4. 正則言語の性質(1): (テキスト4.1,4.2)

- 4.1. 言語が正則でないことの証明
 - 有限オートマトンは状態が有限個しかない。
 - →「有限個の状態しかないと区別できないもの」は区別できない。

(典型的な)鳩ノ巣原理(Pigeon Hole Principle): n+1羽(以上)の鳩がn個の巣に入っている。このとき、どこかの巣には鳩が2羽以上入っている。

4. Regular Languages (1): (Text 4.1,4.2)

4.1. Non-regular language

- Finite automaton has <u>finite</u> states.
 - → It cannot distinguish infinite objects.

(Typical) Pigeon Hole Principle:

There are n+1 or more pigeons are in n nests. Then, there are at least two pigeons in some nest.

4. 正則言語の性質(1): (テキスト4.1,4.2)

4.1. 言語が正則でないことの証明

例: 言語 $L=\{0^n1^n \mid n \geq 1\}$

- n はどんなに大きくてもよい
- DFA A が m 状態なら、n>m のときに 0ⁿ1ⁿ に関して A のふるまいは...?

4. Regular Languages (1): (Text 4.1,4.2)

4.1. Non-regular language

Ex: Language $L=\{0^n1^n \mid n \ge 1\}$

- *n* can be <u>any</u> integer
- When DFA A has m states, what if the transition of A on the input 0^n1^n for n>m...?

例: 言語 $L=\{0^n1^n \mid n \geq 1\}$ は正則ではない。

証明: L が正則であったと仮定して、矛盾を導く。

L は正則なので、L を受理する DFA A が存在する。A の状態集合を q_1,q_2,\ldots,q_m とする(mは有限)。 n=m+1 のとき、鳩ノ巣原理から、

$$0,00,0^3,0^4,\ldots,0^n$$

の中には、「Aが遷移したときに同じ状態になる、長さの異なるペア」が存在する。これらを $0^i,0^j$ とおく。つまり A は $0^i,0^j$ のどちらを読み込んだときも同じ状態 q になる。

ここで入力 0^{i_1i} を考える。 $i \neq j$ なので、これは L の要素ではない。しかし A は入力 0^{i_1i} と入力 0^{i_1i} を区別できない。したがって、両方とも受理するか、両方とも受理しないか、どちらかしかできない。これは A が L を受理する、という仮定に反する。

Ex: The language $L=\{0^n1^n \mid n \ge 1\}$ is not a regular language.

Proof: To derive contradictions, we assume that L is regular.

Since L is regular, there is a DFA A accepting L. Let q_1,q_2,\ldots,q_m be the set of states (finite m). Suppose n=m+1. Then, by the pigeon hole principle, among the inputs

$$0,00,0^3,0^4,\ldots,0^n$$

there is a pair 0^i , 0^j with $i \neq j$ such that A translates to the same state, say q.

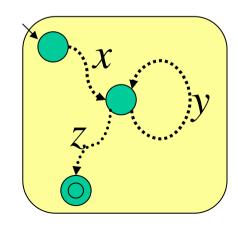
Now, consider the input $0^i 1^j$. Then, since $i \neq j$, that is not in L. However, A cannot distinguish $0^i 0^j \notin L$ with $0^j 1^j \in L$. Therefore, A has to accept both of them, or reject both of them. This contradicts that A accepts the language L.

Hence, L is not a regular language.

4. 正則言語の性質(1) (テキスト4.1,4.2)

ある言語が正 **則でない**ことを 示すのに使う 標準的な補題

- 4.1. 言語が正則でないことの証明
- 正則言語に対する反復補題(Pumping Lemma):
 - 正則言語 L に対し、以下の条件を満たす定数 n が存在する: $|w| \ge n$ を満たす任意の文字列 w ∈ L は、次の条件を満たす3個の部分列 w = xyz に分解できる。
 - 1. $y \neq \varepsilon$
 - $2. |xy| \leq n$
 - 3. すべての $k \ge 0$ に対し、 $xy^kz \in L$



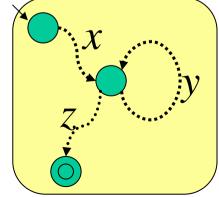
4. Regular Languages (1 (Text 4.1,4.2)

Basic lemma to show a language is not regular.

