Space-Efficient Algorithm for Image Rotation

Tetsuo Asano', Shinnya Bitou', Mitsuo Motoki!, and Nobuaki Usui?
1. School of Information Science, JAIST, Japan
2. Imaging Engineering Div., Products Group, PFU Limited, Japan

Abstract

This paper presents an algorithm for rotating a subimage in place without using any
extra working array. Due to this constraint, we have to overwrite pixel values by interpo-
lated values. Key ideas are local reliability test which determines whether interpolation
at a pixel is carried out correctly without using interpolated values, and lazy interpola-
tion which stores interpolated values in a region which is never used for output images
and then fills in interpolated values after safety is guaranteed. It is shown that linear
interpolation is always safely implemented. An extension to cubic interpolation is also
discussed.

1 Introduction

Demand for high-performance scanners is growing toward paper-less society. There are a
number of problems to be resolved in the current scanner technology. One of them is to
detect a direction of a document scanned, i.e., which side is the top of the document. One
way is to use OCR (Optical Character Recognition) technology to read characters which
is now common to scanners. Of course, we want to avoid using OCR since it takes time.
Another common problem which we address in this paper is correction of rotated documents.
If a document contains only characters, then OCR is definitely a solution. Since it is costly,
a geometric algorithm for such correction is required. It consists of two phases. In the
first phase we detect rotation angle. Some scanners are equipped with a sensor to detect
rotation angle. If no such sensor is available, we could rely on another algorithm called
Hough transform [1, 2] for finding line components to detect rotation angle. To simplify the
discussion, we assume a hardware sensor to detect rotation angle.

Once rotation angle is obtained, the succeeding process is rather easy if sufficient working
storage is provided. Suppose input intensity values are stored in a two-dimensional array af., .]
and another array b[.,.] of the same size is available. Then, at each lattice point (pixel) in
the rotated coordinate system we compute an intensity value using appropriate interpolation
(linear or cubic) using intensity values around the lattice point (pixel) in the input array and
then store the computed interpolation value at the corresponding element in the array b].
Finally, we output intensity values stored in the array b[]. It is quite easy. This method,
however, requires too much working storage, which is a serious drawback for devices such as
scanners in which saving memory is a serious demand for their built-in softwares and their
costs. Is it possible to implement the interpolations without using any extra working storage?
This is the question we address in this paper.

We propose a space-efficient algorithm for correcting rotation of a document without
using any extra working storage. A simple way of doing this is to compute an interpolation
value at each pixel in the rotated coordinate system and store the computed value somewhere

in the input array o[] near the point in the original coordinate system. Once we store an
interpolation value at some element of the array, the original intensity value is lost and it is
replaced by the interpolation value. Thus, if the neighborhood of the pixel in the rotated
coordinate system includes interpolated values then the interpolation at that point is not
correct or reliable. One of the key observations is that there is an easily-computable condition
to determine whether interpolation at a given pixel is reliable or not, that is, whether any
interpolated value is included in the neighborhood or not. Using the condition, we first
classify pixels in the rotated coordinate system into reliable and unreliable ones. In the first
phase we compute interpolation at each unreliable pixel and keep the interpolation value in
a queue, which consists of array elements outside the rotated subimage. Then, in the second
phase we compute interpolation at every pixel (z,y) in the rotated coordinate system and
store the computed value at the (x,y)-element in the array. Finally, in the third phase for
each unreliable pixel (x,y) we move its interpolation value stored in the queue back to the
(x,y)-element in the array.

This kind of topics may belong to Image Processing or Computer Vision. Unfortunately,
as far as the authors know, there are few studies in this direction. As images are growing in
size, space-efficient algorithms become more important. The algorithm in this paper may be
a good source to other space-efficient algorithims.

There are increasing demands for such space-efficient algorithms. The work in this paper
would open a great number of possibilities in applications to computer vision, computer
graphics, and build-in software design. Image rotation is one of the most important topics
for devices such as scanners. In fact, there are a number of patents such as [3] proposing a
method for rotating images so that the number of disc accesses is minimized and [4] using
JPEG compression.

