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Abstract

A zone diagram is a new variation of the classical notion
of Voronoi diagram. Given points (sites) pi,...,Pn
in the plane, each p; is assigned a region R;, but in
contrast to the ordinary Voronoi diagrams, the union
of the R; has a nonempty complement, the neutral
zone. The defining property is that each R; consists
of all x € R? that lie closer (non-strictly) to p; than
to the union of all the other R;, j # ¢ Thus, the
zone diagram is defined implicitly, by a “fixed-point

property,”
seem obvious.

and neither its existence nor i1ts uniqueness
We establish existence using a general
fixed-point result (a consequence of Schauder’s theorem
or Kakutani’s theorem); this proof should generalize
easily to related settings, say higher dimensions. Then
we prove uniqueness of the zone diagram, as well
as convergence of a natural iterative algorithm for
computing it, by a geometric argument, which also relies
on a result for the case of two sites in an earlier paper.
Many challenging questions remain open.

1 Introduction

Let us consider n points (sites) pi, ..., pn in the plane.
The left picture in Fig. 1 shows the (usual) Voronoi
diagram, while the right picture is the zone diagram, a
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Figure 1: Five sites are marked by crosses. The left
picture is the classical Voronoi diagram. The right
picture shows the zone diagram: FEach site p; has a
dominance region R;, and the distance of each point x
on the border of R; to p; equals the distance of x to the
union of the other regions.

new notion investigated in the present paper.’
For a point a and a set X C R? we define the
dominance region of a with respect to X as

dom(a, X) = {z € R*: d(z,a) < d(z, X)},

where d(-,-) denotes the FEuclidean distance and
d(z, X) = infxex d(z,x).

In the classical Voronoi diagram, the region of the
site p; is dom(p;,{p; : j # ¢}), and the regions tile
the whole plane. In a zone diagram, each p; also has
a region R;, but the union of all the regions has a
nonempty complement, called the neutral zone. We
require that

(LY R; = dom(pi, U Rj) foralli=1,2,...,n;
J#
TTn earlier papers [2, 1] we have used the longer name Vorono:
diagram with neutral zone, but here we propose the shorter term.



in words, the region of each site should consist of all
points that are closer (non-strictly) to the site than to
all of the other regions. This can be illustrated by a
story on equilibrium in an “age of wars”. There are
n mutually hostile kingdoms. The ¢th kingdom has
a castle at the site p; and a territory R; around it.
The n territories are separated by a no-man’s land,
the neutral zone. If the territory R; is attacked from
another kingdom, an army departs from the castle p;
to intercept the attack. The interception succeeds if
and only if the defending army arrives at the attacking
point on the border of R; sooner than the enemy.
However, the attacker can secretly move his troops
inside his territory, and the defense army can start from
its castle only when the attacker leaves his territory.
The zone diagram is an equilibrium configuration of
the territories, such that every kingdom can guard its
territory and no kingdom can grow without risk of
invasion by other kingdoms.

The notion of zone diagram is, in our opinion, very
interesting and it poses many mathematical and algo-
rithmic challenges. Moreover, zone diagrams or varia-
tions could be useful for modeling natural phenomena.
The classical Voronoi diagram, one of the basic geomet-
ric structures, appears in many fields and, among oth-
ers, it is frequently used as a mathematical model of a
simultaneous growth from several sites (cells in a tissue,
a crystal lattice, geological patterns, regional equilibria
in social sciences etc.). Voronoi diagrams and their nu-
merous generalizations (see, e.g., [3, 5]) subdivide all of
the space into dominance regions of the sites. However,
geometric structures are sometimes observed in nature
where the dominance regions do not cover everything,
which might be a result of growth process where the
growth terminates before the cell boundaries meet, due
to some non-contact action.

The above definition of the zone diagram is implicit,
since each region is defined in terms of the remaining
ones. So it 1s not obvious whether any system of regions
with the required property exists at all, and whether it
is determined uniquely. Here we answer both of these
questions affirmatively:

THEOREM 1.1. For every choice of n distinct sites

Pi,...,Pn € RZ there exists exactly one system
(R, ..., Ry) of subsets of the plane satisfying (1.1).

Perhaps surprisingly, already the case of two sites
(n = 2) is nontrivial. We showed existence and
uniqueness for n = 2 in [1]. Here the two regions are
mirror images of one another and they are bounded by
an interesting curve called the distance trisector curve.
We conjecture that this curve is not algebraic, and not
even expressible by elementary functions (but we have

no proof so far). On the other hand, points on it can be
computed to any desired precision in time polynomial
in the number of required digits.