4.1. Non-regular language

Pumping Lemma for a regular language:

- For any regular language L, there is a constant n that satisfies the following condition: Any string $w \in L$ with $|w| \ge n$ can be decomposed to three substrings w = xyz.
 - 1. $y \neq \varepsilon$
 - 2. $|xy| \leq n$
 - 3. For all $k \ge 0$, $xy^k z \in L$



4.1. 言語が正則でないことの証明

反復補題(Pumping Lemma):

• 正則言語 L に対し、以下の条件を満たす定数 n が存在する: $|w| \ge n$ を満たす任意の文字列 $w \in L$ は、次の条件を満たす3個の部分列 w = xyz に分解できる。

 $(1) y \neq \varepsilon (2) |xy| \leq n (3) xy^k z \in L (k \geq 0)$

[証明] Lは正則言語なので、L(A)=LであるDFA Aが存在する。A の状態数を n とする。

長さn 以上のLに属する任意の文字列 $w=a_1a_2...a_m$ を考える。 $(m \ge n)$

A は文字列 $a_1a_2...a_i$ を処理したあと、状態 p_i になるとする。(初期状態を q_0 とすると $p_0=q_0$)

4.1. Non-regular Languages

Pumping Lemma:

- For any regular language L, there is a constant n that satisfies the following condition: Any string $w \in L$ with $|w| \ge n$ can be decomposed to three substrings w = xyz.
 - 1. $y \neq \varepsilon$
 - 2. $|xy| \leq n$
 - 3. For all $k \ge 0$, $xy^k z \in L$

[Proof] Since L is regular, there is a DFA A with L(A)=L. Let n be the number of states of A.

Let $w=a_1a_2...a_m$ be any word in L with $m \ge n$.

Let p_i be the state of A after reading the substring $a_1 a_2 \dots a_i$ (p_0 is the initial state).

4.1. 言語が正則でないことの証明

反復補題(Pumping Lemma):

• 正則言語 L に対し、以下の条件を満たす定数 n が存在する: $|w| \ge n$ を満たす任意の文字列 $w \in L$ は、次の条件を満たす3個の部分列 w = xyz に分解できる。

$$(1) y \neq \varepsilon (2) |xy| \leq n (3) xy^k z \in L (k \geq 0)$$

[証明] A は文字列 $a_1a_2...a_i$ を処理したあと、状態 p_i になるとする。(初期状態を q_0 とすると $p_0=q_0$) 鳩ノ巣原理により、 $p_0,p_1,...,p_m$ の中には同じ状

態 p_i, p_j が存在する。(i < j としてよい)

•
$$x = a_1, a_2, ..., a_i$$

•
$$y = a_{i+1}, \dots, a_j$$

•
$$z = a_{j+1}, \dots, a_m$$

 $x=\varepsilon$ や $z=\varepsilon$ は ありえるが $y\neq\varepsilon$

と定義するとA は xy^kz ($k \ge 0$)を受理する。

4.1. Non-regular Languages

Pumping Lemma:

- For any regular language L, there is a constant n that satisfies the following condition: Any string $w \in L$ with $|w| \ge n$ can be decomposed to three substrings w = xyz.
 - 1. $y \neq \varepsilon$
 - 2. $|xy| \leq n$
 - 3. For all $k \ge 0$, $xy^k z \in L$

[Proof] A is in state p_i after reading the substring $a_1 a_2 \dots a_i$

By pigeon hole principle, there is the same states p_i , p_j with i < j among p_0, p_1, \dots, p_m . Letting

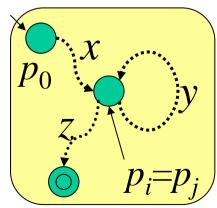
•
$$x = a_1, a_2, ..., a_i$$

•
$$y = a_{i+1}, \dots, a_j$$

•
$$z = a_{j+1}, \dots, a_m$$

It can be $x = \varepsilon / z = \varepsilon$, but we have $y \neq \varepsilon$

A accepts xy^kz for each $k \ge 0$.



