Aspect-Ratio Voronoi Diagram and Its Complexity Bounds

Tetsuo Asano
School of Information Science,
JAIST (Japan Advanced Institute of Science and Technology)
1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
t-asano@jaist.ac.jp.

Abstract

This letter first defines an aspect ratio of a triangle by the ratio of the longest side over the
minimal height. Given a set of line segments, any point p in the plane is associated with the worst
aspect ratio for all the triangles defined by the point and the line segments. When a line segment
s; gives the worst ratio, we say that p is dominated by s;. Now, an aspect-ratio Voronoi diagram
for a set of line segments is a partition of the plane by this dominance relation. We first give a
formal definition of the Voronoi diagram and give O(n**¢) upper bound and Q(n?) lower bound
on the complexity, where ¢ is any small positive number. The Voronoi diagram is interesting in
itself, and it also has an application to a problem of finding an optimal point to insert into a simple
polygon to have a triangulation that is optimal in the sense of the aspect ratio.
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1 Introduction

Voronoi diagrams have been applied in many different areas and different purposes [1, 3]. In this letter
we define a new Voronoi diagram for a set of line segments in the plane, which is called an aspect-
ratio Voronoi diagram. This Voronoi diagram is characterized as follows: given a set of line segments
S1,.--,8, and a point p in the plane, we can define a triangle T'r(p, s;) for each line segment s; by
drawing lines from p to two endpoints of s;. Now, we define an aspect ratio asp(p, s;) of the triangle
Tr(p,s;) by the ratio of the longest side over the minimal height. In our criterion the smaller the ratio
the better the quality of the triangle. Given a set of line segments in the plane, the plane is divided
into so-called Voronoi regions each associated with one of the line segments. A point belongs to a
Voronoi region V (s;) for a line segment s; if s; gives the worst (largest) aspect ratio among given line
segments. Such a Voronoi diagram is well defined and it is quite interesting in itself. We investigate
the complexity of the Voronoi diagram, that is the number of Voronoi vertices, edges, and cells. We
prove O(n?*¢) upper bound and Q(n?) lower bound for a set of n line segments.

Once we construct such an aspect-ratio Voronoi diagram for a set of line segments, using the
diagram we can find a point p* that minimizes (optimizes) the largest (worst) aspect ratio. We are
especially interested in the case where a set of line segments form a polygon.

This Voronoi diagram has interesting properties, which are quite different from ordinary ones. First
of all it looks quite different from ordinary Voronoi diagrams for points. In our case Voronoi edges
consist of plane curves that are polynomials of degree at most 3 in z and y. A Voronoi region associated
with a line segment is not always connected. It may be divided into a number of connected regions or
cells. This fact leads to high complexity for the diagram.

This Voronoi diagram can be applied to another geometric optimization problem; Given a simple
polygon P, we want to find an optimal Steiner point p* such that the worst aspect ratio of the best
triangulation of P U {p*} is optimized. Difficulty is how to determine topology of triangulation (as a
graph), but once topology is fixed, an optimal Steiner point can be found on edges of the aspect-ratio
Voronoi diagram for P.



2 Definitions of an aspect ratio

Given a line segment s = pips and a point p in the plane, the aspect ratio asp(p, s) of the triangle
defined by connecting the two endpoints of s to p is defined by the ratio of the longest side L over the
minimal height h of the triangle, i.e.,

asp(p,s) = % (1)
By the definition, the aspect ratio is at least 2/ /3 for any triangle and a triangle of aspect ratio 2 / V3
is a regular triangle of three equal sides. There are some other definitions for aspect ratio. We could
use the shortest side instead of the minimal height. Or we could also use the circumcircle radius instead
of the longest side. Any such definition leads to an aspect-ratio Voronoi diagram. Reasons why we
are interested in our definition using the longest side and minimal height are that (1) it is common in
Finite Element Methods, (2) it is easy to extend to higher dimensions, and (3) the resulting Voronoi
diagram is mathematically or combinatorially simplest among them.

