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Abstract. There are many ways to triangulate a simple n-gon; for cer-
tain optimization criteria such as maximization of the smallest internal
angle it is known how to efficiently compute the best triangulation with
respect to this criterion. In this paper we consider a natural extension
of this problem: Given a simple polygon P and one Steiner point p in
its interior, determine the optimal location of p and a triangulation of
P and p which is best amongst all triangulations and placements of p.
We present a polynomial-time algorithm for this problem when the opti-
mization criterion is maximization of the minimum angle. Furthermore,
we also provide a more general polynomial-time algorithm for finding
the optimal placement of a constant number of Steiner points under the
same optimization criterion.

1 Introduction

Triangulations of simple polygons arise in many applications. Some triangulation
of a given simple polygon can even be computed in linear time using Chazelle’s
algorithm [6]. Optimizing some criterion over all triangulations is also possible.
For example, a popular optimization criterion is to maximize the minimum angle
of any triangle. Such a triangulation is known as a constrained Delaunay trian-
gulation; it can be obtained in O(nlogn) time for an n-gon [7]. We could also
find a minimum-weight triangulation that minimizes the total length of chords
required for triangulation using dynamic programming. Dynamic programming
is also powerful enough to find a triangulation in which the worst aspect ratio of
resulting triangles is minimized, where the aspect ratio of a triangle is the ratio
of length of the longest side to its width, i.e., its smallest height.

In this paper we are interested in what happens when we allow one Steiner
point in the triangulation. More precisely, given a simple polygon P, we want to
find a point p in the interior of P such that the quality of the optimal triangula-
tion of P+{p} is optimized under a given optimization criterion. If maximization
of the minimum internal angle is the goal, we want to find a location of an inte-
rior point p such that the minimum angle of the optimal triangulation of P+ {p}
is maximized among all possible interior points p. As far as the authors know,
there is no previous study of the question. Our main concern in this paper is to
develop a polynomial-time algorithm.

A natural extension of this problem is to allow for more Steiner points to
be inserted or to use different optimization criteria for the triangulation. The
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extension to multiple Steiner points is not trivial at all. In fact, it seems no simple
algorithm exists for finding an optimal set of Steiner points. We present a fairly
involved polynomial-time algorithm that optimally places any constant number
k of Steiner points. Using a different optimization criterion is also interesting.
Minimization of the largest internal angle, minimization of the largest slope, and
minimization of the largest aspect ratio are rather popular criteria [3, 4], but no
O(nlogn) algorithm is known for these criteria except for that of maximization
of the smallest angle (if adding Steiner points is not permitted). So, although it
is challenging to extend our ideas to other criteria, in this paper we shall only
consider the maxmin angle criterion for which we can design polynomial-time
algorithms for the case of one or a constant number of Steiner points.

This problem is closely related to mesh improvement. Given a triangulation
of some bounded domain, we sometimes want to improve the quality of the tri-
angulation by relocating internal vertices (we assume internal vertices can be
moved while vertices on the domain boundary are fixed). In the so-called Lapla-
cian method (see, e.g., [9]) an internal vertex is relocated to the barycenter of
the polygon defined by its incident triangles. It works well in practice, but the
barycenter is not always the best location for a vertex. We want to emphasize
that in the Laplacian method the topology of the triangulation, that is its under-
lying graph, is unchanged. Hence the barycenter is just a candidate for a good
location when the topology is fixed. It is not known what a good location for the
vertex is when the topology is allowed to change. Naturally one might expect
better triangulations when topology changes are allowed.

Further closely related results are known in the literature under the heading
of Delaunay refinement. Here one is given a planar straight line graph (PSLG)
represented by a set of vertices and non-intersecting edges, and the goal is to
triangulate this PSLG using ‘fat’ triangles, the latter being important if the
obtained subdivision is used for example in finite element method calculations.
‘Fatness’ can be achieved by maximizing the smallest angle in the computed
triangulation. Delaunay refinement algorithms repeatedly insert Steiner points
until a certain minimum angle is achieved; the major goal here is to bound the
number of necessary Steiner points. In some way our paper approaches the same
problem from the opposite direction: how much can we improve the ‘fatness’ of
our triangulation with few Steiner points. See [14] for an excellent survey on
Delaunay refinement techniques.

