
Algorithmic Evaluation of Line Detection Problem

Tetsuo Asano

School of Information Science,

JAIST

(Japan Advanced Institute of Science and Technology),

Asahidai, Tatsunokuchi, Ishikawa,

923-1292 JAPAN.

TEL: 0761-51-1295 (direct)

email:t-asano@jaist.ac.jp

Abstract

The Hough transform is a well-established scheme for detecting digital line components

in a binary edge image. A key to its success in practice is the notion of voting on an

accumulator array in the parameter plane. This paper discusses computational limitation

of such voting-based schema under the constraint that all possible line components in a

given image must be reported. Various improvements are presented based on algorithmic

techniques and data structures. New schema with less computation time and working space

based on totally di�erent ideas are also proposed with some experimental results.

Index Terms | computer vision, computational geometry, duality transform, Hough

transform, topological walk.

浅野 哲夫
北陸先端科学技術大学院大学情報科学研究科,

923-1292 石川県能美郡辰口町旭台 1-1

TEL: 0761-51-1295 (direct)

email:t-asano@jaist.ac.jp

1



1 Introduction

One of the most fundamental tasks in pattern recognition is to detect lines and curves from an

image. It is often done after some appropriate edge detection process that results in a binary

image in which pixels are classi�ed into edge points (pixels) and non-edge points. Up to now

a great number of algorithms have been proposed under the name of Hough Transform [7, 8].

Most of them are based on the voting technique on a subdivided parameter plane [4, 5, 9, 10,

12, 13, 14].

The basic idea of the voting technique is as follows: When a line passing through an edge

point is parameterized by the angle � and the distance � to the line from the origin, the edge

point is mapped to a sinusoidal curve in the ��-parameter plane. The intersection between

two such curves corresponds to the line passing through the edge points. Thus, the problem

is to compute busy intersections among a number of curves. Since edge points are located on

integer grids, it rarely happens that many edge points lie exactly on a line. So, the goal should

be to detect a set of edge points which lie roughly on a line. For this purpose the parameter

plane is partitioned into small regions called buckets or cells by axis-parallel lines, and for each

such bucket it is counted how often those lines pass through the bucket region. If the number

of such lines exceeds a predetermined threshold, then a digital line component corresponding

to the bucket region is reported.

In computational geometry the dual transform between points and lines is more common

than the above-described transform. It transforms a point (a; b) into a line y = ax + b and a

line y = �cx+d into a point (c; d). Again, an intersection between two lines for two edge points

in the original plane corresponds to the line in the dual plane which passes through these two

edge points. Thus, we can detect all digital line components by enumerating all intersections

at which many lines intersect.

This voting technique is easily programmed and also easily tuned for practical use. This is

why the Hough transform is commonly used. However, there are many problems to be resolved.

For example, an optimal way of partitioning the parameter plane is somewhat strange and not

good for e�cient computation.

In this paper we analyze the voting technique based on the Hough transform from a stand-

point of computational complexity following a mathematical de�nition of digital line compo-

nents to be detected. We also present a new algorithm for detecting line segments with two

endpoints considering their point density with some analysis of computational complexities.

2 Standard Hough Transform

The Hough transform is commonly used in computer vision for detecting lines and curves

in a binary edge image after some edge-detection process. Although edge detection is very

important, we do not want to discuss which algorithm for edge detection is appropriate for our

purpose.

It is a mapping from the image plane to the parameter plane. More precisely, any line

passing through an edge point (xi; yi) in the image plane is characterized by two parameters,

2



the distance parameter � and the angle descriptor � where � is the perpendicular distance from

the origin to the line and � is the angle the perpendicular makes with the x axis (refer to

Figure 1).

ρ

θ

i i
(x ,y )

x

y

Figure 1: The principle of the Hough transform.

