
si if it is at most the length of si. Otherwise, it is defined as
��si��, the length of si. If the input set S consists of only two
line segments s1 and s2 of the same length d, then any point
which is away from both of them by at least d has the same
value in the measure. This degeneracy cannot be resolved
by changing placements of two line segments. So, this is a
degeneracy caused by the measure.

3. Examples of measures

There are a number of ways of evaluating a triangle.
Our purpose of this paper is to characterize topological and
structural properties of Voronoi diagrams associated with
measures on triangles and also characterize measures to de-
fine good Voronoi diagrams. Here is a list of criteria or
measures on triangles determined by a pair of point p and a
line segment si. There are basically two types of measures,
max-min types and min-max types. In the max-min type
(min-max type, respectively) measure we look for a point
that maximizes the minimum value (minimizes the maxi-
mum value, resp.) of measures. Formally, an optimal point

p� is characterized by

p� � arg�max
p

min�µ�p�s j��s j � S�� (1)

for a max-min type measure µ and

p� � arg�min
p

max�µ�p�s j��s j � S�� (2)

for a min-max type measure µ .

���� ���� �� 	����
�� �������

max-min visual angle Define µ1�p�si� � θp�si� that is the
visual angle of si from p. See Fig. 1(a).

max-min height Define µ2�p�si� as the minimum height
of a triangle define by �p�si�. See Fig. 1(b).

min-max circumcircle Define µ3�p�si� as the radius of
the circumcircle of a triangle define by �p�si�. See
Fig. 1(c).

max-min aspect-ratio Define µ4�p�si� � h�L where h and
L are the minimal height and the length of the longest
side of a triangle define by �p�si�, respectively. See
Fig. 1(d).

min-max eccentricity Define µ5�p�si� as follows: it is 0 if
the center of the circumcircle of a triangle��p�s i� lies
in the interior of the triangle. Otherwise, it is the dis-
tance from the center to the closest edge of the triangle.
See Fig. 1(e).

���� ����
���� ��	��������

There may be a number of different measures on trian-
gles. First of all we exclude all measures which cannot be
computed by explicit algebraic expressions. More precisely,
we need algebraic formulae defined by constants, polyno-
mials in x and y, and r-th roots for positive integers r. Or
we can relax the condition slightly. What we need is a func-
tion to compare µ�p�si� and µ�p�s j� for two different seg-
ments si and s j in a given set. Below are concrete algebraic
expressions for the measures listed earlier.

(1) max-min visual angle
Instead of giving an expression to determine a value of

θp�si� that is the visual angle of si from p, we can use its
cosine value to compare two such values. Exactly, we have

cosθp�si� �
��pa��2 � ��pb��2���ab��2

2��pa�� � ��pb�� �
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(a) µ1(p, si) (b) µ2(p, si) = h

(d) µ4(p, si) = h/L(c) µ3(p, si) = r

(e) µ5(p, si) = h

Figure 1. A list of measures on triangles.
(a)max-min angle, (b) max-min height, (c)
max-min aspect ratio, (d) min-max circumcir-
cle, and (e) min-max eccentricity.

where a and b are two endpoints of si and ��pq�� denotes the
length of the segment pq. Assuming p � �x�y�, a� �ax�ay�,
and b � �bx�by�, we have

cosθp�si� �
T1

T2
�

T1 � �x�ax�
2 ��y�ay�

2 ��x�bx�
2

��y�by�
2� �ax�bx�

2� �ay�by�
2�

T2 � 2
�

�x�ax�2 ��y�ay�2

	
�

�x�bx�2 ��y�by�2�

Using the cosine values we can easily compare θ p�si� and
θp�s j�. Especially, a Voronoi edge defined by θ p�si� �
θp�s j� leads to a polynomial equations of degree at most
8 without square roots. Of course, we have already known
that Voronoi edges defined by the measure are polynomial
curves of degree at most 3 through complex calculations [2].
The result above is short but enough to prove that Voronoi
edges are characterized by polynomial curves of constant
degrees.

(2) max-min height
Given a triangle, for each of three sides we can define a

corresponding height. A minimal height of a triangle is one
for the longest side. The height can be obtained using an
area of a triangle, which can be calculated by coordinates
of the three vertices of the triangle. So, if A and L are area
and length of the longest side of the triangle then the min-
imal height h is given by �2A��L. The expressions to give
the minimal height of a triangle defined by a point p and
a line segment si � ab are obtained in three different cases
depending on which side is the longest side. For that we
draw two circles centered at one of the endpoints of s i and
passing through the other endpoint. We also draw the per-
pendicular bisector of si. Now we have six regions bounded
by those circles and line. If we take a point p in one of the
regions, we can easily see which triangular edge is longest.
In this way we have three different expressions to determine
the minimal height as follows:

µ2�p�si� �

������������
�����������

��ay�by�x��bx�ax��axby�bxay�

�x�ax�2��y�ay�2

if pa is the longest edge�
��ay�by�x��bx�ax��axby�bxay�


�x�bx�2��y�by�2

if pb is the longest edge�
��ay�by�x��bx�ax��axby�bxay�


�ax�bx�2��ay�by�2

if ab is the longest edge�

Thus, Voronoi edges are characterized by polynomial equa-
tions of degree at most 4 in x and y.