This paper is organized as follows: Section 2 describes a polynomial-time
algorithm for computing the optimal location for a single Steiner point. The more
general case of a constant number of Steiner points is considered in Section 3.
Section 4 includes conclusions and future work.

2 Triangulation using One Steiner Point

The main problem we address in this section is the following:

Problem 1. Given a simple n-gon P, find a triangulation of the interior of P
with one Steiner point maximizing the smallest internal angle.
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To that end we will consider the following more general problem:

Problem 2. Given a set of points X and a set of non-crossing edges E with
endpoints in X. Find a triangulation of X and one Steiner point which respects
the edges in E and maximizes the smallest internal angle.

As we will see below, our solution to Problem 2 also provides us with a solution
to Problem 1.

Before proceeding, we need several definitions. Given a set of points X and
a set, of non-crossing edges E with endpoints in X, we say a € X sees b € X iff
the line segment ab does not cross any edge in E (note that, for a line segment
ab € E, a sees b). Point « is visible to a set Y if a can be seen from some point
inY.

Definition 1. The constrained Delaunay triangulation (CDT) of a set of points
X and a set of non-crossing edges E with endpoints in X contains exactly those
edges (a,b), a,b € X for which either (a,b) € E, or (1) a sees b and (2) there
exists a circle through a and b such that no ¢ € X contained in the interior of
the circle is visible from ab.

A constrained Delaunay triangulation CDT(X, E) for (X, E) can be com-
puted in O(nlogn) time and for non-degenerate (free of cocircular quadruples
of points) point sets forms a proper triangulation, i.e., a decomposition of the
convex hull of X into triangles. It maximizes the minimum interior angle of any
triangulation of (X, E) that uses only the points of X as triangulation vertices;
in fact, the CDT lexicographically maximizes the list of angles from smallest to
largest, see [5] for an extensive list of references.

In the following we are interested in how the constrained Delaunay triangu-
lation changes when some point p is added to X. Definition 1 implies that the
circumcircle of Aabe € CDT(X, E) cannot contain a vertex other than a, b, ¢ vis-
ible from the interior of Aabe. Hence the insertion of p can only affect triangles
in CDT(X, E) in the circumcircle of which p lies. More precisely, we say an edge
e ¢ E is invalidated by p iff p lies in the intersection of the circumcircles of the
two adjacent triangles of e and p is visible from the interior of both triangles (for
an edge on the convex hull of X consider the artificial triangle with one vertex
at infinity and the corresponding ‘circumhalfplane’).

Lemma 1. D(p) := CDT(XU{p}, E) can be obtained from D := CDT(X, E) by
deleting all edges in CDT(X, E) invalidated by p and retriangulating the resulting
‘hole’ H in a star fashion from p.

Proof Clearly all edges in D not invalidated by p are part of D(p) according
to Definition 1. Furthermore, it is not possible that D(p) contains an edge vw
which was not present in D, with v, w # p, since the insertion of p only decreases
the number of admissible edges on the original vertices. Therefore, new edges in
D(p) have to have p as one endpoint. Connecting p to all visible vertices of H is
the only way to obtain a triangulation again. O
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Consider the arrangement A defined by the triangles of D and their cir-
cumcircles. (For a technical reason explained below, we further refine A into
constant-size “trapezoids,” by replacing it with its trapezoidal decomposition [2,
p. 124].) We argue that the topology of D(p) does not change when p is moved
within one cell o of this arrangement.

Lemma 2. If a point p € o can be seen from the interior of a triangle Aabc € D
whose circumcircle contains p, then all points within o can be seen from the
interior of Aabc.

Proof Let x be a point in Aabc which sees p and assume there exists a point
p' € o which cannot be seen from z. Consider the line segment zq as g moves
towards p’ along pp’. If p’ cannot be seen from z, at some point xq must hit a line
segment e € E obstructing the view, at an endpoint of e. Hence this endpoint
must be visible from z and must lie in the interior of the circumcircle of Aabe,
contradicting Aabc € D. O

Since all points within a cell o also lie within the same set of circumcircles,
we have shown that all points within o of the above arrangement invalidate the
same set, of edges. It remains to show that all points p within this cell o behave
the same in terms of visibility from vertices of triangles of which at least one
edge was invalidated by p.

Lemma 3. Let e = (b,c) be an edge of CDT(X, E), Aabc and Abed the re-
spective adjacent triangles to e. If e is invalidated by p then p sees a,b,c and

d.