The existence part of Theorem 1.1 is proved in Sec-
tion 4. We apply a well-known fixed-point theorem for
infinite-dimensional Banach spaces to a suitable space
of n-tuples of regions. This proof is conceptually simple
and it appears quite robust, in the sense that it should
be possible to adapt it to various natural generalizations
of zone diagrams, such as zone diagrams in R¢, zone di-
agrams of non-point sites, or a-zone diagrams (where
each point of R; should be a-times closer to p; than to
Uj;ﬂ R;, for some real parameter o > 0). We should
remark, though, that such modifications are not neces-
sarily trivial, since some elementary geometric estimates
are needed that might prove technically challenging in
some settings.

In Section b we prove the uniqueness in Theorem 1.1
and, at the same time, we also re-prove existence by
a different method, similar to the one we used in [1].
This method currently seems very much restricted to
the planar case of zone diagrams, and several obstacles
would have to be overcome before it could be generalized
to R3, say.

In the uniqueness proof, we consider a natural itera-
tive procedure for approximating the zone diagram. Let
the sites pi1,...,pn be fixed and let R = (Ry,..., Ry,)
be an ordered n-tuple of regions (nonempty subsets of
R?), where we assume p1 € Ry, ...,pn € Ry. We define
Dom(R) as the ordered n-tuple S = (S1,S52,...,5,)
of new regions, where S; = dom(pi,Uj;ﬂ R;). Thus,
rephrasing our definition of a zone diagram, an n-tuple
R = (Ri,...,Ry) of regions is a zone diagram of
Pi,...,Pn if 1t 18 a fixed point of the operator Dom,;
that is, if R = Dom(R).

For two n-tuples R = (Ri,...,R,) and S =
(S1,...,5%), let us write R < S if R; C S; for all
1 =1,2,...,n. It is immediate from the definition that
if R < S, then Dom(R) = Dom(S) (that is, the domi-
nance operator is antimonotone with respect to <). Let
IO = ({p1},...,{pPn}) be the (smallest possible) sys-
tem of one-point regions, let O(®) = (050)’ Cel Oﬁlo)) =
Dom(I(")) be the regions of the classical Voronoi dia-
gram of py,...,py, and for k = 1,2, ... we inductively
define I*) = Dom(0*-1), O®*) = Dom(1)).

Antimonotonicity of Dom and induction yield
IO < 1M <12 < ... and 0@ = O = O » ...
Moreover, if R is a zone diagram, i.e., satisfies R =
Dom(R), then we have 1Y) < R by definition, and in-
duction and antimonotonicity give I*¥) < R, < O%) for
all k. The I%*) form an increasing sequence of inner ap-
proximations of the zone diagram, while the O%) form a
decreasing sequence of outer approximations; see Fig. 2.
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Figure 2: The inner and outer approximations I*) and

o),

In Section 5 we show that the inner and outer ap-
proximations converge to the same limit, which has to
be the unique zone diagram. This also gives a quite
practical algorithm for approximate construction of the
zone diagram. The regions of the I%) and O®) can be
approximated by convex polygons with many sides—
this is how the pictures of zone diagrams in this pa-
per were obtained. With some care in implementation
one can actually get pairs of polygons that are prov-
ably inner and outer approximations, respectively, of
the regions of the zone diagram. Experiments indicate
that the convergence of this algorithm is quite fast, at
least for small sets of sites (each iteration is computa-
tionally demanding, though). Unfortunately, we have
no theoretical estimate of the convergence rate of this
algorithm. An example illustrating some of the difficul-
ties in proving estimates is given in Section 7. We also
mention some additional results and questions there.

2 A Guided Tour of Zone Diagrams

Before we start with proofs, we explain, mainly by
pictures, some interesting phenomena arising in zone
diagrams, illustrating that they behave very differently
from the classical Voronoi diagrams.

The left picture in Fig. 3 shows the zone diagram
of two sites (the distance trisector curve), and the right
picture shows the zone diagram after adding a third
site (marked by a small disk). The boundary curves
of the regions from the previous 2-site diagram are also
shown, and one can see that the region of the top site has
gained area after the new site was added (this cannot
happen in classical Voronoi diagrams). This is very
intuitive in the war interpretation: The animosity of
the two nearby sites weakens them and the top site gets

.

Figure 3: The zone diagram of two sites (left) and the
zone diagram after adding a third site marked by e
(right). The top site gains area, and the regions are
not bounded only by arcs of distance trisector curves.
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Figure 4: A flower (left); a small flower induces almost
the classical Voronoi region of an isolated site (right).

relatively stronger.