This paper is organized as follows. In Section 2 we give a mathematical description of our
problem after preparing necessary notations and definitions. Then, in Section 3 we present
a condition to determine whether interpolation at a given pixel is reliable or not only using
local geometric information. Using the condition, we give an in-place algorithm for correcting
a rotated subimage without using any extra working storage. In Section 4 we conclude the
paper together with some open problems.

2 Problem Definition

In this section we formulate a problem mathematically. An input is an image which contains
a subimage rotated by some angle #. We assume that the rotation angle is a part of input.
Furthermore, for simplicity of argument we assume that the document is rotated in a counter-
clockwise way. Rotation in the opposite direction can be dealt with in a symmetric manner.

Refer to Figure 1. It is an image taken by a scanner. A document part in the figure
is rotated. Given such a rotated image, we want to correct the rotation. We first execute
interpolation at each pixel in the rotated subimage and store those interpolated values over
the input image.

2.1 Input image and rotated subimages

Input image G consists of h x w pixels. Each pixel (z,y) is associated with an intensity level.
The set of all those pixels (or lattice points in the xy-coordinate system) is denoted by Gih
and its bounding rectangle by Gyp.

g CAFTEET

£
s, Pe. 3
®

T
o manae

.
g AR
anT 0 e

Figure 1: An image containing a rotated subimage.

Rotated subimage R consists of H x W pixels, which form a set R#V of pixels (or lattice
points in the XY'-coordinate system). An intensity level at each pixel (X,Y") is calculated
by interpolation using intensity levels in the neighborhood.

We have two coordinate systems, one for the original input and the other for the rotated
document. They are denoted by xy and XY, respectively. The rectangle corresponding to
the input image is denoted by G, where w and h are horizontal and vertical dimensions of
the rectangle, respectively. By Gﬁh we denote a set of lattice points in the rectangle. More
precisely, they are defined by

Guh ={(z,y) |0 <2z <wand 0 <y < h}, and
G#, = {(a.y) |e =0,1,...,w— 1, and
y=0,1,...,h—1}.

We implicitly assume that intensity values are stored at array elements corresponding to
lattice points in the set Gﬁh. Now, we have another rectangle, which is a bounding box of a
rotated image. We denote it by Ry, where W and H are width and height of the rectangle,
respectively. The set of lattice points in Ry is denoted by R#V - More precise definitions
are given by

Ryp={(X,Y)|0< X <Wand 0<Y < H}, and
Ry, ={(X,Y)| X=0,1,...,W — 1, and
Y =0,1,...,H —1}.
Figure 2 illustrates two rectangles, G, as ABCD and Rwpg as PQRS.

2.2 Output image and location function

An interpolation value calculated at a pixel (X,Y) € R#V g 1n a rotated subimage is stored
(or overwritten) at some pixel s(X,Y) € ijh in the original input image. The function
s() determining the location is referred to as a location function. A simple function is
s(X,Y) = (X,Y) which maps a pixel (X,Y) in R}}, to a pixel (X,Y) in G¥,. We may use

h—1 Ry 1 Gwh

(X.Y) ¢ Gl
e i e A 1
w1 19—
w P VPO R
A Zo w—1 \B T

Figure 2: Two rectangles G, and Ry .

different location functions, but this simple function seems best for row-major and column-
major raster scans. So, we implicitly fix the function.

2.3 Correspondence between two coordinate systems

Let (x9,yo) be the xy-coordinates of the lower left corner of a rotated document (more exactly,
the lower left corner of the bounding box of the rotated subimage). Now, a pixel (X,Y) in
R#VH is a point (z,y) in the rectangle G, with

r=x9+ Xcosf —Ysinf, and
y=1yo+ Xsinf + Y cosb.

The corresponding point (x,y) defined above is denoted by p(X,Y).

