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Abstract

This paper considers a problem of finding an optimal
point within a polygon P in the sense that when we connect
the point to every vertex of P by straight line then the worst
aspect ratio among all resulting triangles is optimized. This
problem has an important application to triangular mesh
improvement. We propose three different approaches to-
ward this problem. The first one is based on some new
Voronoi diagram defined by an aspect ratio, which is in-
teresting in itself. The second approach is essentially a bi-
nary search defined by geometric intersection. The third
one is grid-based heuristic, which might be practically best
but has no theoretical guarantee on its performance.

1 Introduction

Voronoi diagrams have been applied in many different
areas and different purposes[1, 6]. In this paper we define
a new Voronoi diagram for a set of line segments in the
plane, which is called an aspect-ratio Voronoi diagram. This
Voronoi diagram is characterized as follows: given a set
of line segments s1, . . . ,sn and a point p in the plane, we
can define a triangle Tr(p,si) for each line segment si by
drawing lines from p to two endpoints of si. Now, we define
an aspect ratio asp(p,si) of the triangle Tr(p,si) by the ratio
of the longest side over the shortest side. In our criterion the
smaller the ratio the better the quality of the triangle. Given
a set of line segments in the plane, the plane is divided into
so-called Voronoi regions each associated with one of the
line segments. A point belongs to a Voronoi region V (si)
for the line segment si if si gives the worst (largest) aspect
ratio among given line segments. Such a Voronoi diagram
is well defined and it is quite interesting it itself.

Once we construct such an aspect-ratio Voronoi diagram
for a set of line segments, using the diagram we can find a
point p∗ that minimizes (optimizes) the largest (worst) as-
pect ratio. This is not the only way to find such an optimal

point. We could have a more direct algorithm. Fix some
constant λ ≥ 1. Then, for each line segment si we can deter-
mine a region of points at which the aspect ratio is at most
λ . If there is non-empty intersection of all those regions,
then a point in the intersection achieves a better aspect ra-
tio. This suggests a numerical binary search on the best
possible aspect ratio. Unfortunately, the binary search is
not done in strongly polynomial time. It is also not so easy
to compute the intersection precisely because the boundary
of the above-mentioned regions are characterized by plane
curves consisting of six different circular arcs. Thus, we
have to decide which should be more emphasized numerical
preciseness or reasonable running time with some approxi-
mation.

This Voronoi diagram has interesting properties, which
are quite different from ordinary ones. First of all it looks
quite different from ordinary Voronoi diagrams for points.
In our case Voronoi edges consist of plane curves of degree-
3 polynomial in x and y. A Voronoi region associated with
a line segment is not always connected. It may be divided
into a number of connected regions or cells. This fact leads
to high complexity of the diagram.

So far we have mentioned two approaches for finding
an optimal point to minimize the worst aspect ratio for a
set of line segments, one based on an aspect-ratio Voronoi
diagram and the other using numerical binary search. Un-
fortunately, either approach has some disadvantages. If we
adopted the numerical binary search, we would have to
compute intersection of n polygons with circular arcs. If
we used our Voronoi diagram instead, we would have to
find intersection of degree-3 curves. So none of them may
yield a practically easy solution. Thus, we come up with a
third approach for practical application. Although we have
no theoretical analysis or bound on its time complexity, it
is easy to implement and fast enough for our application to
mesh improvement.



2 Problem Definition

In this paper we consider a problem related to mesh im-
provement [2, 3, 5, 7, 8] That is, given a triangular mesh
of a polygon with a number of internal points, we want to
improve the quality of the mesh by appropriately moving
internal points, while fixing all other points, since adding a
new internal point usually brings no advantage to improv-
ing the worst aspect ratio. Among many different criteria
for evaluating triangular mesh, we define our aspect ratio
for a triangle by the ratio of the longest side over the short-
est side. In this paper we consider a problem of moving one
internal point to optimize triangles incident to it, that is, to
minimize the highest aspect ratio of triangles incident to the
point.