In a classical Voronoi diagram for sites p1,...,pn,
the region of p; is the intersection of the regions of p; in
the two-site Voronoi diagrams for all pairs {p;, p;}, j #
t. Consequently, each region is bounded by segments
that arise as bisectors of pairs of sites. Fig. 3 illustrates
that no analogy holds for zone diagrams. Indeed,
segments of the distance trisector curve do appear as
portions of the boundary of the regions for 3 sites, but
we also have other kinds of curves (near the bottom tip
of the top region in Fig 3). The proof in Section 5 tells
something about the nature of all curves that can ever
appear, but some interesting questions remain open.

The left picture in Fig. 4 shows an aesthetically
pleasing zone diagram. All of the regions are bounded,
which again doesn’t happen in classical Voronoi dia-
grams. Such “flowers” scaled down to a tiny size can be
used in constructing examples; the right picture shows
a small flower and an isolated site q. As the flower gets
smaller, the region of q approaches a halfplane, that is,
the region of q in a two-site classical Voronoi diagram
with a single site at the center of the flower.



3 Preliminaries

Here we introduce some notation and some simple
and/or known facts.

We note that for any X C R? the dominance
region dom(a, X) is a closed convex set, since it can
be represented as the intersection [ dom(a, {x}) of
halfplanes.

The boundary of a set X C R?is denoted by 0X.

In analogy to the dominance region notation
dom(a, X') we will also use the bisector notation defined
by bisect(a, X) = {z € R?: d(z,a) = d(z, X)}.

For a nonempty closed convex set C' C R? and a
point x € R? we let prox.(x) denote the point of C
nearest to x. It is well known that this point is unique.
Moreover, for C' fixed, the mapping prox. (the metric
projection) is continuous, and actually 1-Lipschitz.

We will need the following lemma, expressing a kind
of continuity of the dominance operator.

xeX

LEMMA 3.1. Let a € R? be a point and let X1 D X5 D
X3 D --- be a decreasing sequence of closed subsets of

R? with a & X1. Let us set X = (\pey Xix. Then
dom(a, X) = CI(U dom(a,Xk)),
k=1

where cl(.) denotes the topological closure.

Proof. The inclusion “D” is clear from X C Xj
for all & and antimonotonicity of dom(.). To prove the
opposite inclusion, we fix x € dom(a, X) arbitrarily,
we choose ¢ > 0 arbitrarily small, and we show that
there exists k = k(x,£) with d(x,dom(a, X;)) < e.
We may assume x # a, for otherwise, we even have
x € dom(a, X1).

Since a € X; and X; is closed, we have § =
d(a, X1) > 0. The set X lies outside the region shown
in Fig. 5. Elementary geometric considerations show
that all interior points y of the segment ax satisfy
d(y,a) < d(y,X). Let us choose such a point y with
d(y,x) < e.

A simple compactness argument, which we omit,
shows that for any point q we have d(q,X) =
limg s c0 d(q, Xi). Hence there exists k with d(y,a) <
d(y,Xr), and thus y € dom(a, X). Hence
d(x,dom(a, X)) < ¢ as claimed. a

4 Existence of the Zone Diagram

In this section we prove the existence of (at least one)
zone diagram for every set {p1,...,pn} of distinct sites
in the plane. Let R denote the set of all n-tuples
R = (Ry,..., Ry) of sets with p; € R; CR%

Figure 5: Illustration to the proof of Lemma 3.1.

Plan of the proof. We want to show the existence of
a fixed point of the dominance operator Dom: R — R
(defined in Section 1). We are going to apply the
following theorem (which can be seen as a special
case of two famous theorems in fixed-point theory,
Schauder’s and Kakutani’s; see, for example, Zeidler [6],

Corollary 2.13):

THEOREM 4.1. Let Z be a Banach space, let K C 7 be
a nonempty, compact, and convex set, and let F: K —
K be a continuous map. Then F has at least one fired
point.

In our application of this fixed-point theorem, we
will define a suitable set & C R of n-tuples of regions,
and we will define an embedding ¢: & — Z for a suitable
Banach space 7. The image ¢(8) will play the role of
K in the fixed-point theorem, and F is the mapping
K — 7 corresponding to Dom under ¢ (formally,
F = ¢poDomo ¢~ !). We thus need to verify that
K is convex and compact, that F'(K) C K, and that '
is continuous.

Here we will present our original “manual” ap-
proach to this task. We will define § in a slightly tricky
manner, which makes the verification of the above con-
ditions quite easy, except for checking the continuity of
F, which is not really hard but we need about 2 pages
of elementary geometric arguments and estimates.

