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Abstract

Given a set of line segments in the plane, we define an
angular Voronoi diagram as follows: a point belongs to a
Voronoi region of a line segment if the visual angle of the
line segment from the point is smallest among all line seg-
ments. The Voronoi diagram is interesting in itself and dif-
ferent from an ordinary Voronoi diagram for a point set.
After introducing interesting properties, we present an effi-
cient algorithms for finding a point to maximize the smallest
visual angle. Some applications to mesh improvement are
also mentioned.

1 Introduction

Voronoi diagram has been one of the most important no-
tions in computational geometry[1, 6]. A number of vari-
ations of a Voronoi diagram defined for a set of points has
been presented for different applications and purposes. In
this paper we propose a yet another Voronoi diagram using
a visual angle of a line segment from a point and investigate
combinatorial and structural properties of the diagram.

An original motivation of this Voronoi diagram comes
from an application to mesh improvement. Mesh gener-
ation/improvement [2, 3, 5, 7, 8] is an important process
for many purposes including Finite Element Method. In a
simple setting, a given simple polygon is partitioned into
many small triangles after inserting an appropriate number
of points in its interior as vertices of triangular meshes. Sev-

eral different criteria have been considered to evaluate the
quality of such a triangular mesh. One of them is to maxi-
mize the smallest internal angle (or to minimize the largest
internal angle). Since polygon vertices are fixed, the only
way to improve the quality of triangular mesh is either to
move internal points while fixing all other points or to insert
new internal points (or even delete existing internal points).
This paper presents an efficient algorithm using the above-
stated angular Voronoi diagram for finding where to move
an internal point so that the smallest internal angle among
those associated with the point is maximized.

Our angular Voronoi diagram is defined using a visual
angle of a line segment from a point. Given a set of non-
intersecting line segments in the plane, a point belongs to
a Voronoi region associated with a line segment giving the
minimum visaul angle among those line segments. Such a
Voronoi diagram is well-defined and has different, but in-
teresting properties from those of the existing Voronoi di-
agrams. For a set of n non-intersecting line segments in
the plane, a Voronoi region associated with one of them
may be disconnected. In fact it may consist of many con-
nected regions. A general theory on terrains by Halperin
and Sharir [4] yields an upper bound O(n2+ε) on the com-
plexity of the whole Voronoi diagram, where ε is a small
constant. In other words, the Voronoi diagram has O(n2+ε)
Voronoi edges, and vertices. Despite the high complexity
in the worst case, actual complexity seems to be low by our
experiments for a number of star-shaped polygons.

In our important application to mesh improvement we
look for an optimal point in the interior of a star-shaped



polygon resulting after removing an internal point from a
triangular mesh. Such an optimal point to maximize the
minimum visual angle can be well characterized by our an-
gular Voronoi diagram. Following a natural expectation
such an optimal point should be found at some Voronoi
vertex. Unfortunately, it is not the case. However, we can
also show that it suffices to examine all Voronoi vertices and
edges to find an optimal point. A key is an observation that
our objective function is unimodal on each Voronoi edge.
Thus, once an angular Voronoi diagram is constructed, we
can find an optimal solution in time proportional to the num-
ber of Voronoi vertices and edges.

This paper is organized as follows. In Section 2 we de-
fine an angular Voronoi diagram and investigate its combi-
natorial and structural properties. Section 3 describes an ap-
plication problem to maximize the minimum internal angle.
We present two algorithms, one using our angular Voronoi
diagram and the other directly computing an optimal point
by a parametric search technique. Section 4 describes an
application to mesh improvement. Finally, Section 5 gives
some concluding remarks together with some open prob-
lems and future works.

2 Angular Voronoi diagram

Given a line segment s and a point p in the plane, the
visual angle of s from p is the angle formed by two rays
emanating from p through two endpoints of s, and it is de-
noted by θp(s). Since we do not consider the direction of
the angle, it is always between 0 and π .

Given a line segment s in the plane, it is well known that
points giving the same visual angle of s form circular arcs
touching the two endpoints of the line segment s. If the
visual angle is less than π/2 then the circular arcs are major
circular arcs while they are minor arcs if it is greater than
π/2, as is seen in Figure 1. By C(s,α) we denote a set of
points the visual angle from which is α , that is,

C(s,α) = {p ∈ R2|θp(s) = α}. (1)

Given a set S of n line segments s1,s2, . . . ,sn and a
point p in the plane, we define an angular Voronoi diagram
AV D(S) for S as follows:

Voronoi region: Each line segment si is associated with a
region, called a Voronoi region V (si), consisting of all
point p such that the visual angle of si from p is smaller
than that of any other line segment s j. Formally, it is
defined by

V (si) = {p ∈ R2|θp(si) < θp(s j) for any j 6= i}.
Voronoi cell: A Voronoi region may not be connected.