Then, the line is described by the equation:

� = xi cos � + yi sin �: (1)

In the Hough Transform, the equation above is considered as a transformation from a point

(xi; yi) in the xy-plane to a curve � = xi cos �+yi sin � in the ��-plane. An important property

is that parameter values of � and � de�ning a line passing through two points in the xy-plane

are given by the coordinates of the intersection between the curves in the ��-plane for these two

points. Due to this property we can reduce the problem of detecting lines in the image plane

into that of �nding busy intersections of curves in the parameter plane. Another important

property is that any two such curves intersect exactly once in the range [� = 0, � = �] and the

distance � is always bounded by
p
2N where N is the length (number of pixels in a row) of an

image (assumed to be a square image). Thus, we are required to �nd intersections at which

many sinusoidal curves meet. Unfortunately, due to integrality of coordinates many points

rarely lie on a line. In fact, a line we can recognize in a binary image is a sequence of black

points (on grids) which lie su�ciently close to a line. To take such ambiguity into accounts,

the parameter plane is partitioned into small cells (rectangular regions). This corresponds to

quantization of � and � values to de�ne an accumulator array. That is, for each of the quantized

� values we compute the corresponding � value and put one vote into the cell de�ned by the �

and quantized � values.

Hough transform is a well-established scheme, but several problems are involved. Some of

them are listed below:

1: Threshold selection The voting process for all of edge points is followed by peak de-

tection in the accumulator array. When the voting process is over, the array elements

are scanned to �nd those which have the numbers of votes exceeding a predetermined

threshold value. There is no reasonable way to determine the best threshold value, which

may be dependent on image sizes and image types. Moreover, it may not be so good to

use the same threshold value over the entire image.

3



2: Suppressing non-maximal line components For safe side the threshold value should

be small enough to detect all line components, but on the other hand small value produces

so many line components. One solution to this tradeo� is to output only local peaks,

that is, those array elements which are largest among the adjacent elements. Such a

constraint seems to be reasonable, but there is no theory behind it. Actually it is easy to

create an example for which this approach fails to output maximal line components by a

choice of quantization. Ideally we want to output only maximal line components, which

are formally de�ned later. A question is whether it is possible or not. Theoretically, the

answer to this question is positive. We will show how to do it.

3: Distortion of the parameter plane A naive way of partitioning the parameter plane

into buckets is due to equally separated vertical and horizontal lines. Although this

partition is simple and easily implemented, it is also known that it does not lead to good

performance of line detection. The relationship between the size of bucket and property

of lines to be detected is also vague. In fact, there are some reports concerning the

distortion of the accumulator array [14].

4: Information on endpoints Outputs of the above-mentioned version of the Hough trans-

form are just coordinates of buckets, and thus no information on the lengths or endpoints

of those lines are not reported.

5: Density constraint Suppose that pixel count is the only information available in the

above-mentioned algorithm. Then, it is essentially di�cult to distinguish two equal-sized

groups of edge points such that the one is short and densely distributed while the other is

long but sparse. In practice, it is sometimes important to output only dense line segments.

However, density of line segments has not been characterized well in the literature.

3 De�nition and Characterization of Digital Lines

We start with the de�nition of our objects, digital line components. Throughout the paper we

assume that lines have slopes between 0 and 1 for simplicity. It is easy to adapt the following

discussions for lines of slopes greater than 1 or smaller than 0.

[De�nition: Digital Line Components]

A common algorithm to draw a line y = ax + b on a screen puts white dots at distance at

most 0:5 from the line. Such a set of grid points is called a digital representation of a line

y = ax + b and denoted by G(a; b). Then, a set P of edge points is called a (digital) line

component if there exists a line whose digital representation includes P , that is, there exist

a and b such that P � G(a; b). A line component is maximal if addition of any edge point

violates the condition above.

For those lines of slopes between 0 and 1 the vertical distance to the line is always smaller

(exactly no greater) than the horizontal distance. In this paper we are concentrated on those

lines: To deal with lines of slopes not in the above range it su�ces to exchange the x and y

coordinates. Thus, it does not lose any generality.

4



Now, the problem of detecting line components is described as follows:

[Problem of Detecting Line Components:]

Given a binary edge image of size N � N containing n edge points and a threshold t, report

all maximal line components of size greater than t in the image.

Our goals are listed below:

Goal 1: Report all maximal line components without reporting any non-maximal ones.

Goal 2: The algorithm should be robust against numerical errors and degeneracy.

Goal 3: Achieve low space complexity.