Figure 1: Three different definitions of aspect ratio. (1) L/h, the longest side L over the minimal height
h, (2) L/1, the longest side over the shortest side [, and L/r the longest side over the circumcircle radius
r.

Figure 1 illustrates the three different definitions of aspect ratio of a triangle characterized by the
longest side L, the minimal height h, the shortest side [, and the circumcircle radius r. Our definition
is L/h, while the other two are L/l and L/r. In our definition the ratio L/h goes to infinity if a triangle
is almost flat. On the other hand, for a flat triangle consisting of three sides of lengths 2,1 + ¢, and
1+ ¢ for a small positive constant ¢, the ratio L/l is very close to 2, but L/h is roughly proportional
to \/2/e (since €2 <« 2¢), which can be arbitrarily large.

3 Fundamental Properties

In this section we investigate fundamental properties related to aspect ratio. Suppose we are given a
line segment s connecting two points p;(x1,y1) and ps(x2,y2). An arbitrary point p(z,y) in the plane
defines a triangle T'r(s, p) by connecting p to the two endpoints of s. Let L be the length of the longest
side of Tr(s,p) and h be the corresponding height, which is also a minimal height of the triangle.
Recall that the area S of T'r(s,p) is given by

25 = lz(yr —y2) + a1y —y) + @2y —y1)|
= (w1 —y2)z + (22 — 21)y + T1Y2 — T201], (2)
which is linear in  and y. Since 2S5 = Lh, we have

L IL?

asp(p,s) = E = 25" (3)

It is very important to note that the longest side length is squared in the ratio since otherwise we have
to deal with a square root. The numerator, L2, is either quadratic in = and y or a constant which is



the squared length of the line segment s. The denominator, 25, is linear in z and y. These facts are
useful to simplify mathematical treatment.

There are two cases to consider depending on whether s is the longest side of the triangle T'r (s, p)
or not.
Case 1: pp; is the longest side (i = 1, 2)

L? is given by (z — x;)? + (y — :)?, and thus we have

(= )+ (g = o)
Y1 — y2)x + (T2 — 1)y + T1Y2 — T2Y1 |

asp(p, s) = T
Case 2: s = p1p> is the longest side
L? is given by (z1 — x2)? + (y1 — y2)?, which is a constant, say C, and thus we have

C
Y1 — y2)T + (T2 — 1)y + T1Yy2 — T2y1|

asp(p, s) = T (5)

Consider the level curve of aspect ratio of a triangle Tr(p, s) for a value A, denoted by L¢()), that
is,
Ls(A) = {p | asp(p,s) = A}. (6)
From the above observations it turns out that the level curve consists of a line segment parallel to s
and two circular arcs Cp, and (), passing through the endpoints p; and p», respectively. The curve
symmetric with respect to the supporting line of s is also the level curve for the same value A although
it is not illustrated in Fig. 2 to save space.
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Figure 2: A level curve of aspect ratio for the value of A. It consists of circular arcs passing through
the endpoints a and b of a given line segment ab and a line segment ayxby parallel to the given one
spaced by the length of the segment divided by A. Those endpoints ay and by are determined so that
[laball = [Ibax]|| = lab]|-

Figure 2 illustrates a level curve of aspect ratio for a value A. As is easily seen, given an aspect
ratio, points of the same aspect ratio are either on circular arcs or on a straight line segment. In fact,
for any constant A

(z —z1)* + (y —m)?
asp(p,s) = =A 7
P, ) |(y1 — y2)x + (22 — 1)y + 21y2 — T2y | @

gives a circle and
C
asp(p,s) = =) 8
PP, <) |(y1 — y2)x + (2 — 1)y + T1Y2 — T2y1 | (8)




gives a line.
Now we can characterize Voronoi edges at which the worst aspect ratio is given by two different
line segments.