An alternative strategy. An alternative, somewhat
simpler and, in a sense, more natural approach (leading
to a formally slightly weaker result) was suggested to
us by Eva Kopeckd. We sketch it here and then we
return to our original proof. First of all, we restrict
everything to a bounded region @, say a large square
containing all the sites, and prove the existence of the
zone diagram only in this region (that’s why the result



is formally weaker). Then we let @; be the intersection
of () with the cell of p; in the classical Voronoi diagram
of p1,...,Pn, and we define § as the set of all n-tuples
(S1,...,Sn) of nonempty closed sets with p; € S; C Q.
We equip this & with the Hausdorff distance metric;
formally, the distance of (S1,...,5,) and (S7,...,5))
equals max;—1 2 . n h(S;,S;), where h is the Hausdorff
distance. It follows from the work of Curtis, Schori and
West from the 1970s (culminating in [4], where other
references can also be found) that this § as a topological
space 18 homeomorphic to the Hilbert cube, which is a
compact convex subset of ¢5. Hence for application of
Theorem 4.1 1t is enough to verify that Dom maps &
into § (clear) and that it is continuous with respect to
the Hausdorff metric. This i1s similar in spirit to our
continuity argument below but simpler.

Radial functions. We return to our original
approach. Let S!' denote the umit circle; we will
interpret its points as angles in the interval [0, 27). We
will call a continuous function p:S* — [0,%] a radial
function. For such a p and a point p € R?, we define
a star-shaped region R = reg,(p) such that the ray
emanating from p at angle o« intersects R in a segment

of length tan(p(«)). Formally,

U PXa;

a€[0,27)

reg,(p) =

where x, = p + tan(p(«))(cos «, sin @)

(if p(o) = %, then px, is defined as the full semiinfinite
ray). Wenote that the length of the segment in direction
« is not p(«) but rather tan(p(a)). This ensures that
we deal with bounded radial functions, although the
considered planar regions are often unbounded. The
choice of the tangent function to map a bounded interval
to [0, 00) is somewhat arbitrary, but certainly not every
function would do. For example, we have to be careful
about how we measure the distance of regions, in order
to obtain continuity of the operator Dom.

For simplicity, let us assume that every two sites
pi # p; have distance at least 4 (this will save us one
parameter, standing for the minimum distance of sites,
in the forthcoming calculations).

Now we can define our Banach space and the set K.

DEFINITION 4.1. Let Z denote the Banach space of
all n-tuples p = (p1,...,pn) of continuous functions
pi: St — R, endowed with the supremum norm: ||p||e =
maxXj=1,2 . ..nMaXycg1 |Pi(04)|~

Let K C Z consist of all p € 7 satisfying the
following conditions:

(i) The image of each p; is contained in [0, 5] (that s,
pi s a radial function).

(ii) We have IV < reg(p) < O, where reg(p) =
(regp, (p1);- - regy (pn)) € R is the system of
regions defined by p (the componentwise inclusion
operator < and the I%) and O%) were introduced
in Section 1). (We note that this simply means
pointwise lower and upper bounds on each p;.)

(iii) Bach p; is 2-Lipschitz.

Further, we set 8§ = reg(K) (so reg plays the role of
=1 in the abstract outline of the argument given above).

The set K is clearly nonempty and convex (since
convex combinations preserve the conditions in the
definition of K'), and it is easily seen to be compact by
the Arzéla—Ascoli theorem, which implies, in particular,
that any closed set of uniformly bounded 2-Lipschitz
functions on a compact set is compact.

LEMMA 4.1. For every n-tuple R € 8 of regions we
have Dom(R) € S. Consequently, we the mapping
F:K — K given by F = reg™! o Dom o reg is well
defined.

Sketch of proof. Let S = Dom(R) = (S1,...,5).
Each S; is convex and hence given by a radial function,
so o = reg~1(S) is well defined. It satisfies condition
(ii) in the definition of K because of antimonotonicity
of the dominance operator. To check (iii) for o, we
note that in view of (ii), each S; contains the unit
disk centered at p;. Elementary argument, which we
omit, shows that the radial function of any convex S;
containing the unit disk around p; is 2-Lipschitz (a
slight refinement of the argument gives 1-Lipschitz). O

In order to apply Theorem 4.1, it thus remains to
prove the following.

-1

LEMMA 4.2. The mapping F = reg™ o Dom o

reg: K — K 1s continuous.

We give the proof of the above lemma in the
appendix. The existence of a zone diagram then follows
from Theorem 4.1.

5 Uniqueness of the zone diagram

In this section we prove both existence and uniqueness
of the zone diagram for any n distinct sites p1,..., pn,
as well as convergence of the iterative procedure de-
scribed in the introduction. The proof is divided into
two steps. The first step is the following quite intuitive
statement:

Lemma 5.1, Let 10 = (1% 18} be the inner
approzimations of the zone diagram and let O%) =



(ng), Cel Oﬁlk)) be the outer approrximations. For i =
1,2 n let us set

gLy ey

Iz' = Cl([j [Z»(k)), = ﬁ Ol(k),
k=0 k=0

where cl(.) denotes the topological closure.
(11,...,In) and O = (01,...
and O = Dom(I).

