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Abstract

This paper considers how to distribute n? integers between 0 and n? — 1 as uniformly as
possible over an n x n square matrix. We introduce a discrepancy-based measure to evaluate
the uniformity. More precisely, we take a sum of matrix elements over every k x k contiguous
submatrix and define the discrepancy of the matrix as the largest difference among those
sums. It is known that if n and k are both even integers then we can construct zero-
discrepancy matrices. In this paper we present a scheme for achieving a new discrepancy
bound 2n when n is odd and k is 2. This is an improvement from the previous bound 4n.
We borrow basic ideas behind orthogonal Latin squares and semi-magic squares. An n-ary
number system also plays an important part.

This problem is closely related to digital halftoning. Low discrepancy matrices would
improve the quality of commonly used Ordered Dither Algorithm.

1 Introduction

Digital Halftoning is an important technique for the rendition of continuous-tone pictures on
displays that can only produce two levels. There have been a great number of methods for
digital halftoning. One of the most popular methods is Ordered Dithering which determines an
output level at each pixel by comparison with a threshold in a predetermined table called Dither
Matriz. The performance of the algorithm heavily depends on the Dither matrix.

A Dither matrix is an n X n square matrix containing integers 0,...,n? — 1. It is good when
those integers are uniformly distributed. To evaluate the uniformity we introduce a discrepancy-
based measure. More precisely, we take a sum of matrix elements over every k X k contiguous
submatrix (region) and define the discrepancy of the matrix as the largest difference among
those sums. This measure reflects human eye perception usually modeled using weighted sum of
intensity levels with Gaussian coefficients over square regions around each pixel [2]. It is known
by experience that a matrix with low discrepancy frequently produces good-looking pictures.
This is the reason why we are interested in finding a good matrix with low discrepancy.

The analogous geometric problem of distributing n points uniformly in a unit square has
been studied extensively in the literature [6, 9]. Usually, a family of regions is introduced to
evaluate the uniformity of a point distribution. If the points of an n-point set P are uniformly
distributed, for any region R in the family the number of points in R should be close to % area(R),
where % is the point density of P in the entire square. Thus, the discrepancy of P in a region R
is defined as the difference between this value and the actual number of points of P in R. The
discrepancy of the point distribution P with respect to the family of regions is defined by the
maximum such difference, over all regions. The problem of establishing discrepancy bounds for
various classes of regions has been studied extensively [7]. One of the simplest families is that
of axis-parallel rectangles for which ©(logn) bound is known [6, 9].



Figure 1: 3 x 3 contiguous submatrices (regions).

For the problem of establishing discrepancy bounds for families of regions (contiguous sub-
matrices), some preliminary observations are obtained in [1]. One basic observation is that we
can construct an n X n matrix of zero-discrepancy for a family of 2 X 2 regions if n is even.
A space-efficient algorithm is also presented in [1] for constructing a £™ x k™ matrix of zero-
discrepancy for a family of k£ X k regions. More precisely, given any matrix index (¢,j) we can
compute the corresponding matrix element of the index in constant time using only O(k?) work-
ing space instead of O(k?™) required to store an output matrix. It is also shown in [1] that
zero-discrepancy cannot be achieved if n is odd and k is even, and only trivial bound has been
obtained for the discrepancy in that case. In this paper we present a new scheme for achieving
a new discrepancy bound 2n when n > 5 is odd and k is 2. This is an improvement from
the previous bound 4n [1]. Basic tools and theories are orthogonal Latin squares, semi-magic
squares, and the n-ary number system.

2 Preliminary Definitions

For integers n > 1, let Z,(n) be the class of all n X n integer matrices such that all the integers
ranging from 0 to n — 1 are included exactly n times and let Zq(n) be that of all n x n matrices
which contain every value 0,...,n% — 1 exactly once. In this paper we only deal with square
matrices consisting of an odd number of rows (and columns) unless otherwise specified.