2.4 Scan order o(X,Y)

Let o be a scanning order over the pixels in R#V g- It is a mapping from R#V g to a set of
integers {0,1,...,WH —1}, that is, 0(X,Y") = i means that the pixel (X,Y") is scanned in the
i-th order. If o is a row-major raster scan, o(X,Y) = X +Y x W where X =0,...,W —1
and Y = 0,...,H — 1. A column-major raster order is symmetrically characterized by
o(X,)Y)=Y+ X x H.

We could also use some angle to scan pixles. More precisely, we move a line of a specified
angle from bottom to top. Pixels are reported in the order when the line hits them. If we use
a line of a tiny angle counterclockwisely from the positive z-axis, then the pixels are reported
in the row-major raster order.

2.5 Window Ny(z,y) for interpolation

Following a scan order o, we take pixels in a rotated image and for each pixel (X,Y) we
compute an intensity value at (X,Y) by interpolation using intensity values of pixels in

the neighborhood of the corresponding point (x,y) = p(X,Y) in the input image. There
are a number of algorithms for interpolation. The simplest one called the nearest neighbor
algorithm copies an inteunsity level from the nearest pixel. Linear interpolation performs
interpolation by linear combination of intensity values at four immediate neighbors. An
algorithm using cubic polynomials for interpolation is called a cubic interpolation. Window
used for the interpolation is denoted by Ny(x,y), where d is a parameter to determine the
size of the window. The value of d is 1 for linear interpolation and 2 for cubic one. The
window Ny(z,y) for interpolation is defined by

Ny(z,y) = {(«,y') € G, |
lz) —d+1<4a
ly] —d+1<y

lz] +d,
Lyl +d}.

The set Ny(z,y) consists of at most 4d* elements. We do not describe how linear or cubic
interpolation is calculated.

<
<

2.6 Basic interpolation algorithm

The following is a basic algorithm for interpolation with a scan order ¢ and location function

s().

Basic interpolation algorithm
Phase 1:Scan rotated subimage
for each (X,Y) € R#VH in a scan order o do
- Calculate a location p(X,Y) = (z,y) in the
xy-coordinate system.
- Execute interpolation at (z,y) using intensity
levels in the window Ny(z,y).
- Store the interpolation value at a pixel s(X,Y")
€ th specified by the location function.
Phase 2: Clear the margin
for each (z,y) € Gﬁh do
if no interpolation value is stored at (z,y)
then the intensity level at (x,y) is set to white.

The basic algorithm above is simple and efficient. Unfortunately, it may lead to incorrect
interpolations since when we calculate an interpolation value at some pixel we may reuse
intensity levels resulting from past interpolations. More precise description follows:

Suppose we scan pixels in a rotated subimage R#V y and an interpolation value computed
at each point (X,Y") is stored at the pixel specified by the location function s(X,Y). We
say interpolation at (X,Y") € R#V y 1s reliable if and only if none of the pixels in the window
Ny(z,y) keeps interpolation value. Otherwise, the interpolation is unreliable. ”Unreliable”
does not mean that the interpolation value at the point is incorrect. Consider an image of
the same intensity level. Then, interpolation does not cause any change in the intensity value
anywhere. Otherwise, if we use interpolated values for interpolation, the computed value is
different from the true interpolation value. We use the terminology "unreliable” in this sense.
A pixel (X,Y) is called reliable if interpolation at (X,Y) is reliable and unreliable otherwise.

Figure 3 shows how frequently and where unreliable interpolations occur. The figure (a)
is the result when rotation angle is 5 degrees in a counter-clockwise direction with window

(a) (b)

(c) (d)
Figure 3: Distribution of unreliable pixels. In the figure pixels the region painted red (or
darkly painted part if no color is available) are unreliable. Image size is 234 x 170, and
rotation is counterclockwisely. (a) Row-major raster with d = 1 with rotation angle = 5

degrees, (b) same but with angle = 10 degrees, (c) same but with window size = 2, and (d)
same but with yo = 3.

of size 1. When we increase the rotation angle to 10 degrees, we have more unreliable pixels
as shown in (b). In the same setting, if we increase the window size from 1 to 2, then the
number of unreliable pixels increases further as shown in (c). All these results are obtained
when there is no left or bottom margin. If we have 3-pixel-wide bottom margin, i.e., yo = 3,
then all unreliable pixels are gone as shown in (d).