Then 1
(O

,Op) satisfy I = Dom(0)

Proof. This statement is not as obvious as it might
perhaps seem. First we check O = Dom(I); this is
entirely straightforward. Fixing ¢, we want to verify

O; = dom(pi, U Ij).

J#

(5.2)

Since for every k, I; D I](k) we have dom(p;, Uj;m’ I;) C
dom(pl, U]# I](k)) = Oik) and thus dom(p;, Uj;ﬂ I;) C
Nieo O;"’ = Oy; this is “C” in (5.2). For the converse
1nclu81on we assume X ¢ dom(pl, U: i i I;). Then there
exists jy and y € [, with d(x,p;) > d(x y). Setting
e = d(x,pi) — d(x,y), we can choose k sufficiently
large so that I](»f) contains a point y’ with d(y,y’) < ¢,
and then d(x,y') < d(x,y) +d(y,y') < d(x,¥)+¢ =
d(x,p;). Hence x ¢ dom(ps,U; I](»k)) = Ol(k), and
x & O; either. This proves (5.2).
We now turn to showing I = Dom(O); that is,

Iz' = dOHl(pZ', U O])

i
Here “C” is again straightforward, but “2” needs more
properties of dom(.). We apply Lemma 3.1 with a = p;
and X, = . ( ). Since the 02(1)

; ;éz are disjoint, we

have X = ﬂk 1Xk = U];tzﬂzol = U];tzoya
and so the lemma tells us that dom(pZ,U];m 0;) =

el (Upzy dom(pi, Uy OF)) = el(UiZ, 1°7Y)

=11 = 1I; as
required. Lemma 5.1 is proved. a

In the second step, which is the essence of the proof,
we establish the following:

PROPOSITION 5.1. Let the sites p1,...,pn be fized and
let S = (S1,...,5) and T = (T1,...,Ty,) be n-tuples
of regions satisfying S = Dom(T) and T = Dom(S).
Then S = T, and consequently, S is a zone diagram of
Pi;---sPn-

Proof of Theorem 1.1. Let T and O be as in
Lemma 5.1. Then Proposition 5.1 with S = I and
T = O shows that I = O is a zone diagram. Moreover,
if R is any zone diagram of p1, ..., pn, we have I(%) <

R < O for all k as was explained in Section 1. Hence
I <R <0 and R =1= O. Thus the zone diagram is
unique. a

Preparations for the proof of Proposition 5.1.
We assume that S and T with S = Dom(T) and
T = Dom(S) have been fixed. Since each S; and T;
1s a dominance region, it is a closed convex set. Since
I < 8, T, each S; and 7; contains a small open disk
around p;. Moreover, each S; is disjoint from all 75,
J # ¢, and vice versa.

We introduce the following terminology: Let a € S;
be a point. The nearest points of a are the points of
U?:z T; with the minimum distance to a. Since each T;
1s convex, it contains at most one of the nearest points
of a. The point a is called a singular point if it has
more than one nearest point; otherwise, it i1s called a
reqular point. All of this refers to the situation a € Sy;
if we speak about nearest points of some a € 75, say, we
mean the points of Ui;,,52 S; with the smallest distance
to a.

Let 4 € U?:z T; be a nearest point of a € 051. We
call it visible if the segment aa intersects S only at a,
and we call 1t obscured otherwise.

LEMMA 5.2.

(i) Let a € 851 and let & € |J;_, T} be a nearest point
of it, say with & € To. Then d(p1,a) = d(a,a) >
d(é, pz).

(i1) In the setting of (i), & is visible.

(iii) Let a and b be distinct boundary points of Sy, let
a be a nearest point of a and b a nearest point of
b. Then the segments ad and bb do not intersect,
except possibly if A =b

The proof is routine and we omit it, as well as the
proofs of the remaining lemmas in this section.

Let a be a boundary point of S;. For each of the
nearest points & of a, we consider the angle o = Zaap,
(measured counterclockwise; 0 < a < 27w). The left
nearest pownt of a is the one with o minimum. We
denote it by &a;; see Fig. 6.

We make the following convention: Let a and b
be two points on the boundary of some S; or T;. We
say that b lies left of a if the angle Zap;b, measured
counterclockwise, is between 0 and 7 (this will always
concern very close points a and b, and then we see b
on the left of a when looking from p;).

LEMMA 5.3. Let a € 051, let &; be the left nearest
point of a, and assume a; € T>. Then there exists a
neighborhood U of a such that all points of 051 lying



Figure 6: The left nearest point of a.

left of a and in U have exactly one nearest pownt, and
moreover, this nearest point lies on 0Ty, on the right
of &g, and near to it (as near as desired if U is chosen
small enough).