Given an n X n matrix P = (p; ;) and a region R C {0,...,n — 1}?, P(R) denotes the sum
of the elements of P in locations given by R, i.e., P(R) = Z(z’,j)eRpm' A contiguous k X k

region RE? C {0,...,n — 1}? with its upper left corner at (¢, ) is defined by RE? ={(, 7)) |
i'=14,...,i+k—1and j = j,...,7+k — 1}, where indices are calculated modulo n. 1 The
k x k-discrepancy of an n X n matrix P for the family Fj ,, of all k& x k regions is defined as

max P(R)— min P(R).
Re}-k,n Rlefkyn

Let N(k,n) be the set of all such zero-k X k-discrepancy matrices of order (k, n).

Theorem 1 [1] The set N(k,n) of zero-k X k-discrepancy matrices of order (k,n) has the fol-
lowing properties:

(a) N(k,n) is non-empty if k and n are both even.

(b) N(k,n) is empty if k and n are relatively prime.
(¢) N(k,n) is empty if k is odd and n is even.
(

(d) N(k, k™) is non-empty for any integers k and m, k > 2,m > 2.

'Throughout this paper, index arithmetic is performed modulo matrix size n unless otherwise noted.



It follows from the theorem that zero-discrepancy cannot be achieved in a basic case of n odd and
k even. In this paper we consider how much we can reduce the discrepancy of such a matrix in
this basic case. One simple question is whether we can achieve a ©(logn) bound as in geometric
discrepancy problems.

3 Basic Construction Schemes

A goal here is to design a low discrepancy matrix. We begin with some basic schemes for
constructing matrices having some nice properties.

3.1 n-Ary Number System

JFrom now on, we assume that n is an odd number not less than 3, and our target n X n
matrix C' € Zy(n). Since all such integers ranging from 0 and n? — 1 can be represented by two
digits in the n-ary number system, we can associate to each C' € Z;(n) two square matrices A
and B representing upper and lower digits. That is, each element ¢; ; of the matrix C' is given
by

Cij =N X a;; ‘|‘bi,j7 0 < ai7j,bi7]‘ < n, i,j = 0,1,...,71— 1.
Observe that C' € Zq(n) if and only if the two matrices A and B are in the class Z,(n) and
are mutually orthogonal, that is, no ordered pair (a; ;, b; ;) occurs more than once. So, we need
schemes for generating two mutually orthogonal matrices in the class Z,(n).

In the following, we first propose two schemes called Alternating Diagonal Sequencing and
Diagonal Repeating, and then propose another scheme obtained based on the first two scheme.

3.2 Alternating Diagonal Sequencing

Alternating Diagonal Sequencing is a scheme for generating a matrix A, = (a; ;) in the class
Z,(n) as follows.
R if 2+ 7 is odd,
YT \n—1- i, otherwise.
Recall that Rgzj) ={(,7),+1,7),(,j+1),(i+ 1,7+ 1)} is the 2 X 2 contiguous region on
an n X n matrix, and An(REZj)) is the sum of elements of A,, in the region Rgzj), that is,
An(Rf'?) = @i+ @1+ @+ g

By definition and the fact that » is odd, we have

21 if 2is odd and j =mn — 1,
Q5+ aij+1 = {2n—2—2i if 7is even and j =n — 1,
n—1 otherwise.
Hence, we have
@ 2n ifi<n-—1liseven and j =n — 1,
An(Rm):{Qn—él if iis odd and j =n — 1, (1)
2n — 2 otherwise.

Let A, = (a;;) be an n X n matrix defined by

Q;; = G p—1—;, foreach 7,7 =0,...,n—1.



Roughly speaking, A,, can be obtained by a clockwise 90 degree rotation of A,. Thus, we have

An (R

i 2n if i=n—1and jis odd, (2)

2n—4 fe=n—1and j <n—1is even,
) {
2n — 2 otherwise.