例: 言語 $L=\{0^n1^n \mid n \geq 1\}$ は正則ではない。

反復補題による証明: L が正則であると仮定して、矛盾を導く。

L は正則なので、反復補題より、以下の条件を満たす定数 m が存在する: $|w| \ge m$ を満たす任意の文字列 $w \in L$ は、次の条件を満たす3個の部分列 w = xyz に分解できる。

 $(1) y \neq \varepsilon (2) |xy| \leq m (3) xy^k z \in L (k \geq 0)$

ここで文字列 $w=0^m1^m$ を考える。wを上記の条件を満たすような部分列xyzに分解する。 $|xy| \le m, y \ne \varepsilon$ なので、 $y=0^i$ ($i \ge 1$) となる。

 $xyz = 0^m 1^m$ なので $xyyz = 0^{m+i} 1^m$ である。反復補題から、 $xyyz \in L$ となるが、実際には $xyyz \notin L$ であるので矛盾。したがって L は正則ではない。

Ex: Language $L=\{0^n1^n \mid n \ge 1\}$ is not regular.

Proof by Pumping lemma: To derive contradictions, we suppose that L is regular. Since L is regular, there exists a constant m s.t.

any string w with $|w| \ge m$ in L can be decomposed three substrings x, y, z with the following conditions:

$$(1) y \neq \varepsilon (2) |xy| \leq m (3) xy^k z \in L (k \geq 0)$$

We let $w=0^m1^m$. Then we have three substrings x, y, and z with the above conditions. Since $|xy| \le m$, $y \ne \varepsilon$, we have $y=0^i$ ($i \ge 1$).

Since $xyz = 0^m 1^m$, $xyyz = 0^{m+i} 1^m$. By the pumping lemma, we have $xyyz \in L$. However, $xyyz \notin L$, which is a contradiction.

Hence L is not regular.

4. 正則言語の性質(1): (テキスト4.1,4.2)

- 4.2. 正則言語に関する閉包性
 - 閉包性…集合/言語が演算に関して閉じていること。
 - 正則言語にある操作/演算を加えて、新しい言語を作ったとき、それがまた正則になっているなら、
 - 正則言語はその操作/演算に関して閉じているという。この性質を閉包性という。

4. Property of Regular Languages (1): (Text 4.1,4.2)

- 4.2. Closure property of regular languages
 - A set is close under an operation:
 - If all regular languages are still regular if they are changed by an operation, we say
 - regular languages are closed under the operation.
 That is called closure property.

- 正則言語は以下の閉包性を持つ。
 - ① 正則言語 L_1, L_2 について $L_1 \cup L_2$ は正則
 - ② L_1, L_2 について $L_1 \cap L_2$ は正則
 - ③ 正則言語の補集合は正則
 - ④ L_1, L_2 について $L_1 L_2$ は正則
 - ⑤ 正則言語の反転は正則
 - ⑥ L₁ について L₁* は正則
 - ⑦ L_1, L_2 の連接は正則
 - ⑧ 正則言語の準同型の像は正則
 - ⑨ 正則言語の逆準同型の像は正則

正則言語に おける4つの 証明手法

この授業では
範囲外

4.2. Closure property of regular languages

- Regular languages are closed under the following operations:
 - ① For any R.L. L_1 and L_2 , $L_1 \cup L_2$ is regular
 - ② For any R.L. L_1 and L_2 , $L_1 \cap L_2$ is regular
 - 3 The complement of a regular language is regular
 - 4 For any R.L. L_1 and L_2 , $L_1 L_2$ is regular
 - 5 The reverse of a regular language is regular
 - **6** For any R.L. L_1 , L_1 * is regular
 - \bigcirc The concatenation of R.L.s L_1 and L_2 is regular
 - 8 A homomorphism of a regular language is regular
 - The inverse of homomorphism of a regular language is regularOut of range

4 methods

for proof

① 正則言語 L_1, L_2 について $L_1 \cup L_2$ は正則

[証明手法1] 正則表現を使ったもの

 L_1, L_2 は正則言語なので、 $L(E_1)=L_1, L(E_2)=L_2$ を満たす正則表現が存在する。 $((E_1)+(E_2))$ は正則表現で、かつ明らかに $L(((E_1)+(E_2)))=L_1$ \cup L_2 が成立する。

① For any R.L. L_1 and L_2 , $L_1 \cup L_2$ is regular.