Given a triangular mesh and one internal point p, we first
remove all the triangles incident to p, which results in a
star-shaped polygon P. Then, we look for a point p∗ to
interconnect to every vertex of the polygon P that optimizes
the worst aspect ratio of those triangles in P.

In a more general setting, we could take a set of line seg-
ments which do not necessarily form a star-shaped polygon.
They could be disjoint, but no proper intersection among
line segments is allowed. Then, we want to find a point
to optimize the worst aspect ratio. But, in this setting, if
we connect the optimal point to all endpoints of the given
line segments, the resulting triangles may have proper in-
tersections. To prohibit intersection among those triangles,
we must limit our search space to a region of points from
which all the line segments are visible. If the set of line
segments forms a star-shaped polygon, such a region must
exist and it is called a kernel. If it forms a convex polygon,
the whole interior part of the polygon is the kernel. So, in
this paper we only consider a set of line segments forming
a star-shaped polygon and search for a point in its kernel to
optimize the worst aspect ratio.

Now, the goal in this paper is to solve the following prob-
lem:
Problem Given a star-shaped polygon P = (s0,s1, . . . ,sn =
s0) in the plane, find a point p that optimizes the worst
value among asp(p,s0),asp(p,s1), . . . ,asp(p,sn−1), where
asp(p,si) is an aspect ratio of the triangle defined by the
point p and the line segment si.

3 Basic properties concerning aspect ratio

Given a line segment s = p1 p2 and a point p in the plane,
the aspect ratio asp(p,s) of the triangle defined by connect-
ing the two endpoints of s to p is defined by the ratio of the
longest side over the shortest side of the triangle, i.e.,

asp(p,s) =
max{|pp1|, |pp2|, |p1 p2|}
min{|pp1|, |pp2|, |p1 p2|} . (1)

By the definition, an aspect ratio is at least 1 for any triangle
and a triangle of an aspect ratio 1 is a regular triangle of
three equal sides.

Given a line segment s = p1 p2 in the plane, the plane is
partitioned into regions by circles defined by the two end-
points and their perpendicular bisector, as shown in Fig-
ure 1. More precisely, we define two circles C1 and C2.
The circle C1 is centered at p1 and passes through p2. C2
has its center at p2 and p1 on it. The perpendicular bisec-
tor of the two points p1 and p2 partitions the plane into two
halfplanes. The one containing p1 is denoted by H(p1, p2)
and the other by H(p2, p1).

The two circles and the bisecting line creates 6 different
regions. They are coded as Ri jk when |si| ≤ |s j| ≤ |sk| for
three sides si,s j and sk of a triangle. Here, s0 = s, s1 = pp1
and s2 = pp2. The following is a list of those 6 regions with
their associated aspect ratio.

R012: C1∩C2∩H(p1, p2). asp(p,s) = d(p, p2)/|s|, where
|s| is the length of s.

R021: C1∩C2∩H(p2, p1). asp(p,s) = d(p, p1)/|s|.
R102: C1∩C2∩H(p1, p2). asp(p,s) = d(p, p2)/d(p, p2).

R201: C1∩C2∩H(p2, p1). asp(p,s) = d(p, p1)/d(p, p2).

R120: C1∩C2∩H(p1, p2). asp(p,s) = |s|/d(p, p1).

R210: C1∩C2∩H(p2, p1). asp(p,s) = |s|/d(p, p2).

In the following, by R012(p1, p2) we denote a region R012
for a line segment s = p1 p2.
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Figure 1. Partition of the plane with respect
to an aspect ratio for a line segment in the
plane.