(3) max-min aspect-ratio



Recall that the measure on the minimal height h is de-
fined by the longest side L and area A of a triangle, that is,
h � 2A�L. The aspect ratio of a triangle��p�si� is the ratio
h�L, which is equal to 2A�L2. Thus, we have

µ4�p�s� �
2	���p�si��

L2 �

where ���p�si�� is the area of the triangle and L is the length
of the longest side, that is,

2���p�si��� ��ay�by�x��bx�ax�y�axby�aybx��
L2 � max��x�ax�

2 ��y�ay�
2��x�bx�

2 ��y�by�
2�

�ax�bx�
2 ��ay�by�

2��

(4) min-max circumcircle
It is known that the radius r of a triangle pab with area A

is given by

µ4�p�si� � r �
��pa�� � ��pb�� � ��ab��

4A

��pa���
�

�x�ax�2 ��y�ay�2�

��pb���
�

�x�bx�2 ��y�by�2�

��ab���
�

�ax�bx�2 ��ay�by�2�

4A � 2��ay�by�x��bx�ax��axby�bxay��

(5) min-max eccentricity
Let r be the radius of the circumcircle of a triangle pab.

If the center of the circumcircle lies in the interior of the
triangle, µ5�p�si� � 0. Otherwise, pa or pb is closest to the
center. If pa is closest, the distance from the center to the
edge pa gives the measure µ5�p�si�. Since it is complicated,
we omit the exact expressions.

���� ������� ������� ��� ������� �������

Given a measure on triangles, we can define a Voronoi
diagram. If it is regular on the measure, Voronoi vertices
are individual points and Voronoi edges are curves without
areas. Using the measures listed earlier except the last one
on min-max eccentricity, we have a regular Voronoi dia-
gram. An example of a Voronoi diagram is shown in Fig. 2
for three line segments in the plane with the measure on
max-min visual angle. That is, a point belongs to a Voronoi
region dominated by a line segment giving the smallest vi-
sual angle among given line segments.

We have assumed that our measures are defined by alge-
braic expressions of constant degrees. If we define a terrain
for a line segment si by determining the height at a point p
by the value µ�p�si�, the terrain is represented by a constant
number of algebraic functions, or more precisely the lower

s1

s2

s3

V (s1)

V (s1)

V (s1)

V (s3)

V (s3)

V (s3)

V (s2)

V (s2)

Figure 2. A Voronoi diagram for a set S of
three line segments (shown by bold lines) un-
der the measure of max-min visual angle. A
point belongs to a Voronoi region dominated
by a line segment giving the smallest visual
angle.

envelope (or upper envelope, resp.) of constant number of
algebraic functions for max-min type measures (min-max
type measures, resp.). The Voronoi diagram is then defined
by the lower envelope (or upper envelope, resp.) of n such
terrains. The complexity of the envelope is known to be
O�n2�ε� by the analysis by Halperin and Sharir [6]. Thus,
we have a theorem.

Theorem 1 A regular Voronoi diagram associated with a
measure µ on triangles for a set of n line segments consists
of O�n � 2� ε� cells, edges, and vertices, where ε is an
arbitrarily small positive constant.

���� ����� ������

Given a max-min type measure µ , we define a level re-
gion by

R�t�si� � �p � �2 �µ�p�si�� t��

That is, it consists of all points at which the measure is
greater than some given value t. R�t�si� is similarly defined.
Fig. 3 shows level regions for the first four measures listed
above (although there is another region symmetric with re-
spect to a line segment, only one of them is shown). For
the measure µ1 on max-min visual angle, the level region



R�θ �si� is the interior of a circle on which the circular an-
gle is exactly θ , as shown in Fig. 3(a). For the measure
µ2 on max-min height, R�h�si� above the line segment si is
characterized by two lines each passing through an endpoint
of the line segment and the line parallel to si separated by
h from si. Thus, the region is an infinite region bounded by
two rays and one line segment (which may be degenerated
to a point). The measure µ3 on max-min aspect ratio has the
level region R�α�si� bounded by two circular arcs and one
line segment parallel to si. The gap between two parallel
lines is α	��si�� where ��si�� is the length of si. The two cir-
cles determining the circular arcs have their center on lines
perpendicular to si and passing through the two endpoints
of si. The level region for the measure on min-max circum-
circle is not convex. It is bounded by two circular arcs of the
same radius and both passing through the two endpoints of
si. As is easily seen, whenever a point p lies on the bound-
ary, the circumcircle of the triangle ��p�si� is given by the
circle shown in the figure.

For a line segment si and a real value t � 0, the level re-
gion R�t�si� appears in both sides of the line segment. In
Fig. 3 we only illustrate one of the two regions since they
are symmetric. Every boundary curve of the level region is
described by a polynomial equation of constant degrees in
x and y. We assume that a level region in one side is con-
vex if it is defined. Otherwise we exclude such a measure
from our considerations. Referring to Fig. 3, the first three
measures give convex level regions while the level region is
not convex for the fourth measure on min-max circumcir-
cle. This is one reason why we do not include the measure.
There is another reason to exclude the measure µ4, which
will be described later on.