COROLLARY 6. As in Lemma 5.3, let a € 051 and let
a, € 915 be the left nearest point of a. Then for every
netghborhood V' of &, there is a neighborhood U of a
such that if C' denotes the portion of 0Ty lying in V
and right of &;, and if we let C' = bisect(py,C), then
a € C and the portion of 051 lying left of a and in U
coincides with the portion of C' lying left of a and in U.

Proof of Proposition 5.1. For contradiction let us
assume S # T. We call x a point of non-uniqueness if
x € S;AT;, where A denotes symmetric difference.

Let

ro = inf{d(p;,x) : x € S;AT;,i=1,2,...,n}
be the infimum of distances of points of non-uniqueness
to their respective sites. We have ry > 0, since each S;
and 7T; contains a disk of nonzero radius around p;.

We note that there is no non-uniqueness at rq itself;
that is, S; N B(ps,ro) = T; N B(ps, ro) for all ¢, where
B(p, r) denotes the disk of radius r centered at p. This
is because any closed convex set in R? with nonempty
interior equals the closure of its interior (and we apply
this to S; N B(pi, 7o) and T; N B(p;, ro)).

Clearly, there is (at least one) index ¢ that “causes”
ro; that is, with 7o = d(p;, S;AT;). For notational
convenience we assume that ¢ = 1 is such. By a
simple compactness argument, we can choose a sequence
(xj);?ozl of points in S1 ATy with lim; o d(x,p1) = 7o
and such that the x;’s converge to a point a. For
convenience we assume that all the x; lie left of a when
viewed from pj.

Figure 7: The case o, < 7.

By possibly exchanging the roles of S and T, we
may assume x; € 71 \ Sifor all j. Then a is a boundary
point of Sy since, on the one hand, it is in 77 and T}
coincides with S7 up until radius ry, and on the other
hand, it is in the closure of the complement of 5.

Let & € |J/_,T; be a nearest point of a and let
a € T;,. By Lemma 5.2(i) we have ry = d(p1,a) =
d(a,a) > d(a,p;,). Thus & € S;, as well, and it
follows that a is a boundary point of T3, too (since
Ty C dom(py, {&})).

It follows that the set of nearest points of a in
U?:zTi coincides with the set of nearest points of a
n U?:z S;. Let &; be the left nearest point of a. We fix
notation so that &, € 97> (then &, € 952 as well).

By Corollary 5.3, a small portion of 051 left of a
is uniquely determined by a small portion of 975 right
of &,, and similarly for 77 and S;. Hence by the non-
uniqueness assumption, 9,53 and 975 cannot coincide on
any small neighborhood right of &,.

We will distinguish several cases. First, if
d(as,p2) < d(p1,a) = rg, then also a small neighbor-
hood of &; has distance to ps smaller than rp, and hence
Ty and Sy coincide near &g, which is a contradiction.
From now on we thus assume d(ps, &) = rg = d(a, a,).

Next, we consider the angle ay, = Zajap;; see
Fig. 7. We claim that oy > 7. Indeed, we have 57,77 C
dom(p1,{as}), and if & < m, then this condition forces
051 and 9T} in a small left neighborhood of a to be at
distance smaller than rg to pi, which contradicts the
assumed non-uniqueness.

We also need to consider the angle & = Zps&aya; see
Fig. 8. If & < m, then by the same argument as above,
small portions of 973 and 955 right of &, coincide (since
T5,S2 C dom(pa, {a}) etc.), which is a contradiction.
Hence & > .

We now deal with the case & > w. Here Ty and S,
are contained in the region @ that is the intersection
of the halfplane dom(ps, {a}) with the halfplane h with



Figure 8: The angle &

--e P2

Figure 9: The region Q.

boundary passing through &, and perpendicular to ady;
see Fig. 9. Clearly, for any point x in the dark gray
wedge in Fig. 9, the nearest point in @ is &;. Therefore,
small portions of 951 and O0T) left of a are contained
in the bisector bisect(py, {&,}) (a straight line), and in
particular, they coincide—a contradiction finishing the
case & > .

Now we thus assume & = 7. In order to proceed,
we repeat for Ty, S3 and &; some of the considerations
made above for S7, 71, and a, with left changed to right.
First we can see that a is the right nearest point of &y,
for otherwise, small pieces of 075 and 9S- right of &,
would have distance at most 79 to ps and they would
thus coincide there, a contradiction.

Second, we can get a contradiction as above if
ap > m: For a small piece of 975 and 055 right of a,,
the nearest point is a, hence these pieces would be the
same straight segment.