Goal 4: Achieve low time complexity.

Let P be a set of edge points. If P is a line component, there exist constants a and b such

that

�
1

2
� yi � axi � b �

1

2
(2)

holds for each point pi = (xi; yi) in P . Here again remark that our objects are lines with slope

between 0 and 1 and thus it su�ces to consider the vertical distance to the line.

We de�ned a line component corresponding to a parameter pair (a; b) by

G(a; b) = f(xi; yi) 2 G j �
1

2
� yi � axi � b �

1

2
g: (3)

When two parameter pairs (a; b) and (a0; b0) give the same set, i.e., G(a; b) = G(a0; b0) holds,

we say that they are equivalent. The equivalence relation partitions the parameter plane into

equivalence classes. Then, we can prove that each equivalence class contains a point of rational

coordinates.

Lemma 3.1 For any line component P , there is such a parameter pair (a; b) among those pairs

characterizing P that a and b are both rational numbers of the forms
q
p
and b = y � q

p
x � 1

2
,

respectively, where 0 � q � p � N � 1 and 0 � x; y � N � 1.

Proof: By the de�nition, there exist real numbers a and b that satisfy �1
2
� yi� axi� b � 1

2

for each point pi = (xi; yi) in P , and P � G(a; b): This set P of edge points is equal to that

of edge points contained in the region bounded by the two parallel lines b = y � q
p
x � 1

2
and

b = y� q
p
x+ 1

2
. Now, we translate these two lines downward (by decreasing the b values) until

one of the lines touches some edge point pj of P . Note that the set of edge points in the bounded

region remain unchanged as a set. Then, we rotate the two parallel lines counterclockwisely (by

increasing the value of a) around the point pj on the boundary until one of the lines touches

any other edge point pk of P .

After the above translation and rotation, two edge points (on integer lattice) pj and pk

must lie on the lines and the vertical distance between these two lines is exactly 1: Therefore,

both of the lines must pass through at least two integer lattice points (not necessarily edge

points of P ). This implies that the slope and y-intercepts of the lines are rational numbers

described in the lemma. 2

5



4 Voting Technique and Its Limit

Lemma 3.1 says that it su�ces to considerO(N2) di�erent slopes (a values), say (a0; a1; : : : ; aK),

where K = O(N2). For y-intercepts (b values), there are O(N4) possibilities since xi and yi

can take O(N) di�erent values. However, if a slope aj is �xed, then there are only O(N2)

di�erent b values. This means that if we make di�erent partitions for each slope then we can

save space complexity to O(N2 �N2).

Now we have a collection of one-dimensional arrays one for each slope instead of a uniform

2-dimensional array. When a slope a is �xed to aj in the range 0 � aj � 1, the largest and

smallest possible b values are de�ned by

b
(j)
min = minfyi � ajxi j 0 � xi; yi � N � 1g = �aj(N � 1);

b(j)max = maxfyi � ajxi j 0 � xi; yi � N � 1g = N � 1:

Such extreme b values are de�ned similarly for other ranges of a values. To de�ne buckets

for the slope aj , we partition the interval [b
(j)
min; b

(j)
max] into O(N2) small subintervals. Let

(b0; b1; : : : ; bN2) be the discrete b values de�ned by the mid-values of those subintervals.

Now, with the slope �xed to aj, for each edge point (xi; yi) we �nd all bk values satisfying

the inequality

�
1

2
� yi � ajxi � bk �

1

2
(4)

and then put one vote to each such bucket bk. Here notice that O(N) votes are put for each

edge point and thus it takes time. Of course, without any sophisticated algorithm or data

structure it takes O(N) time. One way for e�cient implementation is to �rst �nd the smallest

and largest bk values satisfying the inequality (4) by binary search, say bu and bv, respectively,

and then to put the interval [u; v] as a vote. If we have n edge points, n such intervals are

produced. Required is to enumerate all indices ks such that the number of intervals containing

k exceeds a prede�ned threshold. Fortunately, we can rely on a data structure, such as a

segment tree or interval tree [6], in which insertion of an interval is done in O(logN) time.

More precise description of such a data structure is here: Let M be the maximum number

of buckets to be prepared for a slope. The value of M may be di�erent depending on slopes.