Connected parts of a Voronoi region are referred to
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Figure 1. Sets of points giving the same vi-
sual angle.

as Voronoi cells to be distinguished from Voronoi re-
gions.

Voronoi edge: Voronoi edges form the boundary of
Voronoi regions and thus they are defined for pairs of
line segments:

E(si,s j) = {p ∈ R2|θp(si) = θp(s j) < θp(sk)
for any k 6= i, j}.

Any point p∈E(si,s j) is given as intersection of two circles
passing through the endpoints of si and s j. Thus, a Voronoi
edge is a planar curve.

Voronoi vertex: Voronoi vertices are points at which three
or more Voronoi edges meet:

v(si,s j,sk) = {p ∈ R2|θp(si) = θp(s j) = θp(sk) < θp(sl)
for any l 6= i, j,k}.

A Voronoi vertex is given as intersection of three circles.
Thus, it is a point unless there is any degeneracy.

An example of an angular Voronoi diagram is shown in
Figure 2 for three line segments in the plane. Since for any
point p on extension of a line segment si the visual angle of
si from p is 0, i.e., θp(si) = 0, extension of a line segment si
is a part of the Voronoi cell for si. This observation makes
it easier for readers to understand the figure.

One important difference from many other Voronoi dia-
grams is that Voronoi regions and Voronoi edges may con-
sist of many disjoint connected parts. Figure 3 shows an
example of an angular Voronoi diagram having quadratic
complexity, which will be seen below.



Figure 2. An angular Voronoi diagram AV D(S)
for a set S of three line segments (shown
by black bold lines). A point belongs to a
Voronoi region for a line segment giving the
smallest visual angle.

Figure 3. Worst case Voronoi diagram AV D(S)
for a set S of horizontal and vertical line seg-
ments (shown by black bold lines) having
quadratic number of Voronoi edges and ver-
tices.
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Figure 4. Intersection of two circles of the
same visual angle for two line segments.

Equation for Voronoi edges

An angular Voronoi diagram AV D looks quite different
from the existing ones for a point set or a set of line seg-
ments. Then, how is a Voronoi edge described?

Lemma 1 Edges of an angular Voronoi diagram are de-
scribed by polynomial curves of degree at most three.

Proof: Each Voronoi edge is defined by a pair of lines
segments. Let us consider one for a pair (s1,s2) of line seg-
ments. For simplicity we assume that s1 is fixed on the x-
axis between two points (−1,0) and (1,0) and s2 of length
2l is specified by the coordinate (a,b) of its midpoint and a
slope α as is illustrated in Figure 4.

Suppose we have two circles C1 and C2 giving the same
visual angle for the line segments s1 and s2, respectively,
and that they intersect each other at (x,y). The center of C1
is on the vertical line x = 0. So, we assume that the center
of C1 is at (0,h). Then, we have

x2 +(y−h)2 = 1+h2, (2)

from which we have

h =
x2 + y2−1

2y
. (3)

Because of similarity of the two triangles, it turns out that
the center of the circle C2 is given by (a + lhsinα,b−
lhcosα) and the radius by l

√
1+h2. Therefore, we have

(x−a− lhsinα)2 +(y−b+ lhcosα)2 = l2(1+h2),

which is simplified into

(x−a)2 +(y−b)2− l2

= 2l{(x−a)sinα− (y−b)cosα}h. (4)

Substituting Eq.(3) into Eq.(4), we have

y{(x−a)2 +(y−b)2)− l2}
−l{(x−a)sinα− (y−b)cosα}(x2 + y2−1)
= 0. (5)



This completes the proof of the lemma. 2

Combinatorial properties

An angular Voronoi diagram AV D(S) for a set S of n line
segments has the following properties.

Lemma 2 Each Voronoi region is partitioned into at least
two connected parts if n≥ 2.

Proof: We have θp(si) = 0 for any point p on an exten-
sion of a line segment si. It implies that the Voronoi region
for si contains the extensions of si in two opposite direc-
tions. Suppose we have only two line segments si and s j,
and assume that they are not parallel to each other. Then,
the Voronoi region of si is partitioned into at least two parts
by extensions of s j. When there are more line segments, we
can always find line segments playing the same role as s j.
2

For any point p in the plane, we define a function
θmin(p,S), or simply θmin(p) if no confusion, by

θmin(p) = min{θp(s1),θp(s2), . . . ,θp(sn)} (6)

Each visual angle θp(si) is computed neglecting other line
segments, that is, assuming that other line segments are
transparent. A point p is called a peak if θmin(p) is largest at
p, in other words, θmin(p) > θmin(p′) for any p′ ∈ R2, p′ 6=
p.

Lemma 3 Given a set S of line segments in the plane, a
peak lies on some Voronoi edge of an angular Voronoi dia-
gram for S.