Two intersections of the two circles and the bisector are
special points that achieve asp(p,s) = 1. Intuitively, as a
point goes away from the points, its corresponding aspect
ratio gets worse. Figure 2 shows contour lines of the same



aspect ratio. The lower figure is a closer look at the same
picture. In those figures, if the worst aspect ratio at a point
is in some interval then it is painted in a color associated
with the interval. Now define a region R≥λ (s) for a line
segment s = p1 p2. A point p = (x,y) belongs to the region
R≥λ (s) if and only if asp(p,s)≥ λ . Such a region exists for
any value λ ≥ 1. As is seen in the figures, such a region is
not always connected. As a special case, R≥1(s) consists of
two points which are the two points achieving asp(p,s) = 1
in both sides of s. As λ increases, the region R≥λ (s) also
grows, forming two connected regions. When λ reaches 2,
the two regions are merged into one connected region with
two holes around the two endpoints of the line segment s.
When λ gets further larger, the two holes get shrunk toward
the endpoints while the external boundary formed by two
big circles centered at two endpoints grow toward infinity.

As is seen in the figures, the boundary of each such re-
gion (or contour line) consists of at most 6 circular arcs. In
fact, a contour line giving the same aspect ratio is a circular
arc in each region listed above. For example, if a point p =
(x,y) lies in R012, a contour line for asp(p,s = p1 p2) = λ is
characterized by an equation

√
(x− x2)2 +(y− y2)2/d12 =

λ , where (x2,y2) is the coordinate of an endpoint p2 and d12
is the length of the line segment s = p1 p2. Since d12 and λ
are constants, it defines a circle. Similarly , if p lies in R102,
we have

√
(x− x2)2 +(y− y2)2/

√
(x− x1)2 +(y− y1)2 =

λ , which is again an equation of a circle if it is defined since
λ is a constant.

Figure 3 illustrates how the plane is subdivided by those
regions associated with two line segments. Consider the in-
tersection between R210(p1, p2) and R120(p3, p4) as shown
in the figure. Take any point p = (x,y) in the intersection.
The point gives the same aspect ratio to these two line seg-
ments if and only if the following equation has a solution:

d(p, p2)
d12

=
d(p, p3)

d34
, (2)

where d12 and d34 are the lengths of the segments p1 p2 and
p3 p4, respectively, which are constants. With p2 = (x2,y2)
and p3 = (x3,y3), we have

√
(x− x2)2 +(y− y2)2

d12
=

√
(x− x3)2 +(y− y3)2

d34
, (3)

which represents a circle if the constant part is positive and
d12 6= d34, and a line if it is positive and d12 = d34. In a
degenerate case where d12 = d34 it represents a line since
the quadratic terms disappear.

On the other hand, any point in the intersection
R201(p1, p2)∩R102(p3, p4) yields an equation

√
(x− x2)2 +(y− y2)2

√
(x− x1)2 +(y− y1)2

=

√
(x− x3)2 +(y− y3)2

√
(x− x4)2 +(y− y4)2

, (4)

Figure 2. Contour lines defined by aspect ra-
tios with different scales. Colors correspond
to some interval of aspect ratios. For low
aspect ratio, the corresponding region con-
sists of two separate regions, each defined
by six circular arcs. For high aspect ratio ≥ 1,
the region is merged into one with two holes
around two endpoints of the given line seg-
ment.



which is a curve of degree 3 since the terms x4,x2y2 and y4

disappear. In a degenerate case where x2−x1 = x4−x3 and
y2− y1 = y4− y3 hold, it becomes a degree-2 curve, that is
a hyperbola. By a careful analysis we have the following
conclusions.

Lemma 1 For two nonintersecting line segments in the
plane, a trace of points giving the same aspect ratio for
them is either a circular arc or a degree-3 curve (a line or
a hyperbola in degenerate cases, respectively).

p1
p2

p3

p4

R210(p1, p2) ∩R120(p3, p4)

Figure 3. Subdivision of the plane by regions
associated with two line segments by four
circles and two bisecting lines determined by
the two line segments.