Anyway, M = O(N2). We prepare a segment tree de�ned for the interval [1;M ]: The root

of the tree corresponds to the whole interval [1;M ]. It has two children, one for the interval

[1; b(M +1)=2c] and the other for [b(M +1)=2c+1;M ]: Generally, a node for an interval [L;R]

has two children for [L; b(L + R)=2c] and [b(L + R)=2c + 1; R] as far as R > L: Nodes of the

form [L;L] are leaves of the tree. Let T (u; v) denote the node for the interval [u; v]:

With this data structure we can implement the voting of an interval [j; k] as follows:

procedure voting(u; v; j; k)

(1) If the interval for a node T (u; v) is completely included in the voting interval [j; k], add

one vote to the node T (u; v) and terminate.

(2) If the voting interval intersects that of the left child T (u; v0) of T (u; v), then apply

voting(u; v0; j; k) recursively.

6



(3) If the voting interval intersects that of the right child T (u0; v) of T (u; v), then apply

voting(u0; v; j; k) recursively.

It is easily seen that the number of nodes visited by the procedure above is O(logM) =

O(logN): Thus, the voting process for a slope is done in O(n logN) time. When the voting

process is over, we have to enumerate all the leaves whose counts of votes exceed some threshold

and also greater than those of their neighbors. For each leaf [u; u] the number of intervals

including u is computed by taking the sum of counts of the nodes on the path from the leaf to

the root. This is a bottom-up process, and is done in O(N2), which can be improved to O(n)

although we do not go in detail.

Our algorithm proceed slope by slope. So, after �nishing one slope, we have to proceed to

the next slope. Before starting the voting process the segment tree must be initialized. It is

done in O(N2) time by a naive manner. However, it is possible to design a segment tree data

structure so that no initialization is required by keeping a version number. Again, we do not

go in detail.

The above process is iterated for each slope. Thus, the overall running time is improved

to O(nN2 logN +N4). Although this is a great improvement over the previous method which

takes O(nN4) time, it looks pessimistic to have further improvement without a revolutionary

change of idea.

5 An Algorithm Based on Arrangement of Lines

There is an algorithm based on a totally di�erent idea based on an arrangement of lines in the

dual plane. A basic idea is presented by the author [2]. In this paper we re�ne it.

Our basic idea is as follows: An edge point p = (x; y) is contained in a line component

G(a; b) when the following inequality hods:

�
1

2
� y � ax� b �

1

2
: (5)

Rewriting it, we have

�ax+ y �
1

2
� b � �ax+ y +

1

2
: (6)

A set of points in the dual plane which satisfy the inequality (6) above corresponds to a

tube bounded by two parallel lines. In other words, an edge point is mapped to a tube. When

tubes associated with two edge points have non-empty intersection, for any point (a; b) in the

intersection there is a line component for the line y = ax + b which contains these two edge

points. Thus, our task is again to compute intersections where many such tubes meet.

Drawing the 2n lines bounding the tubes in the dual plane, the dual plane is partitioned

into O(n2) small regions called cells. Here note that the cells in the arrangement are exactly the

equivalence classes de�ne earlier. That is, for any two points in one cell, their corresponding

line components are exactly the same. Thus, it su�ces to check all the cells. A naive method

to enumerate all the cells takes O(n3) time and O(n2) space, but Topological Walk by Asano,

Guibas and Tokuyama [1] can visit all of them in O(n2) time and O(n) space. An advantage of

7



the Topological Walk is that it can visit cells continuously. In other words, the next cell to be

visited is one of the cells adjacent to the current cell by an edge. Therefore, if we distinguish

upper and lower lines bounding tubes, it is not so hard to check the maximality of a cell.