Finally, we are left with the situation where ay =
& = 7 (in other words, p1, a, &;, and pz are collinear),
&, 1s the left nearest point of a, and a is the right nearest
point of &;. Let ¥ be a sufficiently narrow strip with
one side given by the line p1p2 and the other side on the
left of a, let Cy be the component of ¥ N JdS; adjacent
to a, and similarly, let Cy be the component of XN J7T5

Figure 10: The “daggers” example, documenting the
long-range influence in zone diagrams and the great
sensitivity to small changes in site positions. Crosses
represent sites and small circles represent tiny flowers.

adjacent to &;. Then Cy and C'5 satisfy

Cy = bisect(p1,C2) NE, 2 = bisect(pz, C1) N X.

By the results of [1] (a small modification of Proposi-
tion 6, with the symmetric interval (—a, a) replaced by
[0,a), and with almost no change in the proof), C; and
C5 are determined uniquely by these conditions; they
are the “distance trisector curves” investigated in [1].
Since we have the same property for the appropriate
pieces of 077 and 0S2, we again get a contradiction
to the assumption that S; and 77 should differ in any
neighborhood of a. Proposition 5.1 is proved. a

7 Concluding Remarks

Non-local influence and sensitivity in zone dia-
grams. We sketch an interesting example. The left
picture in Fig. 10 shows a zone diagram, a “dagger,”
with one isolated site q and three “flowers” marked by
empty circles, where each flower has 6 sites arranged at
the vertices of a tiny regular hexagon. As was observed
in Section 2, if the flowers are very small, the region of
the 1solated site is close to the classical Voronoi region
of q. In the present case it is (almost) a skinny triangle.
In the right picture, we have a small horizontal dagger
on the top. Then there are two tiny flowers and an iso-
lated site on the right, and these flowers plus the tip of
the small horizontal dagger induce a region of the iso-
lated site, which is also (almost) a skinny triangle. This
makes a larger vertical dagger on the right. This can
be iterated in a spiral-like fashion with any number of
progressively larger daggers. (Of course, a formal proof
that the regions truly look as claimed would be longer.)

This daggers example witnesses two things. First,



the location of the tip of the last (largest) dagger
depends on the location of all of the flowers and previous
isolated sites. Therefore, zone diagrams posses no
locality in a sense similar to classical Voronoi diagrams.
Second, changing the location of one of the flowers in
the first (smallest) dagger has a large influence on the
position of the tip of that dagger, which in turn exerts
an even much larger influence on the tip of the second
dagger, and so on. We have a complicated “leverage
effect,” again quite unlike in classical Voronoi diagrams.
We can also see that the convergence of the iterative
algorithm from Section 1 is likely to be relatively slow on
this example: The tip of the first dagger has to stabilize
very precisely before the second dagger has a chance
to approach its final state, etc. Therefore, a bound on
the convergence rate must take the number of sites into
account, as well as some parameter like the ratio of the
maximum and minimum site distances.

Combinatorial complexity of zone diagrams. For
a zone diagram R, singular points on the boundary of
a region R; are those with at least two distinct nearest
points in Uj;m’ R; (this notion has been considered in
Section 5). We could regard the singular points as
an analog of Voronoi vertices in a classical Voronoi
diagram, and the segments of JR; between consecutive
singular points as an analog of Voronoi edges. It can be
shown that each of these Voronoi edges e is contained
in the bisector of p; and some R;, j # ¢, which easily
implies that e is of class C' (with continuous first
derivative).

We can prove that the number of singular points,
as well as the number of “Voronoi edges,” is O(n),
where n is the number of sites. However, it should be
noted that a single “Voronoi edge” e C 0R; can still
be complicated: We have e C bisect(p;, '), where €’ is
a piece of OR; (for some j) which may contain many
singular points.

Crystal growth: Intuition and alternative algo-
rithm. Here is our original intuition for the unique-
ness proof. We imagine that a crystal starts growing
from each site p; at time ¢ = 0, and we let R;(¢) denote
its shape at time ¢ > 0. Initially each of the crystals
grows everywhere along its boundary at unit speed, but
as soon as the distance of a boundary point x € 9R;(¢)
to some R;(t) becomes d(x,p;), the growth at x stops.
It seems intuitively clear that the result of this growth
process should be a zone diagram, and actually the only
possible zone diagram. But proving it seems to require
some kind of “induction on the radius,” and here the
usual troubles with the continuous nature of the re-
als start (resembling the troubles with the intuitively
obvious arguments of the old masters of calculus, ar-

guments which were later replaced by the much more
complicated-looking proofs in contemporary textbooks
of analysis).