Consider the n x n matrix nA, + A,. For example, when n = 5, we have

4 0 4 0 4 0 3 2 1 4 20 3 22 1 24
1 3 1 3 1 41 2 3 0 9 16 7 18 5
5As+As=5x |2 2 2 2 2[4+]0 3 2 1 4| =110 13 12 11 14
31 3 1 3 41 2 3 0 19 6 17 8 15
0 4 0 4 0 0 3 2 1 4 0 23 2 21 4

Lemma 2 The matriz nA, + A, belongs to Z1(n).

Proof: First, it is obvious that all elements in nA, + A, are integers ranging from 0 to n? — 1.
Then, to complete the proof, each integer ranging from 0 to n? — 1 appears exactly once in
nA, + fln

Suppose there are two locations (4,5), (¢, j/) € {0,1,...,n — 1}* such that na,;; + G;; =
nag i+ ag ;. It follows that a; ; = a7 and a;; = Gy ;. By definition, each «a;; is either i
orn—1—1i. From a;; = ay v, we have ¢/ = ¢ if i + j and ¢’ + j' have the same parity, and
i = n — 1 — ¢ otherwise. On the other hand, we have a;,_1_; = a1 ,,_1_y from a;; = a; .
Then, we have 7/ = j if i + 7 and i’ 4 7' have the same parity, and 7' = n — 1 — j otherwise.

As a consequence, i + j and ¢ + j' have the same parity. Otherwise, 7+ j + ' 4+ j' must be
an odd, however, i—l—j—l—i’—l—j’—i—l—j—l—(n—1—i)+(n—1—j)_Qn—Q. Hence, 7' = ¢ and
j' = j. Therefore, we can conclude that each integer ranging from 0 to n? — 1 appears exactly

once in nA, —I—An,le nA, —I—A € Z1(n). O

Lemma 3 The 2 X 2 discrepancy of nA,, + A, is 4n.

Proof: Observe from (1) and (2) that there is no pair (¢, j) such that A, (R( )) and A, (R( )) are
both 2n or both 2n—4. Hence, the 2x2 sums of nA,+A, is at most 2nxn+2n—2 = 2n?4+2n—2
and are at least (2n —4) X n+ 2n — 2 = 2n? — 2n — 2. Indeed, nA, (Ré?)1 O+ A, (Ré?)1 )=
2n% + 2n — 2 and nA, (R(“)1 D+ A, (R(“)1 ) = 2n% — 2n — 2. Therefore, the 2 x 2 discrepancy
of nA, + An is 4n. O

Observe that, when n is even, the 2 x 2 discrepancy of nA, + A,, becomes 0, because we have
An(RE?j)) = fln(Rf?J)) = 2n — 2 for every (7, j) when n is even. Notice that the non-emptyness of
N(2, n) for even n is already shown in (a) of Theorem 1.

3.3 Diagonal Repeating

We now define another scheme called Diagonal Repeating for generating low discrepancy ma-

)

trices. We partition the n? locations of an n X n matrix into n disjoint regions Ly, ..., L,
along 45 degree lines as follows:

Ls=A{(,j)| (i +7) modn=s}, fors=0,...,n— 1.
We define an n X n matrix D,, = (d; ;) as follows:

P if (4,7) € L, with s is even,
Y ln—1—=s if (i,j) € Ls with s is odd.



For example, when n = 5, we have

Ds

Il
= WO
O =W
WO = N
N W O e =
N W O

Observe that the same number is repeated along 45 degree lines. So, it is called Diagonal
Repeating.
By definition, we have

n—2 if (i,j) € Ly with s <n —11is even,
dij+dijt1 = { n if (4,7) € L, with s is odd,

n — 1 otherwise.

Hence, we have

D, (R

27]

2n—3 if (¢,7) € L1, (3)
2n — 2 otherwise.