More precisely, paint the upper line of a tube red and the lower one blue. Then, a cell is not

maximal if one of the lines in its upper boundary is blue since the cell just above the blue

line corresponds to a larger set of edge points. We have a similar observation for red lines on

the lower boundary. Thus, it is an easy observation that a maximal cell must be bounded by

red lines from above and by blue lines from below. This implies that we can always check the

maximality of a cell. Of course, a brute-force method for the check takes time. Fortunately, we

can do it spending only some constant time per cell: Topological Walk reports cell information

when it visits the rightmost vertex of a cell. So, we keep a Boolean information concerning

maximality for each cell under consideration. We can update the Boolean value in O(1) time

whenever we cross a line during the walk. See Figure 2 for pictorial illustration.

a=-1 a=1

upper boundary
lower boundary
maximal cell

Figure 2: Partition of the parameter plane into cells by tubes.

Another problem for practical implementation is caused by degeneracy. When we transform

edge points to tubes in the dual plane, many lines may happen to meet at one point. Since edge

points have integer coordinates, slopes and y-intercepts are rational numbers. In the worst case

O(N) lines meet at one point. Fortunately, Topological Walk is robust against degeneracy and

in fact it is proved in [3] that it is implemented without serious overhead on running time to

deal with degenerated cases. There is only one serious problem caused by a type of degeneracy,

which is caused by two edge points vertically adjacent by one lattice edge (more exactly, two

points of the same x coordinates but di�erent y coordinates just by 1). In this case the lower

boundary line of one edge point exactly coincides with the upper one of the other edge point.

They are di�erent only in their colors. To deal with this degeneracy, we have to deal with a cell

without an area (that is, a line segment). An alternative way is to use a di�erent width for a

digital representation of a line, more precisely, to use, say 6=11 instead of 1=2 in the equations

for tubes so that no two boundary lines coincide with each other.

8



Figure 3: Noise reduction by a fan�lter.

6 Fan�lter: Noise Reduction

The computational complexities of the two algorithms described so far heavily depend on the

number n of edge points. Especially the arrangement-based one runs in O(n2) time which is

independent on the image size, and thus it is crucial to remove as many noisy edge points as

possible. In this paper we propose a �lter which is specialized to remove noisy edge points.

The idea is simple: Suppose that we are trying to detect line components of slopes between

0 and 1 which satisfy the local density condition mentioned in the previous section. More

formally, we de�ne a notion of an �-dense line segment: A set P of edge points is said to be an

�-dense line segment if P contains at least � � w edge points in any interval [s; s + w � 1] of

length w such that [s; s+w� 1] � I(P ), where I(P ) is the interval de�ned by the smallest and

largest x-coordinates of edge points in P and w is some predetermined constant. To remove

noisy edge points which are not contained in any such �-dense line segment, for each pixel p

we de�ne an area consisting of two triangles meeting at p as depicted in Figure 3. We call

this area a fan area for p and denote it by Fw(p). More formally, the fan area for p consists of

two triangular areas swept by a line segment of horizontal length w rotating around p from its

horizontal position to 45 degrees, where w is some constant determining the fan size. In other

words, any line segment of horizontal length w with slope between 0 and 1 should be properly

included in the fan area if it passes through p. With these de�nitions it is clear that an edge

point is a noise if its associated fan area does not contain � � w edge points. Here note that

the reverse is not always the case. So, in this �lter we count for each edge point the number

of edge points in its associated fan area, and if the count is less than a threshold (� � w), we

remove it as a noise. In our experiments we settled the � value and the area size w to be 10=13

and 12, respectively.

The fan�lter described above is the one with slopes between 0 and 1. Other fan�lters for

the slope intervals [1;1], [�1;�1], and [�1; 0] are de�ned similarly.

Naive implementation of the fan�lter takes O(N2 + w2n) time (or O(w2n) time if edge

9



p p’

j j+1 j+w

i

i+w

j-w

B[j+1]

L[j-w]

A[j]

R[j+w+1]

Figure 4: E�cient implementation of a fan�lter.