Figure 4 illustrates how the entire plane is partitioned
into regions. Two different colors are assigned to two line
segments. When one of them gives worse (larger) aspect ra-
tio for a point, the point is painted in a color assigned to the
line segment. The boundary between different regions are
circular arcs or plane curves of degree 3 (if no degeneracy)
characterized by Eq.(4).

4 Aspect-ratio Voronoi diagram

Now we are ready to define an aspect-ratio Voronoi dia-
gram for a given set S of line segments s1,s2, . . . ,sn in the
plane. We define an aspect-ratio Voronoi diagram in such
a way that a point p belongs to a Voronoi region associ-
ated with a line segment si if and only if si gives the worst
(largest) aspect ratio, that is,

asp(p,si)≥ asp(p,s j) for any j 6= i. (5)

Figure 4. Subdivision of the plane by as-
pect ratios, which are defined by two circles
and one bisecting line for each line segment.
Each point is painted in a color assigned to a
line segment which gives a larger aspect ra-
tio.

This also implies that a Voronoi region V (si) for si is defined
by

V (si) = {p ∈ R2|asp(p,si)≥ asp(p,s j) for any j 6= i}.
(6)

Each Voronoi region is bounded by curves at which two
line segments give the same aspect ratio, which are either
circular arcs or degree-3 curves defined earlier (lines and
hyperbolas if any degenracy). Endpoints or intersection
of those curves (referred to as primitive curves, hereafter)
are Voronoi vertices and those primitive curves joining two
such vertices are Voronoi edges. A minimal region bounded
by Voronoi edges is called a Voronoi cell. Every Voronoi
cell is associated with a line segment, but the reverse is not
always true. That is, a Voronoi region for a line segment
may be divided into many Voronoi cells.

The partition of the plane into Voronoi cells is called an
aspect-ratio Voronoi diagram for the set of line segments.
Two such Voronoi diagrams are shown in Figure 5, one for
a triangle and the other for a convex polygon. In each case
Voronoi regions are distinguished by colors each defined for
a line segment. The lower Voronoi diagram contains discon-
nected Voronoi regions.

Now, let us analyze the combinatorial complexity of our
Voronoi diagram for n line segments. First recall that an
aspect ratio asp(p) at a point p is defined as the largest value



Figure 5. Two aspect-ratio Voronoi diagrams.
In general, the shortest side has the largest
Voronoi region.

among aspect ratios for all line segments, that is,

asp(p) = max{asp(p,s1),asp(p,s2), . . . ,asp(p,sn)}. (7)

Since asp(p,si) is defined at any point p, if we regard the
value as the height at the point, the function asp(p,si) is a
terrain. We have n terrains and an aspect ratio asp(p) at a
point p is given by the largest value among them. Thus, our
aspect-ratio Voronoi diagram is an upper envelope of those
n terrains. The result by Halperin and Sharir [4] gives a
bound O(n2+ε) for any small positive constant ε . Thus, the
complexity of our aspect-ratio Voronoi diagram is O(n2+ε).
Fortunately, we can improve the bound to O(n2) in the fol-
lowing theorem.

Theorem 2 An aspect-ratio Voronoi diagram for a set of n
lines in the plane consists of O(n2) Voronoi vertices, edges,
and cells.

Proof: As stated above, an aspect ratio is given as an upper
envelope of n terrains. We further decompose each terrain.
Recall that an aspect ratio for a point p and a line segment
s = (p1, p2) is defined by the ratio of the longest side over
the shortest side. In other words, it is the maximum among
six ratios between two sides of a triangle Tr(p,s). There-
fore, we have

asp(p,s) = max{d(p, p1)
|s| ,

d(p, p2)
|s| ,

|s|
d(p, p1)

,
|s|

d(p, p2)
,

d(p, p2)
d(p, p1)

,
d(p, p1)
d(p, p2)