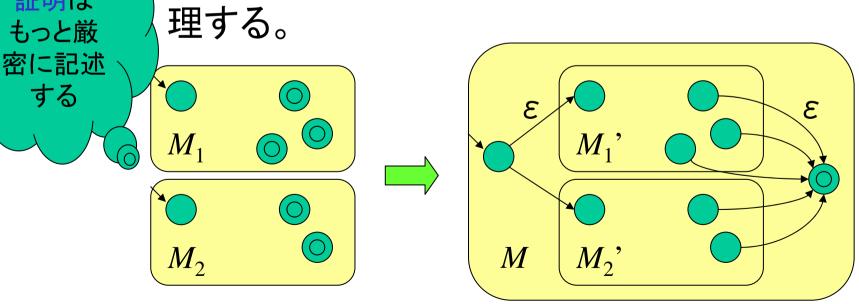
[Proof method 1] Using regular expressions

Since L_1 and L_2 are regular, there are two regular expressions E_1 and E_2 with $L(E_1)=L_1$, $L(E_2)=L_2$. Then $((E_1)+(E_2))$ is also regular expression, and clearly, $L(((E_1)+(E_2)))=L_1 \cup L_2$.

① 正則言語 L_1, L_2 について $L_1 \cup L_2$ は正則

[証明手法2]オートマトンを使ったもの

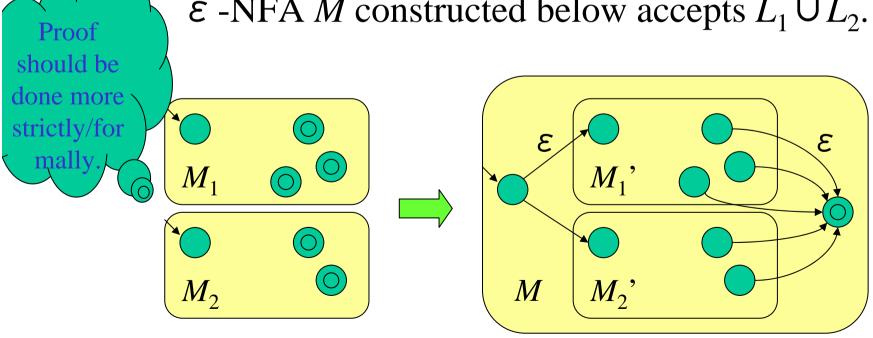
 L_1, L_2 は正則言語なので、 $L(M_1)=L_1, L(M_2)=L_2$ を満たすDFA M_1, M_2 が存在する。以下に示す方法で構成した ε -NFA Mは明らかに $L_1 \cup L_2$ を受理する。



① For any R.L. L_1 and L_2 , $L_1 \cup L_2$ is regular.

[Proof method 2] Using automata

Since L_1 and L_2 are regular languages, there are two DFAs M_1 and M_2 with $L(M_1)=L_1$, $L(M_2)=L_2$. The ε -NFA M constructed below accepts $L_1 \cup L_2$.



③ 正則言語の補集合は正則

[補集合とは] 言語 L の補集合 L={ w | w ∉ L}

[証明](手法2)

言語 L が正則なら、L を受理するDFA $A=(Q, \Sigma, \delta, q, F)$ が存在する。このとき、A の受理状態とそれ以外を入れ替えた DFA $\overline{A}=(Q, \Sigma, \delta, q, Q-F)$ は \overline{L} を受理する。

3 The complement of a regular language is regular

[Definition] The complement of a language *L*:

$$\overline{L} = \{ w \mid w \notin L \}$$

[Proof] (Method 2)

Since L is regular, there is a DFA $A=(Q, \Sigma, \delta, q, F)$ with L(A)=L. Then, the DFA $A'=(Q, \Sigma, \delta, q, Q-F)$, which is obtained by swapping F and Q-F, accepts the complement of L.