���� �����
�����

We say a value t is feasible for a measure µ if there is a
point p such that µ�p�si� is at least t for every element si of
a given set S. In other words, if the following intersection is
not empty: �

si�S

R�t�si� �� /0� (3)

Now, consider the following problem:

Problem Given a set S of line segments and a measure
µ , find a maximum feasible value t � and a point p� that
achieves the value t�, that is,

p� �
�

si�S

R�t��si�� (4)

What we are interested in here is whether an optimal
point for a given measure µ lies on some edge of a Voronoi
diagram associated with the measure µ . To investigate
properties for this to hold, we introduce a few properties
to be satisfied by measures.

h h

si

si

α

si

si

α||si||

(a)

(b)

(c)

(d)

Figure 3. Level regions R�t�si� for four dif-
ferent measures: (a) max-min visual angle,
(b) max-min height, (c) max-min aspect-ratio,
and (d) min-max circumcircle.



����  ��	������ �� �������

Strict Monotonicity If p is not a local maximum (or peak)
on the measure µ , then there is a positive real number
ε such that for any point p � in the neighborhood of p
µ�p��si�� µ�p�si� holds for any si � S.

Peak Sharpness For any si � S, a set of peaks (local max-
ima) does not form a region with positive area.

Single Peak Value All si � S have the same peak value.
That is, max�µ�p�si��p �
R2� is just the same independently of si.

Infiniteness of Peak Position For any si � S, its peaks are
located infinitely far away from si.

A point p is called a peak for a line segment si and a
measure µ if there is a small real number ε � 0 such that
there is no point p� in the ε-neighborhood of p that is strictly
better than p on the measure µ .

Theorem 2 If a measure µ on triangles satisfies
(1) strict monotonicity,
(2) peak sharpness, and
(3) single peak value or (3’) infiniteness of peak position,
then an optimal point on the measure µ lies on an edge of a
Voronoi diagram associated with µ .

Proof: Suppose the property (3) is satisfied. For contra-
diction, suppose a peak p is contained in a Voronoi region
V �si�. For any other s j , we have µ�p�si� � µ�p�s j� by the
definition of V �si� if µ is of max-min type. However, since
p is a peak and all peaks have a single peak value, say t �,
we have t� � µ�p�si� and t� � µ�p�s j�. Therefore, it con-
tradicts to µ�p�si�� µ�p�s j�. The proof is symmetric for a
measure of min-max type.

If the property (3’) is satisfied, then no Voronoi region
within a given polygon cannot have a peak in its proper in-
terior since the polygon is finite.

If we combine the property proved above and the condi-
tions (1) and (2) in the theorem, we can prove that an opti-
mal point must lie on Voronoi edges. �

Let us consider whether the measures listed above satisfy
the conditions of the theorem. The first measure on max-
min visual angle and the third one on max-min aspect-ratio
satisfy the conditions (1), (2) and (3). The measure on max-
min height satisfies (1), (2) and (3’). However, the fourth
measure on min-max circumcircle does not satisfy (3) or
(3’). The peak value for si is just the half of the length of
the line segment since the circle with si as its diameter is
the smallest circle passing through the two endpoints of s i.
Thus, two line segments having different lengths have dif-
ferent peak values. Thus, the condition (3) is not satisfied.
Also, peaks are located on the smallest circles. Therefore,

the condition (3’) is not satisfied. In fact, in the Voronoi
diagram associated with the measure shown in Fig. 4 an op-
timal point is not located on Voronoi edges.

Figure 4. A Voronoi diagram associated with
a measure on min-max circumcircle for two
line segments (drawn by bold lines). An
optimal point that minimizes the radius of
the maximum circumcircles is depicted by a
cross and connected with four endpoints of
the two line segments. The optimal point
does not lie on a Voronoi edge.

4. Concluding Remarks

In this paper we have presented a new family of Voronoi
diagrams for a set of line segments or a polygon based on
various measures on goodness of triangles. We have suc-
ceeded in characterizing their common combinatorial and
structural properties. Unfortunately, our complexity result
of O�n2�ε� is not encouraging for practical applications,
but this is just an upper bound on the worst case complex-
ity. Since the worst case is not known, it may be possible
to lower the complexity. More experimental works are re-
quired to judge whether this idea is useful for practical use,
which is left for future work.

It is known in [8] that the problem of finding a point in
a star-shaped polygon that maximizes the minimum visual



angle when the point is connected to all the vertices of the
polygon by straight edges is formulated as an LP-type prob-
lem and thus it can be solved by implementing O�n� basic
operations in the framework. So, it is more efficient than
our approach based on the Voronoi diagram associated with
the measure µ1 on max-min visual angle. Although it is
hard to describe in limited space, there is an application in
which we are required to find a point that maximizes the
smallest visual angle in a star-shaped polygon in some re-
gion bounded by some planar curves such as circular arcs.
In such cases the diagram may be useful and expected to be
efficient because we do not need the whole diagram but just
a part of it in the restricted area.
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