2n—1 if (i,5) € Ly_s,
) {

Let D, = (d;;) be an n x n matrix defined by

dAZ'j =d;p-1-i, foreach ¢,7=0,...,n - 1.

)

Here, D,, can be obtained by a clockwise 90 degree rotation of D,,. Analogous to Ls, we define
sets Ly, ..., L! | along —45 degree lines:

L={(i,5)] (j—1%) mod n=s}, fors=0,....,n— 1.

~

Then, D, = (d; ;) can be defined in terms of L’s as follows.

s fn—1-s if (i,j) € L), with s is even,
“ ] s if (i,7) € L. with s is odd.

Moreover, we have
X , 2n — 1 if (i,7) € Ly,
DRy ={ an—3 if (i,j)e L!_,, (4)
2n — 2 otherwise.

Lemma 4 The matriz nD, + D, belongs to Z1(n).

Proof: Again, it is obvious that all elements in nD, + D, are integers ranging from 0 to
n? — 1. Then, to complete the proof, each integer ranging from 0 to n? — 1 appears exactly once
in nD, + lA)

Recall that n is odd. Then, for every two pairs (¢,7) and (¢, 5"), d; ; = dp ;o if and only if
(i+j) mod n = (i’ + j') mod n, and d; ; = dys js if and onlylf(j—z)modn— (] —z)modn.
Moreover, the two sets Ls and L} intersect at a single location for every s,t = 0,...,n — 1.
Hence, for every two pairs (¢, 7) and (¢, j'), nd; ; + d; : g =ndy i+ d;s gif and only if i« = ¢/ and
j = j'. Therefore, we can conclude that each integer ranging from 0 to n? — 1 appears exactly
oncelnnDn—l—Dn,le nD,, —I—D € Z1(n). O

The following lemma shows that Diagonal Repeating can produce lower discrepancy matrices
than Alternating Diagonal Sequencing.

Lemma 5 The 2 X 2 discrepancy of nD,, + D, is2n+2.



Proof: From (3) and (4), the maximum and minimum 2 X 2 sums of Dn(R(z))s are respectively

(]
Dn(Rff_)Ln_l) =2n—1)xn+2n—1=2n?+n—1and Dn(Réi)z—l) =(2n—-3)xn+2n—-3=
2n% —n — 3. O

Fig. 2 shows a 9 X 9 matrix generated by the method.

X 94+

[ R G U S B ORI )
e S N JCE SIS, B ORI |
B I R B S Y JCR S N
N~ O 00— Oy W O
TN ~1 O 0 — O w
s TN -1 O 00— O W
Wk DTN -1 O 00— O
W TN N O o
— O W TN~ O
— O W TN~ O
W TN N O o
Wk DTN -1 O 00— O
s TN -1 O 00— O W
TN ~1 O 0 — O w
N~ O 00— Oy W O
B I R B S Y JCR S N
e S N JCE SIS, B ORI |
[ R G U S B ORI )

[ 8 64 24 48 40 32 56 16 72 7
63 26 46 42 30 58 14 T4 7
25 45 44 28 60 12 76 5 65
47 43 27 62 10 78 3 67 23

= |41 29 61 9 8 1 69 21 49

31 539 11 79 0 71 19 51 39

57 13 77 2 70 18 53 37 33

15 75 4 68 20 52 36 35 55

73 6 66 22 50 38 34 54 17

Figure 2: Low discrepancy matrix of size 9 X 9 (discrepancy = 20).

The discrepancy bound 2n 4 2 achieved by Diagonal Repeating is much better than the
bound 4n done by Alternating Diagonal Sequencing. Unfortunately, this bound is not optimal.
In fact, we reduce the discrepancy bound further to 2n in the next section. Nevertheless, this
bound looks near optimal because of the following theorem establishing a lower bound 2 on the
2 x 2 discrepancy for matrices in the class Z,(n). In fact, the theorem shown a stronger result.