Lemma 1 For two non-intersecting line segments in the plane, the trace of points giving the same
aspect ratio for them is either a line or a degree-3 curve.

Proof: The trace of those points is characterized by one of the following equations

(z—21)* + (Y —1)* _ (z —23) + (y —y3)”
[(y1 = y2)z + (w2 — 1)y + T1y2 — 2211 (y3 — ya)z + (24 — 23)y + T3ys — Tays|’
(z—21)* + (Y —1)* _ c
|(y1 —y2)z + (22 — 21)y + T1Yy2 — T201] (Y3 — ya)x + (24 — 23)y + T3ya — T4y3|’
c _ C
[(y1 — y2)z + (22 — 21)y + 1Y2 — 2291 | (ys — ya)z + (x4 — T3)y + T3ys — Tays|
The first and second equations give degree-3 curves and the third one gives a line. a

4 Aspect Center of a Triangle

A great number of centers are known for triangles. We can define a yet another triangle center using
the aspect ratio. Let P be a point in the interior of a triangle ABC. Then, it is called an aspect center
of the triangle if the three triangles PAB, PBC, and PC A have the same aspect ratio.

Theorem 2 Any triangle has a unique aspect center.

Proof: Let AABC be a triangle with three sides |AB| > |BC| > |C'A|. Consider a set S of points
P in the interior of AABC that satisfy asp(PAB) = asp(PAC). The vertex A belongs to S4. If we
move a point P within A ABC while keeping the condition asp(PAB) = asp(PAC), their aspect ratios
must monotonically change. The reason is as follows: consider a level curve Lxy (o) which consists of
points P such that asp(PXY) = a. Since AB is the longest side of AABC, its level curve Lap(a)
always consists of a line parallel to AB. On the other hand, Lac(«) is either a line segment parallel
to AC (if AC is a longest side of APAC) or a circular arc (otherwise) passing through A. The level
curve for AC can be a circular arc passing through C, but we can neglect the possibility because any
point in S4 must be above the line bisecting the angle at A. Another important observation here is
that the aspect ratio decreases if a point moves upward from somewhere on the level curve Lp(a).
It is also true that the aspect ratio decreases if a point moves to the right of the level curve Lac(a).
To keep the condition asp(PAB) = asp(PAC), the point P must be between those two level curves
Lap(a) and Lac(«). This means that point P must move in a direction between AB and AC. In
other words, the set S4 forms a simple curve partitioning the triangle AABC into two disjoint parts,
depending on which of asp(PAB) and asp(PAC) is larger and the curve is monotone in both of the
directions AB and AC.

This is also true for a set Sg of points P with asp(PBA) = asp(PBC). It forms a simple curve
monotone in both of the directions BA and BC'. Therefore, the two curves for S, and S must meet
at a single point, which is a unique aspect center. O

5 Aspect-ratio Voronoi diagram

Now we are ready to define an aspect-ratio Voronoi diagram for a given set S of line segments
S1,892,...,5, in the plane. We define the aspect-ratio Voronoi diagram in such a way that a point
p belongs to a Voronoi region associated with a line segment s; if and only if s; gives the worst
(largest) aspect ratio, that is,

asp(p, i) > asp(p, s;) for any j # i. 9)



This also implies that a Voronoi region V(s;) for s; is defined by

V(s;) = {p € B|asp(p, s;) > asp(p,s;) for any j # i}. (10)

Each Voronoi region is bounded by curves at which two line segments give the same aspect ratio,
which are either straight lines or degree-3 curves defined earlier (hyperbolas if any degeneracy). End-
points or intersections of those curves (referred to as primitive curves, hereafter) are Voronoi vertices
and those primitive curves joining two such vertices are Voronoi edges. A minimal region bounded by
Voronoi edges is called a Voronoi cell. Every Voronoi cell is associated with a line segment, but the
reverse is not always true. That is, a Voronoi region for a line segment may be divided into many
Voronoi cells.