points are stored in an array), which is not e�cient when n, the number of edge points, is

large. In the following we present an e�cient algorithm for implementing the fan�lter for large

n. The algorithm is based on raster scan. What we are required is to compute for each pixel

p the number of edge points contained in the fan area Fw(p). If it is done in the raster order,

after �nishing the process at a pixel p(i; j) we proceed to the next pixel p0(i; j +1). The count

for p0 is obtained by adding the numbers of edge points in the two darkly painted stripe regions

and subtracting those in the two lightly painted stripe regions to the count for the previous

pixel p (see Figure 4). Therefore, if we maintain such counts, then the update of the count is

done in constant time at each pixel. It is not so hard to maintain such counts in each row. At

the beginning of each row we can update such counts in constant time per each pixel in the

row, which takes O(N) time in total for a row, where N is the number of pixels in a row. For

example, an array element A[j] keeps the number of edge points in a stripe region of angle 45�

from the pixel at (i; j) to the one at (i�w; j +w). When we move down to the next row i+1,

the count A[j] is computed based on the count A[j � 1] for the previous row by incrementing

the count if the pixel at (i+ 1; j) is an edge point and by decrementing it if the extreme pixel

at (i�w; j +w) is an edge point. This is done in constant time. The other three counts B;C

and R in Figure 4 are similarly updated.

The overall running time is evaluated as follows: Four additions/subtractions are required

to compute the number of edge points in a fan area Fw(p) at each pixel p. At each row we need

to maintain the four arrays. The initialization at each row needs eight additions/subtractions

in total at each pixel. Only at the �rst row, 2wN additions are required to initialize the two

arrays extending downwards. Also, at the �rst pixel in each row, we compute the number of

edge points in the fan area in a brute-force manner. Thus, it takes w2N additions in total.

Summarizing all these operations, the number of additions and subtractions needed for an

N �N image amounts to 4N2 + 8N2 + 2wN + w2N ' 12N2 + (w + 1)2N . Since w is usually

much smaller than N , the second term is not dominant.

10



7 Randomized Algorithm

A third algorithm for detecting line segments is based on the notion of randomized algorithm.

Again our objective here is to detect line segments of slopes between 0 and 1. Other cases are

treated similarly. After applying the fan�lter to remove noisy edge points, it �rst decomposes

the resulting edge points into connected components. Here, we say that two edge points are

connected if one of them lies in the fan area for the other. The �lter size w determining the fan

area may be di�erent from that used for fan�lter. For the purpose here the size w should be

sensitive to the largest allowable gap between two consecutive edge points in a line segment.

This procedure can be e�ciently implemented even naively or by using some data structure

suitable for range search such as a quad tree [6].

In the best case each connected component gives one line segment. However, it may also

happen that a number of line segments form a single connected component since two line

segments of valid slopes are connected if they intersect each other. Thus, we have to check

each connected component whether it includes more than one line segment. It is an easy task.

Just construct a convex hull for the component and �nd its minimum width by computing the

closest pair of parallel supports bounding the convex hull. The convex hull is computed in

linear time since edge points in the component are sorted. The closest pair is also found in

linear time by the rotating caliper method [11].

Recall that the algorithm based on an arrangement of lines took O(n2) time for n edge

points. For practical purpose it is sometimes too severe to require reporting only maximal line

components without missing any maximal one. If approximate outputs su�ce, we can rely on

the idea of random sampling. That is, we randomly choose r edge points out of a connected

component consisting ofm edge points and apply a quadratic algorithm. If the size r of random

samples is O(
p
m), then the running time remains linear in the component size m. Of course,

the result depends on the size of random samples.

Given a set of random samples, we apply some quadratic-time algorithm to detect lines of

valid slopes. This time, it must be followed by a procedure to check whether detected lines

really exist and satisfy conditions to form line segments (largest gap, local minimum density,

etc.). It is done just by following the lines detected from left to right in the original edge image.

Since it takes O(N) time for each line candidate, we should rely on some other algorithm if

there are a number of line candidates.

8 Experiments

For experiments we used arti�cially generated images, which were used for the programming

contest organized by the special interest group on computer vision of Information Processing

Society of Japan in 1996. One of the test images is shown in Figure 5, which is of size 512�512.
It contains 28,461 edge points. Then the fan�lter for the slope range [0; 1] is applied twice.

The �rst fan�lter is the one for large n and the second for small n. This results in 3,143 edge

points after the �rst fan�lter and 1,795 edge points after the second one. The resulting image is

shown in Figure 6. Then, the randomized algorithm was implemented to �nd line components

11



Figure 5: Input binary edge image with 28; 461 edge points which was arti�cially generated.

of slopes between 0 and 1. The �nal result is shown in Figure 7. Again note that steeper

line components can be detected by exchanging x and y coordinates of edge points. The CPU

time was about 0.03 seconds including the time for the fan�lter. The computer used for the

experiment is SUN Workstation (Fujitsu version) S-7/400Ui with Solaris 2.6.