Proof: Suppose that a peak p lies in some Voronoi region
V (si) for contradiction. By the definition of a Voronoi re-
gion, we have

θmin(p) = θp(si) < θp(s j) for any s j ∈ S\{si}. (7)

Since the Voronoi region is open by the definition and the
function θp() is unimodal, there is a point p′ in the neigh-
borhood of p within the same cell V (si) such that

θp(si) < θp′(si) < θp′(s j) for any s j ∈ S\{si}.

This implies θmin(p′) > θmin(p), a contradiction. 2

Lemma 4 The function θmin(p) is convex in each Voronoi
edge.

Proof: Referring to Figures 1 and 4, a Voronoi edge
E(si,s j) is defined by intersections of those two circles
passing through the two endpoints of si and s j which give

the same visual angle for si and s j. The visual angle is max-
imized when these two circles are tangent to each other,
that is, meet at one tangential point. Otherwise, they in-
tersect at two points, which naturally define an interval on
the edge E(si,s j). Here, note that any point in the interior
of the circle has a larger visual angle than a point on the cir-
cular boundary. This property guarantees that the function
θmin(p) is convex on the edge. 2

Theorem 5 An angular Voronoi diagram for a set of n line
segments in the plane consists of O(n2+ε) cells, edges, and
vertices, where ε is a small constant.

Proof: Given a line segment in the plane, we can uniquely
determine the visual angle of the line segment at each point.
Using this angle as height at the point, we define a terrain.
Given n line segments, they define n terrains and its associ-
ated Voronoi diagram is given as the lower envelope since
each point belongs to a territory of a line segment giving the
smallest visual angle. The theorem follows from the result
by Halperin and Sharir [4]. 2

It is not so hard to give a set of n points for which an
angular Voronoi diagram has quadratic complexity, that is,
O(n2) vertices, edges, and cells. In fact, if we arrange n/2
horizontal line segments and n/2 vertical line segments as
shown in Figure quadratic, each Voronoi region for a hor-
izontal line segment is divided into O(n) pieces by exten-
sions of the n/2 vertical line segments, thus yielding O(n2)
Voronoi cells in total. We haven’t obtained an example
achieving the bound O(n2+ε) in the theorem. However, if
we restrict ourselves to a set of line segments forming a star-
shaped polygon and also to its interior part, our experience
tells us linear complexity. But there is no proof yet.

So far we have been interested in a point maximizing
the smallest visual angle for a set of line segments. It is
natural to define a symmetric notion of a point minimizing
the largest visual angle. We could define a similar angular
Voronoi diagram using this symmetric notion. If we have
only two line segments, a point maximizing the smallest
visual angle also minimizes the largest visual angle. But
they are different in general for three or more line segments.

3 Finding a peak

Now we have a naive algorithm for finding a peak for a
given set of line segments in the plane.

Naive Algorithm

(1) Construct an angular Voronoi diagram for a set of line
segments.

(2) For each Voronoi edge, find its peak.



(3) Choose a point among those peaks and Voronoi vertices
that gives the largest θmin() values as a solution.

Generally speaking, efficient construction of an angular
Voronoi diagram is hopeless due to its high complexity. It
consists of O(n2+ε) disjoint Voronoi cells in the worst case
for a set of n line segments. Fortunately, in our applica-
tion to mesh improvement we have a set of line segments
forming a star-shaped polygon instead of arbitrary set of
line segments. Following our experience based on experi-
ments, angular Voronoi diagrams seem to have linear com-
plexity in the kernel of the starshaped polygon. This obser-
vation based on our experience is just an observation which
remains unproved.

As was remarked earlier in this paper, Voronoi edges are
characterized by plane curves of degree at most three. So,
we need to solve a system of equation of two such degree-
3 polynomial equations in x and y. If we can solve such
a system of equations in time T and the angular Voronoi
diagram consists of E edges, then the part of the angular
Voronoi diagram within the kernel of an input star-shaped
polygon of n edges can be constructed in O(ET logn) time.
This also means that a peak can be found in O(ET logn)
time.

Parametric search

There is another algorithm for finding a peak that maxi-
mizes the smallest visual angle based on parametric search
technique. Given a line segment s in the plane, the visual
angle of s from a point p is at least α if p lies in the region
C(s,α) = {p ∈ R2|θp(s) = α} defined by two circles pass-
ing through the two endpoints of s. It is bounded by major
arcs of the circles if α < π/2 and minor arcs otherwise. So,
if we define a region R≥α(s) by

R≥α(s) = {p ∈ R2|θp(s)≥ α}, (8)

it is bounded by the two circles and for any point p in the
region the visual angle θp(s) is at least α .