Figure 4 shows effects of other scan orders. The ordinary raster order is characterized
as left-to-right while bottom-to-top, that is, it first scans the bottom row from left to right
and then moves to its upper row. The figure (a) shows the result of the row-major raster
characterized as left-to-right while bottom-to-top. Similarly, (b) is the result for the row-
major reverse raster order characterized as right-to-left while top-to-bottom, and (c) as that
for the column-major raster order characterizied as bottom-to-top while left-to-right. In the
figure (d), pixels are scanned in the row-major raster order along 45-degree lines characterized
as left-to-right while bottom-to-top along 45-degree lines.

These experimental results suggest that the number of unreliable pixels heavily depend
on a scan order we choose. It must be related to rotation direction (left or right turn) and
also on rotation angle.

3 Lazy Interpolation and Local Reliability Test

An idea to avoid such incorrect interpolation is to find all unreliable pixels and keep their
interpolation values somewhere in a region which is not used for output image. In the
following algorithm we use a queue to keep such interpolation values.

[Lazy Interpolation)]
Q: a queue to keep interpolation values at unreliable
pixels.
for each pixel (X,Y) € R#V ; in a scan order o do
if (X,Y) is unreliable
then push the interpolation value at (X,Y") into
the queue Q.
for each pixel (X,Y) € R#V in the order o do
if (X,Y) is unreliable
then pop a value up from the queue) and
store the value at the pixel s(X,Y).
else calculate the interpolation value at (X,Y)
and store the value at the pixel s(X,Y) € Gﬁh.

Here are two problems. One is how to implement the queue. The other is how to check
unreliability of a pixel. It should be remarked that both of them must be done without using
any extra working storage.

Suppose we scan pixels in a rotated subimage R#V g according to a scan order o and
interpolation using a window of size d around each point (X,Y") is calculated and stored
at an array element s(X,Y) specified by the location function. Now we can define another

sequence 7 to determine an order of all pixels in Gﬁh to receive interpolated values. That is,
the function 7 is defined so that

T(s(X,Y)) =0(X,Y)

holds for any (X,Y) € R#V ;- Since a rotated subimage is smaller than the original image,
some pixels in the original image are not used for output image. That is, there are pixels
(x,y) in Gﬁh such that there is no (X,Y) in R#VH with (z,y) = s(X,Y). For such pixels
(x,y) we define 7(z,y) = W H. More precisely, 7 is a mapping from th to {0,1,...,WH}
such that
T(z,y) =i < WH if i-th computed interpolation
value is stored at (z,y) in Gih,
7(z,y) =W H if no interpolation value is stored
at (z,y).

Then, interpolation at (X,Y") is reliable in the sense defined in the previous section if
none of the pixels in its associated window keeps interpolated value, that is,

T(x,y) > o(X,Y) for each (z,y) € Ny(p(X,Y)).

This condition is referred to as the reliability condition.

3.1 Row-major raster scan

Consider a simple case where o is a row-major raster scan. Let (z,y) = p(X,Y), that is,

x=x9p+ Xcosf —Ysinh,
y =1+ Xsinf + Y cosé.

If we order those pixels in the interpolation window of size d around (z,y) in the order
of receiving interpolation values, then the first point is (|z] —d + 1, |y| — d + 1) because
interpolation values are also filled in Gﬁh in the same row-major raster order (restricted to
the part 0 < 2 < W and 0 < y < H). If the first part has not received any interpolation
value, that is, if 7(|z] —d+1,|y] —d+1) > o(X,Y), then the pixel (X,Y) is reliable.
Otherwise, it is unreliable. By the definitions of ¢ and 7, we have a simpler expression of the
condition.