② L_1, L_2 について $L_1 \cap L_2$ は正則

[証明手法3]

ド・モルガンの定理より、

$$L_1 \cap L_2 = \overline{\overline{L_1 \cap L_2}} = \overline{\overline{L_1 \cup \overline{L_2}}}$$

③より、

 $A \cup B = A \cap B$

 $A \cap B = A \cup B$

したがって L_1, L_2 が正則なら①,③より、 $L_1 \cap L_2$ も正則

② For any R.L. L_1 and L_2 , $L_1 \cap L_2$ is regular

[Proof method 3]
By "De Morgan's Law", $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A \cup B}$ $L_1 \cap L_2 = \overline{L_1 \cap L_2} = \overline{L_1 \cup L_2}$

Hence, if L_1 and L_2 are regular, by ①,③, so is $L_1 \cap L_2$.

④ L_1, L_2 について $L_1 - L_2$ は正則 $(L_1 - L_2 = L_1 \cap \overline{L_2}$ なので手法3でもOK)

[証明手法4(直積構成法)]

Mの状態= (M₁の状態,M₂の状態)

- ① L_1, L_2 を受理する DFA を M_1, M_2 とする。
- ② L_1-L_2 を受理するDFA Mは、入力を読みながら、
 - ▶ その入力に対する *M*₁ の状態遷移
 - ightharpoonup その入力に対する M_2 の状態遷移 を同時に模倣する。
- ③ 入力を読み終えた時点で M_1 が受理かつ M_2 が 受理でないならMは受理。

4 For any R.L. L_1 and L_2 , $L_1 - L_2$ is regular (Since $L_1 - L_2 = L_1 \cap \overline{L_2}$, method 3 also works.)

[Proof method 4 (product construction)]

- ① Let M_1 and M_2 be the DFAs that accept L_1 , L_2 .
- ② DFA M, which accepts $L_1 L_2$, reads the input and simulates simultaneously

 State of $M = \frac{1}{2}$
 - \triangleright the transfer of M_1 for the input
 - \triangleright the transfer of M_2 for the input

3 When input is end, if M_1 accepts and M_2 does not accept, M accepts.

(state of M_1 , state of M_2)

⑤ 正則言語の反転は正則

[定義]

文字列 $w=x_1x_2...x_k$ の反転(Reverse) $w^R=x_k...x_2x_1$ 言語 L の反転 $L^R=\{w \mid w^R \in L\}$

[証明]

Lを受理するDFA A に対し、

- ① Aの受理状態を一つにし、
- ② Aの遷移をすべて逆転し、
- ③受理状態と初期状態を入れ替えた ε -NFA A^R は L^R を受理する。

5 The reverse of a regular language is regular

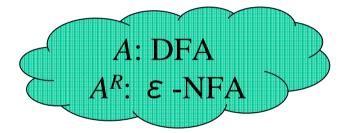
[Definition]

The reverse of a string $w=x_1x_2...x_k: w^R=x_k...x_2x_1$.

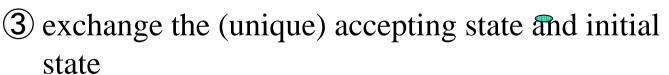
The reverse of a language $L: L^R = \{ w \mid w^R \in L \}$

[Proof]

For the DFA A accepting L,



- \mathfrak{I} make the accepting state of A unique,
- \bigcirc reverse all transfers of A,



 ε -NFA A^R accepts L^R .

- ⑥ *L*₁ について *L*₁* は正則
- ⑦ L_1, L_2 の連接は正則

 L_1, L_2 を表現する正則表現 E_1, E_2 に対し、

- **6** $(E_1)^*$
- $(\overline{C}_1)(E_2)$

でOK.

For regular languages L_1 and L_2 ,

- **6** L_1^* is regular.
- \bigcirc The concatenation of L_1 and L_2 is regular.

For the regular expressions E_1 and E_2 for L_1 and L_2 ,

- **6** $(E_1)^*$
- $\bigcirc (E_1)(E_2)$

guarantee the claims.