Proof Let x € Aabe be visible from p and suppose, without loss of generality,
that 2 cannot see a. Consider the line segment yp as y moves along Za towards
a. At some point Tp must meet a constraining edge e € E at a vertex of X lying
in the interior of the circumcircle of Aabe, contradicting the assumption that
Aabc € D. O

We have shown that all points within a cell ¢ behave identically in terms
of invalidation of edges as well as visibility hence leading to the identical topol-
ogy of D(p). Furthermore observe that the complexity of A is O(n?) since the
arrangement of O(n) circles has complexity O(n?) and the additional O(n) line
segments only add O(n?) intersection points. We summarize our findings in the
following corollary.

Corollary 1. The arrangement A defined by the triangles of D and their cir-
cumcircles characterizes the different topologies of CDT(X U{p}, E) after inser-
tion of a Steiner point p in the sense that all placements of p within the same
cell of A lead to the same topology. The size of A is O(n?).

We note that the arrangement will in general be overrefined in a sense that
points in different cells of .4 might lead to the same topology of D(p).

For our original Problem 1 of triangulating a polygon P with one Steiner
point p we compute the arrangement A with respect to CDT(X, E) where X
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Fig. 1. A point p in the interior of a simple polygon is contained in the circumcircles
of the two Delaunay triangles Th2s and Ts3s, but not in that of T3rs.

are the polygon vertices and E the polygon edges, and only consider the cells of
A inside P.

Fig. 1 shows an example. The interior of the polygon (shaded) is partitioned
into cells by all triangles and their respective circumcircles. The circumcircles
of the triangles Tog and Tbsg (shaded darker) contain the point p and p is
visible from both triangles. So, edge 28 cannot be included in the constrained
Delaunay triangulation after insertion of p. On the other hand, p lies outside the
circumcircle of Ts7g and thus this triangle is left unchanged after the insertion.

We have seen that when a point p is placed somewhere within a cell o € A,
a fixed set of edges is invalidated, producing a star-shaped ‘hole’ H = H (o) in
CDT(X, E). We then optimize the minimum angle in the triangulation, over all
possible placements of p € o, only focusing on the interior angles in the star
triangulation of H, as the rest of the triangulation is unaffected by the insertion
of p.

Algorithm for finding an optimal location of a Steiner point
Input: a set X of points and a set of non-crossing edges E with endpoints in X

1. Compute the constrained Delaunay triangulation D := CDT(X, E).
2. Construct the arrangement induced by all triangles of D and their circum-
circles. Refine it by a trapezoidal decomposition to obtain A.
3. For each cell o of A:
— Determine the set of edges invalidated by any Steiner point in o and
remove them to form the hole H
— Compute an angular Voronoi diagram for H, truncated to within o.
— For each Voronoi edge in the truncated Voronoi diagram, find a point
maximizing the minimum angle along the edge.
— For each connected component of a boundary edge of the cell o lying in
the same cell of the truncated Voronoi diagram, find a point maximizing
the minimum angle along this curve.
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4. Return the triangulation yielding the best angle found.

The next section will describe in detail how to actually treat a cell o € A
using angular Voronoi diagrams. Note that the above algorithm also solves our
original Problem 1 of optimizing the triangulation of a simple polygon P using
one Steiner point: In step 3 of the algorithm we only need to consider cells that
lie in the interior of P and when maximizing the minimum angle we also only
consider triangles that lie in the interior of P.

Finding an optimal triangulation with fized topology It remains to find an optimal
point, p within a specified cell o bounded by circles and lines within a given star-
shaped polygon H := H(o) that maximizes the smallest interior angle in the
star-triangulation of H from p.

Given a star-shaped polygon H, we can find an optimal point p that maxi-
mizes the smallest visual angle from p to all edges of H, i.e., the angle at which
any edge of H is seen from p. Matousek, Sharir and Welzl [12] gave an almost
linear-time algorithm within the framework of LP-type problems. Asano et al.[1]
also gave efficient algorithms for the same problem using parametric search or
the so-called angular Voronoi diagram. Our question is slightly different. It is not
enough to maximize the smallest visual angle around the point p to be inserted:
the smallest internal angle may be incident to the boundary of H rather than
p! Another difficulty is that we want to find an optimal point p constrained to
lie in o, a cell in the arrangement .4 bounded by circular arcs and straightline
segments, rather than ranging over all of H. It seems to be hard to adapt the
aforementioned algorithms based on LP-type problem formulation or paramet-
ric search for this purpose, but fortunately the one using the angular Voronoi
diagram can be adapted here.