Lemma 1 [Local Reliability Condition] Assuming a row-magjor raster order for o and
T, pizel (X,Y) € RfVH s unreliable if and only if

(1) 2o+ X cost —Ysinf —d+1< X and
Yo+ Xsinf+Ycos—d<Y, or

(2) 2o+ X cost —Ysinf —d+1< W and
yo+ Xsinf+Ycosh—d+1<Y.

Proof: By the condition stated above, a pixel (X,Y") is unreliable if and only if

(1) |zo+ Xcosf —Ysinf| —d+1<X —1and
lyo + X sinf +Ycosf] —d+1<Y, or

(2) |zo+ Xcosf —Ysinf| —d+1<W —1and
lyo + X sinf +Ycosf] —d+1<Y — 1.

Let a and b be two arbitrary positive real numbers. Then, [a| > [b] holds if and only if
a > |b]. Also, |a] < |b] holds if and only if a < |b] +1. (If [a] < bthena—1 < [a] < b, and
soa<b+1 Ifa<b+1then |a] <a < b+ 1. Because of integrality, |[a| <b+1—-1=0b.)
Using these inequalities, the above condition can be restated as in the lemma. O

An importance of Lemma 1 is that it suggests a way of testing reliability of interpolation
at each pixel without using any working array. That is, it suffices to check the two conditions
in the lemma.

By Lemma 1, a pixel (X,Y") is unreliable if and only if

(1) Y > _1fcos0X + zo—d+1 and

sin 0 sin 0
Y > liicnoas6‘X + l?ioc_oge or
(2) Y > 0% - Wzl and
Y > X + el

By Ly,Ls9,Ls and L, we denote the four lines associated with the unreliability condition
above. They are defined by

. _ 1—cosf zo—d+1
LY =— X 4 Zo—dtl

sin 0 sin @
. ___sinf yo—d
LZ' Y = l—coseX + 1—cos 0

.Y = cos0 xy _ W=wotd—1
L3' Y = sin0X sin 6 ’

. _ _sinf —d+1
Ly Y = il x4

1—cosf —cos @ *

Then, a pixel (X,Y") is unreliable if and only if the point (X,Y") is above the two lines L;
and L9 or above the two lines L3 and Ly.

3.2 Column-major raster scan

What happens if we use a column-major raster order instead of row-major order? By similar
arguments we have a similar observation.

Lemma 2 Assuming a column-major raster order for o and 7, a pizel (X,Y) € R#VH s
unreliable if and only if

(1) 29+ X cos§ — Y sinf —d < X and
Yo+ Xsinf+Ycosd—d+1<Y, or

(2') 29 + X cos@ — Ysinf —d+1< X and
H>yy+Xsinf0+Ycos—-—d+1>Y.

By Lemma 2, a pixel (X,Y") is unreliable if and only if

(11) Y > _1fcos€X + To—d and

sin 0 sin 0
Y > by 4 ot or
(2) Y > — 1250 X + 2ofh and
Y < —snbx y Hovotdol

By L}, L}, L; and L) we denote the four lines above:

Lll: Y = _17COSHX 4 xo—d

sin 0 sinf ?
Ly Y = 25 X + P50,
L ¥ = - 150X + metil,
e

Figures 5 (a) and (b) depict the four lines and the region of unreliable pixels bounded by
them for each of the row-major and column-major raster orders.

3.3 Lazy interpolation for d =1

Now we know how to detect possibility of unreliable pixel each in constant time. If each pixel
is reliable, we just perform interpolation. Actually, if the bottom margin yg is large enough,
then the location s(X,Y") keeping interpolation value is far from a point (X,Y") and thus it

does not affect interpolation around the point. Of course, if the window size d is large, then
interpolations become more frequently unreliable.