The partition of the plane into Voronoi cells is called an aspect-ratio Voronoi diagram for the set
of line segments. Two such Voronoi diagrams are shown in Figure 3, one for a triangle and the other
for a convex polygon. In each case Voronoi regions are distinguished by colors each defined for a line
segment. In the right Voronoi diagram the Voronoi region for the top short edge is disconnected.

Figure 3: Two aspect-ratio Voronoi diagrams.

6 Complexity Bounds

Now, let us analyze the combinatorial complexity of our Voronoi diagram for n line segments. First
recall that an aspect ratio asp(p) at a point p is defined as the largest value among aspect ratios for
all line segments, that is,

asp(p) = max{asp(p) 31),asp(p, 32)7 R asp(p, Sn)} (11)

Note that each line segment is transparent, that is, any triangle T'r(p, s;) can intersect any other line
segment s;.

Theorem 3 An aspect-ratio Voronoi diagram for a set of n lines in the plane consists of O(n**)
Voronoi vertices, edges, and cells, where € is an arbitrarily small positive constant.

Proof: The aspect ratio asp(p, s;) is defined at any point p in the plane. It is natural to define
a terrain by regarding the value as the height at the point. We have n terrains and an aspect ratio
asp(p) at a point p is given by the largest value among them. Thus, our aspect-ratio Voronoi diagram
is an upper envelope of those n terrains.

We further decompose each terrain. Recall that an aspect ratio for a point p and a line segment
s = (p1,p2) is defined by the ratio L?/(2S) where L and S are the longest side length and the area of
the triangle, respectively. For simplicity we assume that the area is given by

25 =ax + by + ¢,



using appropriate constants a, b and ¢. Then, the aspect ratio at p(z,y) for s is the maximum among
three ratios:

2 2 2 2 2
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where ||s]| is the length of s.
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Then, the aspect ratio asp(p, s) is given as the point of the upper envelope of these three terrains just
above at p(z,y). These terrains are infinite at all points p lying on the supporting line of s. As a
point p moves away from the supporting line of s, the corresponding z value monotonically decreases.
So, we have 3n such terrains and the upper envelope of those terrains gives us an aspect-ratio Voronoi
diagram. Halperin and Sharir [2] proved O(n?*'¢) complexity of a single cell in such an arrangement
for any small positive constant e. The upper envelope mentioned above is a cell of the arrangement.
Thus, their theorem applies to our case. O

Although we do not have an example that matches the upper bound, the quadratic lower bound is
established:

Theorem 4 There is a star-shaped polygon with n vertices whose aspect-ratio Voronoi diagram con-
tains Q(n?) Voronoi vertices.

Proof: Consider the following star-shaped polygon P and a small square R in it. It has k = (n—6)/4
convex corners in each of the upper and lower sides. Each corner in the upper (resp., lower) side has
an edge whose extension hits the upper (resp., lower) right corner of R. There are O(k?) = O(n?)

intersections among those extensions. Consider any two edges s; and s, whose supporting lines intersect
at a point p in the interior of the polygon. Then, if we walk away from p on the supporting line of sy,

we enter the Voronoi cell for s;. Same for the edge s5. So, each such intersection is a Voronoi vertex.
O

Figure 4: Star-shaped polygon with an aspect-ratio Voronoi diagram of £(n?) Voronoi vertices.

7 Conclusions and Future Works

In this letter we have proposed a new Voronoi diagram using the notion of aspect ratio of a triangle,
which is commonly used in Finite Element Methods. We have also revealed the complexity bounds
of the aspect-ratio Voronoi diagram. A small gap still remains between its upper bound O(n?*%) and
its lower bound 2(n?). The author conjectures that it is ©(n?). A related open problem is to know
whether we can triangulate a set of points in the plane in polynomial time so that the worst aspect
ratio is optimized.
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