Theorem 6 Let k be any integer such that 2 < k < n. Ifn and k are relatively prime, then the
k X k discrepancy of each A € Z,(n) is at least 2.

Proof: Let A € Z,(n). Observe that each matrix element is included in exactly k* different
k x k regions, and each integer between 0 and n — 1 appears exactly n times in A. Thus,

n—1n—1

SN AR = B0+ 14— 1) x = k0

=0 7=0

(n—1)
2

The lemma is proven by contradiction.

Suppose the k x k discrepancy of A is 0 for some A € Z,(n). It follows that that every k x &
region has the same sum k?*(n — 1)/2. Define a row sum r;; by r;j = a;; + -+ a; j4x—1. In
terms of r; js, we have r; j +ripy j+ -+ ripp—1,; = k*(n —1)/2 for 4,5 =0,1,...,n— 1, which
implies r; ; = ri4x ;. Since n and k are relatively prime, we have r;g =r;1 = ... =1r;,_ for
each 1 =0,1,...,n, and thus, r; ; = k(n — 1)/2 for each ¢, =0,1,...,n — 1. By applying the



same arguments to elements of A, it follows that all the elements of the matrix A are (n —1)/2,
which contradicts to the assumption A € Z,,(n).

Next, suppose the k x k discrepancy of A is 1 for some A € Z,,(n). Then, there are only two
different k X k sums Sy and 57 with S; = Sg + 1. For £ =0, 1, we denote by Rj the number of
k x k regions whose sums are S;. Then, we have Ry + R; = n? and 0 < Ry, Ry < n?. Then, we
have RoSo + R1S1 = k?n?(n — 1)/2. From Ro + Ry = n? and S; = Sp + 1, we have

Ry = anQ("QJ — 028y = n? (kQQ _ 50> .

Since n is odd and Sp is an integer, R is a multiple of n?, which contradicts 0 < Ry < n?. O

Observe from (3) that D,, has 2 x 2 discrepancy 2, and according the theorem, D, has the
lowest 2 x 2 discrepancy among all matrices in Z,(n).

4 Combined Strategy for Improving Discrepancy

We have presented two schema for generating low discrepancy matrices, i.e., Alternating Diag-
onal Sequencing and Diagonal Repeating. The discrepancy bound achieved is 2n + 2 for those
matrices in the class Zi(n) with n odd. In this section we propose yet another scheme, called
Modified Alternating Diagonal Sequencing, based on these two strategies to achieve a better
bound, 2n.

Here we take D, as the matrix for upper digits, which has the lowest 2 x 2 discrepancy
among all matrices in Z,(n). Recall that all the elements of D,, in the location given by L, have
the same value (for each (¢,7) € Ls, d; ; = s if s is even, and otherwise d; ; = n — 1 — s).

For lower digits, we take the matrices M,, = (m; ;) defined as follows:
¢ if (4,7) € Ly,
mi; =14 i if (4,j) € Ly with s > 2 and s is even,

n—1—1 otherwise,

For example, when n = 5,

4 0 0 4 0
1 1 3 1 3
Ms=12 2 2 2 2
1 3 1 3 3
4 0 4 4 0

By the definition of M, for each s =0, ..., n— 1, all elements of the matrix M, in the locations
given by Ls have different values, i.e., on matrix M,,, each of 0,...,n — 1 appears exactly once
in the locations given by Ls. This proof the following lemma.

Lemma 7 The matrices nD,, + M, belongs to Z1(n).

Now we estimate the 2 x 2 discrepancy of nD,, + M,,. Recall that we have

2n—1 if (¢,7) € Ly—2,
Du(RP)y =4 2n—3 if (i,j) € L1,
2n — 2  otherwise,

Moreover, by definition, we have

Mij + Mij41 =

{21’ if (¢,7) € Ly,

n— 1 otherwise,



and thus,

n+2i+1 if (i,j) € Loand i <n — 1,
(2) n—1 if (i,j) € Lopand i =n — 1,
M (R;Y) n+2i—1 1f (1,7) € Ly,
2n — 2 otherwise (i.e, if (7,j) € L, with 2 <s<n—1).