Here we present an in-place algorithm for correcting rotation. For the time being we shall
concentrate ourselves in the simpler case d = 1. A key to our algorithm is the local test on
reliability. In our algorithm we scan R?fv twice. In the first scan, we check whether (X,Y) is
a reliable pixel or not each in constant time. If it is not reliable, we calculate an interpolation
value and store it somewhere in th using a pixel outside the rectangle determining the
output image. We call such a region a refuge.

In-place algorithm for correcting rotation

Phase 1: For each (X,Y) € R#V ; check whether a pixel (X,Y) is reliable or not. If it is
not, then calculate interpolation there and store the value in the refuge F'.

Phase 2: For each (X,Y) € R#V ; check whether a pixel (X,Y) is reliable or not. If it is

not, then update the value at (X,Y) € Gﬁh by the interpolation value stored in the
refuge F.
Otherwise calculate interpolation there and store the value at (X,Y") € Gﬁh.

The algorithm above works correctly when d = 1. The most important is that the total
area of refuge available is always greater than the total number of unreliable pixels.

Theorem 3 The algorithm above correctly computes interpolations for row-major and column-
magor raster scans with the location function s(X,Y) = (X,Y).

Proof: We do not prove correctness of the algorithm since it is almost trivial. We ouly
prove that we can always find a sufficiently large refuge F'. Because of similarity we only
prove the theorem for the row-major raster scan.

As described earlier, the region of unreliable pixels is divided into two regions, one
bounded by the two lines L; and Lo, and the other by L, and the left boundary of Ry g.
The two regions are denoted by R; and Ry in this order, as shown in Figure 5.

We have two rectangles G, corresponding to an input image and Ry g to a rotated
subimage. With the location function s(X,Y) = (X,Y), the output image is determined
by rotating Ry g clockwisely by the angle 6 and translating it so that the lower left corner
coincides with the lower left corner of G,,,. Drawing the horizontal line through the upper
right corner and vertical line through the lower right corner of Ry f, we have two regions Fr
and F4, as shown in Figure 2, which can be used as refuge. In other words, we can store any
values there without affecting correct interpolations to be output.

To ease the proof we assume that there is no margin between the two rectangles G, and
Ry 1, that is, the four corners of Ryy g all lie on the boundary of G,;,. In this case we have
xo = (H —1)sin# and yp = 0. Since d = 1, the line L; passes through (0, H —1) and L4 does
(0,0).

L].: Y = _].7(ZOSHX+ To

sin 6 sin 67
. __ _sinf yo—1
L2' Y = 1fcos0X + 1—cos6?
. ___sinf Yo
L4' Y = l—coseX + 1—cos 0"

The angle o between the line L, and the vertical line is smaller than 6 because

1- 0
tan(a) = ﬁ < tan®.

10

Thus, the area of the region (R; in Figure 5 (a)) bounded by L, and the left boundary is
smaller than the refuge Fp bounded by the line RQ and the right boundary of G, (see
Figure 2).

By the same reason we can also prove that the area of the region Ry bounded by L; and
Ly is smaller than that of the region F4 above the line SR in Figure 2. This completes the
proof. O

3.4 Lazy interpolation for d =2

With a larger window of size d > 2 the algorithm above does not work due to insufficient area
of the refuge. Fortunately, if the lower margin, yo, is at least d —1, then the lazy interpolation
for the column-major raster works correctly. When yg = d—1 and d > 2, the unreliable region
is the union of the two regions R; above L} and L} and Ry above L and below L). The line
L), passes through the origin, we can use the right refuge Fr as before for R;.

What about the region Ry bounded by L and L)? The line L is parallel to the horizontal
side of the rectangle G, and the line L% has smaller slope than the upper side of the rotated
rectangle. Hence, the angle between L and L/ is smaller than 6. This implies that the
region Ry bounded by L% and L/, has smaller area than the upper refuge F4. See Figure 6
for illustration.