Acknowledgments

The author expresses his sincere gratitude to Yasuyuki Kawamura, Koji Obokata, and Takeshi

Tokuyama for their helpful comments in the theory and implementation. This work was par-

tially supported by Grant in Aid for Scienti�c Research of the Ministry of Education, Science

and Cultures of Japan.

9 Conclusions

Hough Transform is a well-established method for detecting lines and curves in a binary edge

image. In this paper we considered the problem of detecting lines from a point of computational

complexity and presented three di�erent directions. For theoretical point of view or in the sense

of asymptotical behavior, the second one based on an arrangement of lines is most reliable. It

achieves all of the goals listed in Section 3. Especially, it can be robust against numerical errors

and degeneracy if we use Topological Walk that is proved to be robust if it is implemented

using rational data types instead of 
oating-point data types. For practical use the conventional

method based on voting may be good enough. The third approach using random sampling may

12



Figure 6: The e�ect of the fan�lter: The image resulting after applying the fan�lter for the

slope interval [0; 1] twice, consisting of 1,795 edge points.

Figure 7: Line segments detected.

13



be located intermediate between the other two.

References

[1] T. Asano, L. Guibas, and T. Tokuyama, "Walking in an Arrangement Topologically," Int.

J. of Comput. Geom. and Appl., 4, pp.123-151, 1994.

[2] T. Asano and N. Katoh: "Variants for the Hough Transform for Line Detection," Com-

putational Geometry: Theory and Applications, 6, pp.231-252, 1996.

[3] T. Asano and T. Tokuyama: "Topological Walk Revisited," IEICE Trans. on Fundamen-

tals, vol. E81-A, 5, pp.751-756, 1998.

[4] M. Atiquzzaman: "Multiresolution Hough Transform | An E�cient Method of Detecting

Patterns in Images," IEEE Trans. Pattern Anal. Mach. Intell., PAMI-14, 11, pp.1090-1095,

1992.

[5] C.M. Brown: "Inherent Bias and Noise in the Hough Transform," IEEE Trans. Pattern

Anal. Mach. Intell., PAMI-5, 5, pp.493-505, 1983.

[6] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf: "Computational Geom-

etry: Algorithms and Applications," Springer, 1997.

[7] R. O. Duda and P.E. Hart: "Use of the Hough Transformation to Detect Lines and Curves

in Pictures", Comm. of the ACM, 15, January 1972, pp.11-15.

[8] P. V. C. Hough: "Method and Means for Recognizing Complex Patterns", U.S. Patent

3069654, December 18, 1962.

[9] J. Illingworth and J. Kittler: "The Adaptive Hough Transofrm," IEEE Trans. Pattern

Anal. Mach. Intell., PAMI-9, 5, pp.690-698, 1987.

[10] H. Li, M.A. Lavin, and R.J. LeMaster: "Fast Hough Transofrm," Comput. Vision Graphics

Image Processing, 36, pp.139-161, 1986.

[11] F. P. Preparata and M. I. Shamos: "Computational Geometry: An Introduction,"

Springer-Verlag, 1985.

[12] M. Seki, T. Wada and T. Matsuyama: "High Precision 
 � ! Hough Transformation

Algorithm to Detect Arbitrary Digital Lines," Proc. SIGCV Workshop of IPSJ, CV-84-2

(Jul. 1993).

[13] I.D. Svalbe: "Natural Representation for Straight Lines and the Hough Transform on

Discrete Arrays," IEEE Trans. Pattern Anal. Mach. Intell., PAMI-11, 9, pp.941-950, 1989.

[14] T. Wada, M. Seki, and T. Matsuyama: "High Precision 
 � ! Hough Transformation

Algorithm to Detect Arbitrary Digital Lines," Trans.D-II, IEICE of Japan, J77-D-II, 3,

pp.529-539, 1994 (in Japanese).

14