Given a set of line segments s1,s2, . . . ,sn, the value
θmin(p) for a peak p is at least α if all of the regions
R≥α(s1),R≥α(s2), . . . ,R≥α(sn) have non-empty intersec-
tion. Unfortunately, R≥α(si) is not convex if α < π/2. So,
it is not so efficient to compute those intersections. A good
news here is that if we are interested in the interior of a star-
shaped polygon to find a peak then we can represent each
region R≥α(si) by a disk instead of a region bounded by
two circles since the part of the region in the kernel of the
polygon is characterized by a single circle passing through
the two endpoints of si. Then, the intersection of all of the
regions R≥α(s1),R≥α(s2), . . . ,R≥α(sn) is convex in the ker-
nel and thus it is computed efficiently. In fact, we can find
a peak by parametric search based on the following parallel
algorithm for finding the convex intersection.

Parallel algorithm for finding circle intersection
Input: a set S of n circles C1,C2, . . . ,Cn.
Output: Intersection meet(S) of all the disks, which is
maintained by an alternating list of vertices and circular
edges and all the vertices are sorted in the increasing x or-
der. Note that the intersection is convex.
Divide-and-conquer algorithm
1. Divide a set S into two disjoint subsets S1 and S2 of al-
most equal sizes.
2. Compute meet(S1) and meet(S2) recursively.
3. Compute meet(S) = meet(S1)∩meet(S2).

The third step for merge is done in parallel as follows:
3.1 Apply a parallel merge algorithm for vertex lists of
meet(S1) and meet(S2).
3.2 At each vertex find at most four circular arcs from
meet(S1) and meet(S2) that intersect the vertical line pass-
ing through the vertex using a binary search.
3.3 For each interval between two adjacent vertices in the
lists, compute an arrangement of those four arcs to find the
corresponding intersection by finding new vertices.
3.4 Combine those pieces.

Lemma 6 Given a set of n circles, the above parallel al-
gorithm for finding their intersection is implemented in
O(log2 n) time using n processors.

Theorem 7 Given a star-shaped polygon P of n
edges s0,s1, . . . ,sn−1, a point (peak) in its ker-
nel that maximizes the smallest visual angle
θmin(p) = min{θp(s0),θp(s1), . . . ,θp(sn−1)} can be
found in O(n log2 n) time.

Proof: Apply a parametric search algorithm based on the
parallel algorithm above. 2

4 Application to mesh improvement

The algorithms and notions developed in the paper can
be applied to mesh generation, or more exactly mesh im-
provement. Figure 5(a) shows a triangulated mesh of a
polygon using some internal points. Although external
points are fixed and cannot be moved, internal points are
usually free to move for better triangulation. Suppose the
interior of a polygon of n vertices is partitioned into trian-
gles using m internal points. Then, we have O(m+n) inter-
nal angles. For each internal point pi we associate the small-
est internal angle incident to the point, which is denoted by
α(pi). Then, we evaluate the quality of the triangular mesh
by

< α(p1),α(p2), . . . ,α(pn) > (9)

in their dictionary order.
A greedy heuristic proceeds as follows;

(1) Let < α(p1),α(p2), . . . ,α(pn) > be a list of smallest
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Figure 5. Improving triangular mesh by mov-
ing internal points.

angles associated with internal points. (2) Choose an inter-
nal point pi with the least α(pi).
(3) Remove all (internal) edges incident to p to form a star-
shaped polygon P with p in its interior,
(4) Find the best location of pi to maximize the minimum
visual angle from pi.

Figure 5(b) is a result after moving upper left internal
point and Figure 5(c) is one after moving lower right inter-
nal point. Of course, we could extend this greedy algorithm
so that it optimizes the second or third smallest angles if the
smallest angle cannot be improved.

So far we have been interested in maximizing the small-
est internal angle around an internal point. However, mov-
ing the point may cause a smaller internal angle along the
boundary of the star-shaped polygon. Suppose a star-shaped
polygon Phas a small internal angle at a vertex vi. Then, we
must be careful whether the smallest internal angle around
the peak is not greater than the smaller internal angle at
vi resulting after connecting the peak to vi. If this is the
case, we should either make a structural change by drawing
a chord connecting the two adjacent vertices (see Figure 6)
or find a peak on the angular bisection through the vertex vi.

5 Concluding Remarks

In this paper we have presented a new Voronoi diagram
based on visual angle of a line segment from a point. Un-
fortunately, our complexity result of O(n2+ε) is not encour-

(a) (b)

(c)

Figure 6. Triangulation of a star-shaped poly-
gon with one internal point. (a) A kernel of the
polygon from which any point in the polygon
is visible. (b) Triangulation by connecting the
internal point to all the vertices. (c) Another
triangulation by removing an ear.

aging practical application, but this is just an upper bound
on the worst case complexity. Since the worst case is not
known, it may be possible to lower the complexity. We have
also described an important application of our Voronoi dia-
gram to mesh improvement. More experimental works are
required to judge whether this idea is useful for practical
use.
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