Then, we obtain the following theorem.
Theorem 8 The 2 X 2 discrepancy of the matriz nD, + M, is 2n when n > 3.

Proof: Assume that n > 3. Then, from n —2 > 1,

M2 —n4+2i+1 if (¢,j) € Lo and i < n—1,
2n? —n—1 if (¢,j) € Lo and i =n — 1,
2n? —n+2i—1 if (i,5) € L
D M (2) — y 1,
(nDy, + M,)(R;) om? 4 — 2 if (i,7) € Ly—2,
20t —n —2 if (¢,7) € Ly—1.
2n? — 2 otherwise (i.e., if (¢,j) € Ly with 2 < s <n —3).

Hence, the largest and the smallest 2 x 2 sums in nD,, + M, are respectively 2n? + n — 2 (on
L,—3) and 2n% —n — 2 (on L,_1), and thus, the 2 x 2 discrepancy is 2n. O

In the following, the matrix nD,, + M,, with n = 9 is shown.

0 7 2 5 4 3 6 1 87 8 0 0 8 0 8 0 8 017
T2 5 4 3 6 1 8 0 11 v 1 7 1 7 1 7
2 5 4 3 6 1 8 0 7 2 6 2 6 2 6 2 6 2
5 4 3 6 1 8 0 7 2 5 3 5 3 5 3 5 3 3
43 6 1 8 0 7 2 5 | x94+[4 4 4 4 4 4 4 4 4
3 6 1 8 0 7 2 5 4 353 5 3 5 5 3 5
6 1 8 0 7 2 5 4 3 6 2 6 2 6 6 2 6 2
1 8 0 7 2 5 4 3 6 1 1 7 v 1 7 1 7

L8 0 7 2 5 4 3 6 1| L8 0 8 8 0 8 0 8 0 |

[ 8 63 18 53 36 35 54 17 72
64 19 52 37 34 55 16 73 7
20 51 38 33 56 15 74 6 65
50 39 32 57 14 75 5 66 21

4
e
o
w
—
)
o0

13 76 4 67 22 49
773 68 23 48 41
69 24 47 42 29
70 25 46 43 28 61
26 45 44 27 62 9

30 59
60 11
10 79
80 0

-~ =
= o N
ro

BN |
—

5 Conclusions

In this paper we have introduced a discrepancy-based measure to evaluate a class of integer-
valued matrices for application to digital halftoning. In the context of digital halftoning, a
problem is defined on a discrete plane instead of a continuous plane used in the traditional
discrepancy theory. We are also required to fill in lattice points by distinct integers instead of



just placing points on the continuous plane. We have observed that discrepancy is affected by
integral properties between a matrix size n and a region size k.

We have devoted to minimizing the discrepancy against a family of 2 x 2 regions. The region
size may be too small for practical application to digital halftoning. We could define a combined
discrepancy measure, that is, sum of discrepancy bounds for several families of regions such as
Dy (P) 4+ D3 (P) 4 -+ -+ Dy (P). What is know so far is that there is no matrix P for which
the combined discrepancy bound Dy, (FP) + D3, (P) is zero.

One technical open problem is to prove optimality of the discrepancy bound 2n we have
established in this paper. It is not so easy even for a small value of n. For example, when n is
five, we have 24! different matrices to check.
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Appendix: Dither Matrix

A motivation of this study comes from digital halftoning, which is a technique to convert a
multiple-level image A given as a matrix into a binary black-white image specified as a binary



matrix B to print it out in a printer. Although this is a quite practical topic, several theoretical
studies have been presented in relation to discrete geometry and combinatorial optimization [3,
2, 4]. A number of algorithms have been proposed so far. The following two are the simplest
ones among them.