},

where |s| is the length of s and d(p,q) is the distance be-
tween two points p and q. If we consider the above six
terms separately, two of them are convex cylinders with the
bottom at endpoints of s, other two of them are concave
cylinders with the top again at endpoints of s, and the the
remaining two are not cylinders but concave with infinite
height at endpoints of s. So, we have 2n convex terrains and
4n concave terrains and the upper envelope of those terrains
gives us an aspect-ratio Voronoi diagram. The complexity
of the upper envelope of 4n concave terrains is O(n2) and
so is that of 2n convex terrains. Thus, the combined upper
envelope also has the complexity O(n2). 2

Lemma 3 Given an aspect-ratio Voronoi diagram for a set
of n line segments in the plane, an optimal point to optimize
the worst aspect ratio is found either on Voronoi edges or
at Voronoi vertices. There are only a constant number of
peaks on each Voronoi edge.

Proof: A Voronoi edge is a primitive curve defined by two
line segments. Due to the shape of contour lines consisting
of 6 circular arcs, there are only a constant number of peaks



on the edge. If a point lies in the interior of a Voronoi cell,
we can always find a better point in its neighborhood. 2

Given a set of n line segments in the plane, we can con-
struct an aspect-ratio Voronoi diagram in O(n3) time. It
looks quite slow and there may be a more efficient algo-
rithm, but it also looks hopeless to have an algorithm run-
ning in subquadratic time in the worst case. In our case our
interest is only on a part of the Voronoi diagram in the inte-
rior of a given star-shaped polygon. It is not known whether
the diagram is simpler in the interior. A number of experi-
mental results indicate linear complexity. So, a naive algo-
rithm may be good enough for practical application (but no
theoretical guarantee at present).

5 Direct approach for finding an optimal
point

Our goal here was to find a point p∗ with the minimum
asp(p) value. We can find such an optimal point in a more
direct fashion. It is basically a binary search on the optimal
value asp(p∗). Fix a constant λ ≥ 1. Then, for each line
segment we can calculate a region R≥λ of points p such that
asp(p) ≥ λ . When we restrict our search space to the in-
terior of a given star-shaped polygon P, for any constituent
edge si the intersection of R≥λ (si) with the interior of P al-
ways consists of one connected region. If all those regions
have non-empty intersection, that is, if

R≥λ (s0)∩·· ·∩R≥λ (sn−1) 6= /0 (8)

then we can conclude that the optimal value asp(p∗) is not
greater than λ . Otherwise, that is, if the intersection is
empty, it is greater than λ . This enables a binary search. Al-
though the binary search does not give us an algorithm run-
ning in strongly polynomial time, parametric search leads
to a strongly polynomial time. Since the detail of an imple-
mentation of a parallel algorithm is so complicated due to
non-convexity of a region R≥λ (si), we just suggest possibil-
ity of a polynomial-time algorithm.

6 Practically reasonable algorithm

So far we have proposed two different approaches to find
an optimal point to minimize the worst aspect ratio. Un-
fortunately, however, none of the two algorithms seems to
be practical. In many applications we do not insist on an
exact solution. In such a case we could use a heuristic or
approximation algorithm. One way is to distribute many
points in the kernel of a given star-shaped polygon and then
evaluate those points p by their asp(p) values. Choose the k
best points among them (k should be say something like one
fourth of the number of those points). Construct the convex

hull of those points and limit our search only to the inte-
rior of the convex hull. We iterate this search some certain
number of times until the search space becomes sufficiently
small. Then, take the best point as a solution. This is a
heuristic algorithm.