The angular Voronoi diagram for a star-shaped polygon H is defined as a
partition of the plane according to the polygon edge that gives the smallest
visual angle [1]. A point p belongs to the Voronoi region of a polygon edge e if
the visual angle from p to e is smaller than that to any other polygon edge of
H. Tt is known that it consists of straight line segments or curves of low degree
and has total complexity O(n?*<), for any € > 0 and with implied constant
depending on €.

We have to modify the definition of the angular Voronoi diagram to take into
account the angles associated with polygon edges as well. Given a star-shaped
polygon H as a set of its bounding edges {eg,e1,...,e, := e} and a point p
in the plane, for each edge e; we form the triangle Tr(p,e;) by connecting the
endpoints to p. The value f(p,e;) is defined to be the smallest internal angle
in the triangle Tr(p,e;). The region Vor(e;) of an edge e; is defined by a set of
points p at which f(p,e;) is smallest among all edges, that is,

Vor(e;) := {p € R | f(p,ei) < f(p,ej) Ve; € H}.

Given a line segment ab, we partition the plane into four regions by two
circles C, and C} centered at a and b, respectively, with the radius |ab| and the
perpendicular bisector [, of ab. Refer to Fig. 2. If the point p lies to the left of
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the line l,; (more precisely, the halfplane defined by the line [,, that contains
the point @) and in the exterior of Cj, then the smallest internal angle of Aabp
is Zapb. If p lies in the same halfplane but in the interior of Cj, then Zabp is
smallest. The smallest angle in the right halfplane is similarly defined. Fig. 2
illustrates three different situations, with points py, ps, p3 lying outside, on the
boundary of, and inside C,, respectively.

lab

Fig. 2. Partition of the plane into regions according to which angle of Aabp is smallest.

Fig. 3 in which Voronoi regions are painted by colors associated with polygon
edges gives an example of such a modified angular Voronoi diagram. The given
polygon H is indicated by solid white lines.

Fig. 3. Modified angular Voronoi diagram (left) and original angular Voronoi diagram.

Once we construct the modified angular Voronoi diagram, we can look for an
optimal placement for p at Voronoi vertices, along Voronoi edges, or along the
boundary of o just like in the original angular Voronoi diagram [1]; it is easy to
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see that the maximum does not occur in the interior of Voronoi regions. Recall
that we have refined A so that a cell ¢ € A is a constant-complexity region.
In particular, each function f(p,e;), viewed as truncated to within o, is a well-
behaved function with a constant-complexity domain. Hence standard results of
envelope theory [13] imply that the modified angular Voronoi diagram truncated
to within o has at most O(n>*¢) edges, including connected portions of Voronoi
edges within o and portions of Voronoi cells lying along the boundary of o. The
computations can be performed in time O(n?*¢) per cell, for a total of O(n**%),
since cell processing dominates the runtime of the algorithm.

3 Triangulation using Several Steiner Points

We now turn our attention to the situation when two Steiner points, p and g,
are permitted to be placed in a simple n-gon P. We start with the triangulation
D := CDT(X, E). We consider the space P? := P x P of all possible placements
of the two points. We aim to identify the best placement of p,q in order to
maximize the smallest angle in the resulting constrained Delaunay triangulation
D(p,q) := CDT(X U{p, q}, E) (where as before X is the set of vertices of P and
E is the set of its edges). As in the previous section, we partition P? according
to the topology of D(p, q), then use an analog of the modified angular Voronoi
diagram from previous section to determine which angle is smallest in the tri-
angulation for every choice of (p,q) € P? and search the resulting diagrams for
the placement maximizing the minimum angle. This plan is complicated by the
need to explicitly identify all possible triangulation topologies. Instead, we will
arrive at this partition indirectly, as detailed below.

In this section, we focus on constructing a polynomial-time algorithm, with-
out any attempt at optimizing the running time. Such an optimization might be
a good topic for further research, especially when coupled with some heuristics
to eliminate infeasible placements of p and ¢ in order to reduce the search space,
which we have developed but have been unable to include in this version due to
space limitations.