Simple Thresholding

Given an n X n array A of real numbers between 0 and 1 representing intensity levels of pixels,
we want to obtain a binary array B of the same size which looks similar to A. The most naive
method for obtaining B is simply to binarize each input entry by a fixed threshold, say 0.5. It
is simplest, but the quality of the output image is worst since any uniform gray region could
become totally white or totally black depending on the intensity levels.

Ordered Dither

Instead of using a fixed threshold over an entire image, we could use different thresholds. A
simple way of implementing this idea is as follows: We prepare an M x M matrix of integers
from 0 to M? — 1. This matrix (dither matriz) is tiled periodically to cover the image. Each
pixel in the image is compared with the corresponding threshold from the dither array to decide
which color should be put at that location. That is, for each entry (¢,7) we have an input
value A(z,j) of a given image matrix A and an integer D(i modM,j modM) in the matrix. If
A(i,7) > D(i modM, j mod M)/M? then the corresponding output value is determined to be
1, and otherwise it is 0.

The performance of the ordered dither algorithm heavily depends on a dither matrix used.
Then, how can we define an optimal dither matrix? Imagine an artificial image of gradually
increasing intensity. During the transition from dark to bright, the number of white dots should
gradually increase. This means that for any number i between 0 and 22F — 1 those entries having
numbers greater than ¢ must be as uniformly distributed as possible in the dither matrix. The
uniformity can be measured in several different ways. One measure is based on the ratio of the
minimum pairwise distance against the diameter of the maximum empty circle.

One of most commonly used dither matrix is known as Bayer’s matrix given by Bayer in
1973 [5], which is shown in Fig. 4. Fig. 5 shows an output image using this dither matrix.
Artifacts caused by this dither matrix are clearly visible.

0(132] 8|40 | 2|34 ]| 10 | 42
48 | 16 | 56 | 24 | 50 | 18 | 58 | 26
12 144 | 4|36 |14 |46 | 6 | 38
60 | 28 | 52 | 20 | 62 | 30 | 54 | 22

313511 (43| 1133| 9|41
51 119 | 59 | 27 | 49 | 17 | 57 | 25
15 147 713913 45| 5|37
63 | 31 | 55 | 23|61 29|53 21

Figure 3: 8 x 8 dither matrix by Bayer.
Figure 4: An output image by Ordered

Dithering.

This dither matrix is defined as follows [8]. First, starting from a 1 x 1 matrix Dy = [0], we
recursively define Dy(k=1,2,...) as follows:

10



Dy — 4Dp_q 4Dp_q + 2U; 4
T ADgoy 43Uy 4Dy + Uy (5)

k—1 k—1 k—1 k—1
Here, Uy, is a 2% x 2% square matrix consisting of all 1s.

The above regular grid-like construction of the dither matrix is good enough in the measure
based on pairwise distance since it is constructed under the notion of incremental Voronoi
insertion. However, this matrix is very bad in the discrepancy measure. Consider a 2 X 2 region
R. 1t is not so hard to see that the sum in R is smallest when R is the upper left corner
and largest when it is the lower left corner. More concretely, their difference is 4% — 4 for a
2% x 2% matrix. This is almost equivalent to the total number of entries of the matrix. Thus, the
discrepancy of the dither matrix is ©(n?). Since the upper bound on the 2 x 2 discrepancy of any
matrix containing 0,1,...,n% — 1is O(n?), the Bayer’s dither matrix is the worst matrix in the
sense of discrepancy. In the next section we propose two schema for achieving low discrepancy

for 2 X 2 regions.

Lemma 9 Any n x n square matriz P defined by Fq.(5) is worst in the discrepancy measure,
that is,
D2 (P) = O(n?), (6)

Jor the family of all 2 X 2 regions, and
D2 (P') = O(n?), (7)

for any square matriz P’ in the class Zy(n).
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