7 Another Definition of Aspect Ratio

There is another way of defining an aspect ratio, which
might be more popular than the one above. A common
equation for an area of a triangle is to multiply the base
times the one-half the height. If we choose the longest side
as the base, the aspect ratio is defined by the ratio of the
longest side over the corresponding height, that is,

asp(T ) =
longest side

corresponding height
(9)

Suppose we are given a line segment s between two
points p1(x1,y1) and p2(x2,y2). An arbitrary point p(x,y)
in the plane defines a triangle Tr(s, p) by connecting p to
the two endpoints of s. Let L be the length of the longest
side of Tr(s, p) and h be the corresponding height. Recall
that the area S of Tr(s, p) is given by

2S = |x(y1− y2)+ x1(y2− y)+ x2(y− y1)|
= |(y1− y2)x+(x2− x1)y+ x1y2− x2y1|, (10)

which is linear in x and y. Since 2S = Lh, we have

asp(s, p) =
L
h

=
L2

2S
. (11)

Thus, we have three cases:
Case 1: pp1 is the longest side

L2 is given by (x− x1)2 +(y− y1)2, and thus we have

asp(s, p) =
(x− x1)2 +(y− y1)2

|(y1− y2)x+(x2− x1)y+ x1y2− x2y1| . (12)

Case 2: pp2 is the longest side
L2 is given by (x− x2)2 +(y− y2)2, and thus we have

asp(s, p) =
(x− x2)2 +(y− y2)2

|(y1− y2)x+(x2− x1)y+ x1y2− x2y1| . (13)

Case 3: p1 p2 is the longest side
L2 is given by (x1−x2)2 +(y1−y2)2, which is a constant,

say C, and thus we have

asp(s, p) =
C

|(y1− y2)x+(x2− x1)y+ x1y2− x2y1| . (14)

From the above observations it turns out that a contour
line of the same aspect ratio is a circle in the cases 1 and 2
and a line in the case 3.



Figure 6. Contour lines defined by aspect ra-
tios.

Figure 6 illustrates contour lines of different aspect ra-
tios. As is easily seen, fixed an aspect ratio, points of the
aspect ratio are either on circular arcs or on a straight line
segment. In fact, for any constant λ

asp(s, p) =
(x− x1)2 +(y− y1)2

|(y1− y2)x+(x2− x1)y+ x1y2− x2y1| = λ

(15)
gives a circle and

asp(s, p) =
C

|(y1− y2)x+(x2− x1)y+ x1y2− x2y1| (16)

gives a line.
Using the aspect ratio, we can also define a Voronoi di-

agram as before. Then, how can we characterize Voronoi
edges? We have seen that Voronoi edges for aspect ratios
defined by longest and shortest sides are given by circular
arcs and degree-3 curves. The circular arcs may be replaced
with lines and the degree-3 curves may be with hyperbolas
if any degeneracy. For the aspect ratio using longest side
and height Voronoi edges are either lines or degree-3 curves
and there are no degenerate cases.

Lemma 4 For two nonintersecting line segments in the
plane, a trace of points giving the same aspect ratio for them
is either a line or a degree-3 curve.

Proof: Voronoi edges are characterized by equations

(x− x1)2 +(y− y1)2

|(y1− y2)x+(x2− x1)y+ x1y2− x2y1|

=
(x− x3)2 +(y− y3)2

|(y3− y4)x+(x4− x3)y+ x3y4− x4y3| ,

(x− x1)2 +(y− y1)2

|(y1− y2)x+(x2− x1)y+ x1y2− x2y1|
=

C
|(y3− y4)x+(x4− x3)y+ x3y4− x4y3| ,

C
|(y1− y2)x+(x2− x1)y+ x1y2− x2y1|

=
C

|(y3− y4)x+(x4− x3)y+ x3y4− x4y3| .

The first and second equations give degree-3 curves and the
third one gives a line. 2

Figure 7 shows two Voronoi diagrams using the new as-
pect ratio.

8 Concluding Remarks

We have presented three different approaches to find a
point that optimizes the worst aspect ratio of triangles re-
sulting by inserting a point. The first two algorithms run
in polynomial time and find an optimal point, but the last
one does not. Nevertheless, the last one seems to be the
best among three for practical use. So, one important future
work is to establish a theoretical guarantee on the perfor-
mance of the third algorithm. It is also interesting to im-
prove the performance of the first two algorithms. It is also
interesting to use a different definition for aspect ratio.
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