We first recall a standard fact, the analogue of Definition 1 [7].

Fact 1 A triangle Aabe, for a,b,c € X is present in CDT(X, E) if and only
if a,b,c are pairwise visible and no other vertex of E wvisible from any point in
Aabe lies in the circumcircle of Aabc.

Consider D(p, q) as defined above and consider a potential triangle Aabe in
it. Let f(a,b,c;p,q) be a partial function defined as follows: it is defined for
(p,q) € P? if and only if Aabe is present in D(p,q) and the value of f is the
measure of Zabc. Then clearly the smallest angle in D(p, q) is

m(p,q) := {lnir;)f(a,b, &P, q),
where the minimum is taken over all triples of distinct elements in X U{p, ¢}, for
which the function f(a,b,c;p,q) is defined at (p,¢). The desired triangulation
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maximizing the minimum angle is just the maximum of function m(p, q) over all
of P2.

We would like to apply envelope theory to compute m(p,q) for all p,q. In a
typical lower envelope argument [13], however, functions are well-behaved (e.g.,
algebraic of bounded degree) and defined over domains of constant description
complexity (say, by a constant-length semialgebraic condition of bounded de-
gree). In our case, the form of functions f is simple enough (if one uses, for
example, cos? Zabc to compare angles, to avoid transcendental functions, this is
a low-degree rational function of the coordinates of the points).

The difficulty is in their domains of definition—they are in general not of
constant complexity and hence the envelope analysis is not applicable directly.
We instead decompose P? into constant-size cells in such a manner that each
function is either total, or totally undefined on every cell ¢ of the decomposition.

In order to construct such a decomposition, we observe that the boundaries of
the domain of definition of a function f(a, b, ¢;p, ¢) are given precisely by Fact 1.
Namely, if we view p and ¢ as moving, a triangle Aabc formed by three points
from among the vertices of P and/or p,q can cease to belong to D(p,q) only
when some visibility constraint is violated (two possibilities: a vertex becomes
collinear with pg, or p or g becomes collinear with a line defined by two vertices)
or when a cocircularity is created or destroyed (again, two possibilities: p or
q becomes cocircular with three vertices, or both p and ¢ become cocircular
with two vertices). All four possibilities correspond to a low-degree hypersurface
in R*, and the number of possibilities is clearly polynomial, since there are n
vertices in all.

We collect all these hypersurfaces, add boundaries of P? to the arrangement,
and truncate it to within P2. We then refine the resulting partition of P? to
contain only constant-size cells (e.g., via a cylindrical algebraic decomposition
or a vertical decomposition [8,10]); the resulting decomposition A is still of
polynomial size.

A is a subdivision of P? into polynomial number of constant-complexity
cells o with the property that each function f(a,b,c;-,-) is either defined on
the entire cell o or undefined on all of . Functions are algebraic of bounded
degree. There is a polynomial number of functions. Hence standard envelope
theory [13] concludes that the minimization diagram (i.e., the decomposition of
space into maximal connected portions over each of which a fixed function or set
of functions achieves the pointwise minimum) of this collection of functions can
be computed and, if necessary, further refined to constant-complexity cells, in
polynomial time. Over each cell of the minimization diagram, a single function
appears on the lower envelope, so we can determine in constant time its largest
value. Taking the maximum over all cells, we obtain the placement of p,q € P
that maximizes the minimum angle of any triangulation of P with two Steiner
points p, ¢, in polynomial time, as promised.

We summarize our findings in the following theorem.

Theorem 2. Given a polygon P with n vertices, or more generally a set of n
points X and a collection E of non-crossing edges connecting them, we can find
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two points p and q such that the minimum angle of the constrained Delaunay
triangulation CDT(X U{p,q}) (and thus of any other triangulation with vertices
X U{p, q} respecting E) is maximized in time polynomial in n.

The same method applies almost verbatim to any constant number of Steiner
points. We omit the details due to space limitations.

4 Conclusions and Future Work

In this paper we have presented polynomial-time algorithms for finding optimal
placement of one, or a constant number of, Steiner points to be inserted in a
simple n-gon to maximize the minimum internal angle of triangulation. It would
be interesting to improve the dependence of the latter algorithm on the number
of Steiner points, to construct practical algorithms for solving the problems, and
to extend our analysis to other optimization criteria.
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