Our uniqueness proof shows that given R(t) =
(R1(1), Ra(t),..., Rp(t)) at some time ¢, we can
uniquely extend it to R(¢+¢) for some e = ¢(t) > 0, and
this is even “efficient” in the sense that the new pieces
of the boundary are given as bisectors of sites and old
pleces, or as pieces of the distance trisector curve. We
could thus start with R.(tg) for a suitable ¢y where all
R;(t) are disks of radius ¢y, extend to ¢, then to #a, etc.,
but if we take the proof as is, the steps {511 — {5 might
possibly get smaller and smaller and we might get an
infinite but bounded sequence tg <t <tg < ---.

It turns out that we can get away with finitely (and
even polynomially) many time steps if we are willing
to make the computation of a bisector of an already
computed curve and a site in a single step (as well as
the computation of the distance trisector curve). But
such operations may be too complex to be considered as
reasonable computational primitives, and further work
1s still needed.
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Figure 11: Ilustration to the proof of continuity of F.

8 Appendix

8.1 Proof of Lemma 4.2 We will actually prove
that I is C-Lipschitz for a (large) constant C' depending
on the point set P. Let p, p’ € K. Let us put o = F(p),
F(p),d=|lp—P|lo, ¢ = ||l — 6'||co. To prove
continuity, we want to show a strictly positive lower
bound on ¢ for every ¢ > 0. (It seems that apriori we
cannot assume ¢ small.)

Let € be attained for ¢ and 3; that is, ¢} (8)—o; (5) =
¢ (should the sign be opposite, we interchange p and
p'). Let y be the boundary point of .S; = reg,, (o) in
direction 3, and let s = |p;y| = tan(o;(5)). See Fig. 11.

Let us set s’ = tan(o;(3) + £/4), and let y’' be
the point of ! = reg,, (o}) at distance s’ from p; in
direction 3. This choice,

o =

2

instead of y’ lying on the
boundary of S (which looks more natural), guarantees
two things: First, y’ is at finite distance from p;,
and second, we have k = s’ — s < s. To verily
the latter claim, we note that we may assume ¢ =
5 —arctan s, and we use the Mean Value Theorem to
bound s’ — s = tan(arctans 4 £/4) — tan(arctans) =

1

€ 1 _ €
4 " cos?(arctanste/4) 4  sin2(3¢/4)° Now ¢ < 7T/2 -
3

arctan 1 = 7/4, and since for 0 < z <

< 7™ we have

86 On

and

—

sinz > 0.9z, we obtain s’ —s < 5 07527
the other hand, s = tan(§ —¢) = L 2 =
s’ — s < s is proved.

Since y is a boundary point of 5, it is easy to see
that there has to be a boundary point x of some R;,
Jj # i (where (Ry,..., Ry) = reg(p)), such that |xy| =
lypil| = s (briefly, points arbitrarily close to y but
outside S have points of some R; at distance arbitrarily
close to s, and a limit argument using compactness
provides the desired y). On the other hand, the open
disk of radius s’ = s + x centered at y’ is disjoint from
all R}, k # ¢, for otherwise, y’ wouldn’t lie in S}.

If we prove some lower bound 7 on the difference
s’ — |y'x|, then the open disk of radius 7 centered at x
is disjoint from all R}, and in particular, the point x’
on the segment p;x lying at distance 5 from x cannot

S
> 08

be inside R}. It follows that

N
>
1472 = 2¢2

§ = ||p—p’||co > arctan(r)—arctan(r—n) > 277
by the Mean Value Theorem (we have r — 5 > 1 since
R contains the unit disk centered at pj).

To estimate 7, we consider the triangle Ay’yx, and
by the Cosine Theorem we obtain

V52 + k2 — 25k cos(m — )
/52 + k2 + 2sK cos ¢

N
(1 - —(1 — cos go))

SK
= 5 - ?(1 — cos @),

ly'e] =

— cos )

IA

where we have used /1 — 2z < 1—2z/2for 0 < z < 1.
The Cosine Theorem for the triangle Ap;yx then yields

= [pix|” = 25%(1 - cos ),

and altogether we have
2 2

a
2ss8’ Z EK

n=-s—|y'x|>

(using the inequality s’ < 2s mentioned above).

For a we use the obvious estimate ¢ > 1 (from
the fact that S; contains the unit disk centered at
pi), as well as a = |p;y| > |yp;| — [Pips| > 7 — A,
where A denotes the diameter of P. Together we have
a > max(l,r — A) > r/2A (distinguishing the cases
r < 2A and r > 2A). Finally, for Kk = s’ — s we
have arctan(s’) — arctan(s) = ¢/4, and the Mean Value
Theorem (as usual) gives k = ' —s > fe-(14s?) > 1es”.

Putting the chain of inequalities together, we have

— Pl = 5>L> a &2

llp = £l 992 S 452 02 4"
S r? e €

= 4A2.872 4 128A2°

This shows that Dom is continuous, and even C-

Lipschitz for a suitable constant C'. a