In case of insufficient bottom margin, that is, if yg < d — 1, unfortunately, we cannot use
the algorithm above for a larger window, d > 2 since we may have so many unreliable pixels
even in the case. The idea here is to use a queue to store interpolation values at unreliable
pixels and pop them up whenever storing them does not cause any harm for interpolations.
The region outside the rotated image and the output image, shown in Figure 6, can be used
for the purpose.

Assume a row-major raster order. Suppose we are going to calculate interpolation at
pixels in a row Y. Then, the pixel values below the row |yo+ Y cos @] —d (including the row)
are never used for interpolations. Let us call the row the high limit for Y. If it is greater than
the previous high limit, i.e., [yo + (Y — 1) cos 0| — d, then we can safely store interpolation
values at the row. This observation leads to the following algorithm.

In-place algorithm 2 for correcting rotation

@ = a queue containing interpolated values, using the
region in the refuge.
for each row Y =0 to H — 1 do
foreach X =0to W -1
Compute interpolation at (X,Y).
if (X,Y) is unreliable
then push the interpolation value at (X,Y)
into the queue Q.
if [yo+Ycos@] —2> |yo+ (Y —1)cosf| —2
then Y' = [yo + (Y — 1) cos 0| — 2.
foreach X =0to W —1
if (X,Y”) is unreliable
then store the value popped from @ at
s(X,Y").
else calculate interpolation value at (X,Y”)
and store it at s(X,Y”).

11

Unfortunately, no formal proof has not been obtained for correctness of the algorithm
above. However, it has caused no problem for practical applications.

4 Concluding Remarks and Future Works

In this paper we have presented in-place algorithms for correcting rotation of a subimage
contained in an image using interpolation. We have shown that as long as interpolation
is implemented by linear interpolation algorithm we can always correct any rotation with-
out using any extra working array. Correctness proof for a larger window used for cubic
interpolation has been left as an open problem.

In this paper we considered two scan orders, row-major and column-major raster orders.
Many other scan orders are possible. In addition to row- and column major raster scans we
could scan an image at any angle. One of promising scans is the following: First, find a
rotation angle §. Then, round it to an angle ¢’ defined by two pixels in a rotated subimage.
Using this approximate angle, we can scan all of pixels in the rotated subimage without any
extra working storage.

It is interesting to evaluate and compare those scan orders by the number of unreliable
pixels. The best scan order may depend on margins. In our experience, if the bottom margin
is greater than the left margin then the row-major raster is better than the column-major one.
If the left margin is larger than the bottom margin, the column-major raster outperforms
row-major raster. But there is no formal proof.

Acknowledgments

The part of this research by T.A. was partially supported by the Ministry of Education,
Science, Sports and Culture, Grant-in-Aid for Scientific Research on Priority Areas and
Scientific Research (B).

References

[1] T. Asano and N. Katoh, “Variants for Hough Transform for Line Detec-
tion,” Computational Geometry: Theory and Applications, vol. 6, pp.231-252, 1996.

[2] R. O. Duda and P. E. Hart, “Use of the Hough Transformation to Detect Lines and
Curves in Pictures,” Comm. ACM, Vol. 15, pp. 11-15, 1972.

[3] D. Kermisch, “Rotation of digital images, ” United States Patent, 4545069, 1985.

[4] F.A. Micco and M.E. Banton, “Method and apparatus for image rotation with reduced
memory using JPEG compression,” United States Patent, 5751865, 1998.

12

(a) (b)

() (d)
Figure 4: Distribution of unreliable pixels. In the figure pixels the region painted red (or
darkly painted part if no color is available) are unreliable. Image size is 234 x 170 and
rotation angle is 10 degrees counterclockwisely, (a) Row-major raster (left-to-right while

bottom-to-top), (b) row-major reverse raster (right-to-left while bottom-to-top), (c) column-
major raster, and (d) row-major raster along 45-degree lines.

Figure 5: Regions of unreliable pixels, (a) for row-major raster order, and (b) for column-
major raster order.

13

[/
xo\ Gwh W_lw—l

Figure 6: The region of unreliable pixels and right and top refuges Fr and Fjy.

14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

