# I222 計算の理論 "Theory of Computation" Report (5)

Teacher: Ryuhei UEHARA TA: Sachio TERAMOTO

Japan Advanced Institute of Science and Technology

November 22nd, 2006 Office Hour

#### 1222 計算の理論 "Theory of Computation"

Report (5)

問題 1

問題 1 の解答例

可超 2

問題 2 の解答例

)庭3

問題 3 の解答例

-topiem 1

TODICIII Z

Join Coll 2

TODICIII 3

olution 3

Report (5)

問題 1

問題 1 の解答例

問題 2 の

問題 3 の解答例

roblem 1

Solution 1

Problem 2

Solution 2

Problem 3

olution 3

## 問題1

クラス $\mathcal{P}$ と, その補クラス  $\operatorname{co-}\mathcal{P}$  の定義を示し,  $\mathcal{P}=\operatorname{co-}\mathcal{P}$  を証明せよ.

## 解答例

クラス  $\mathcal{P}$  の定義: 以下の (1),(2),(3) などが考えられる.

 $TIME(p(\ell))$ n: 多項式

- 2 多項式時間で Yes(=1)/No(=0) を答える標準形プログラムが存在する集合の クラス
- ② 次の集合 L から構成されるクラス:
  - ▶ 多項式時間で計算可能な述語 R(x) が存在して、
  - ▶ 各  $x \in \Sigma^*$  に対して  $x \in L$  である必要十分条件が R(x) が成り立つこと.

クラス co- $\mathcal{P}$  の定義: 以下の定義が最も簡単です。

① 集合 L が  $\operatorname{co-}\mathcal{P}$  に入る必要十分条件は,  $\overline{L}$  (L の補集合) が  $\mathcal{P}$  に所属すること.



 $\mathcal{P}\subseteq\mathsf{co} ext{-}\mathcal{P}.$ 

- ① L を  $\mathcal{P}$  の任意の元とする.
  - → すると定義 (2) より, 多項式時間で 1 or 0 を答える標準形プログラムが存在する.
- ② この標準形プログラムの 1/0 の出力をすべて逆にすると, L の補集合を多項式時間で認識する標準形プログラムが得られる.
- **3** ∴ 定義 (0) より, *L* は co-*P* に入る.

 $\mathcal{P}\supseteq\mathsf{co} ext{-}\mathcal{P}$ 

- ④ 任意の  $L \in co-P$  についても同様の議論より  $L \in P$  がいえる.
- **⑤** ∴ co- $\mathcal{P} \subseteq \mathcal{P}$  である.

以上から,  $\mathcal{P} = \text{co-}\mathcal{P}$  を得る.



\_\_\_\_

olution 1

Problem 2

Solution 2

Problem 3

Solution 3

## 問題2

ナップサック問題 (KNAP) がクラス  $\mathcal{NP}$  に属すことを示せ.

 $\mathcal{NP}$  complete!



Stephen A. Cook



Richard M. Karp

Reducibility!

テキストの定義 5.2 より、KNAP に対して次の条件を満たす多項式 q と多項式時間 計算可能述語 R が存在することを示せば良い.

$$x \in \Sigma^* \mathcal{C}, x \in L \iff \exists w \in \Sigma^* : |w| \le q(|x|)[R(x, w)].$$

ト KNAP の入力を  $\langle a_1,\dots,a_n,b \rangle$  とすると, 証拠 w は次の条件を満たす添字の集合  $S=\langle i_1,i_2,\dots,i_m \rangle$  とすれば良い. つまり,

$$R(x,w)$$
 =  $[x=\langle a_1,\dots,a_n,b\rangle$  の形をしている]  $\wedge$   $[w=\langle i_1,\dots,i_m\rangle$  の形をしている]  $\wedge$   $\left[\sum_{j=1}^m a_{i_j}=b \ exttt{ である}
ight]$ 

- lacktriangle w の長さは高々 $\mathcal{O}(|x|)$  でおさえられる (e.g.  $q(\ell)=3(\ell^2+\ell+1)),$
- ▶ また、明らかに述語 R の判定は多項式時間で計算可能.
- ▶ さらに、KNAP が解を持つ必要十分条件が R(x,w) が成立することであることもほぼ自明である.従って、KNAP はクラス  $\mathcal{NP}$  に属する.

Report (5)

問題 1

問題 1 の解答例

P) NEC 2

問題 2 の解答例

問題 3 の解答例

oblem 1

olution 1

Problem 2

Problem

Salution S

olution 3

Report (5)

問題 1

回避 1 切解音的

問題 3

問題 3 の解答例

roblem 1

iolution 1

Problem 2

Solution 2

Problem 3

olution 3

## 問題3

 $co-\mathcal{NP}\subseteq\mathcal{NP}$  を仮定すると,  $\mathcal{NP}=co-\mathcal{NP}$  となることを証明せよ.

## 問題3の解答例

#### 1222 計算の理論 "Theory of Computation"

Report (5)

問題 1

问題 1 の胜合り

問題 2

問題 3 の解答例

Problem

Solution 1

Problem 2

D 11 2

r tobletti 3

Solution 3

8.8

### 解答例

 $\mathcal{NP} \subseteq \text{co-}\mathcal{NP}$  を示せば良い,

- ①  $L \in \mathcal{NP}$  の任意の元とする. このとき,
- ② 定義より,  $\overline{L} \in \text{co-}\mathcal{NP}$ .
- 3 問題の仮定より、  $\overline{L} \in \mathcal{NP}$ .
- 4 定義より.  $\overline{L} \in \text{co-}\mathcal{NP} \longrightarrow L \in \text{co-}\mathcal{NP}$ .
- よって,  $\mathcal{NP} \subset \text{co-}\mathcal{NP}$  を得る.

Report (5)

問題 I

同超 1 の附合例

問題 2 /

問題 3

問題 3 の解答例

### Problem 1

Solution

Problem 2

Solution 2

Problem 3

olution 3

## Problem 1

Define the classes  $\mathcal P$  and its complement co- $\mathcal P$ , and prove that  $\mathcal P=\text{co-}\mathcal P$ .

### Solution

As the definition of class  $\mathcal{P}$ , We can formulate with the following (1), (2), and (3).

1 A (standard) definition is written in textbook p. 128.

$$\mathcal{P} \stackrel{\mathrm{def}}{=} \bigcup_{p: \text{ polynomial}} \mathrm{TIME}(p(\ell))$$

- 2 The class  $\mathcal{P}$  consists of each set which is recognized by a standard program within a polynomial time.
- 3 The class  $\mathcal{P}$  consists of the following set L:
  - ▶ There exists a polynomial time computable predicate R(x), s.t.,
  - for each  $x \in \Sigma^*$ ,  $x \in L$  if and only if R(x) is true.

The definition of the class co-P: This is one of the most simplest answer.

**1** A set L belongs to co- $\mathcal{P}$  if and only if  $\overline{L}$  (complement of L) belongs to  $\mathcal{P}$ .



回题 2 公胜百万

 $\mathcal{P}\subseteq \mathsf{co}\text{-}\mathcal{P}.$ 

1 Let L be an element in  $\mathcal{P}$ .

→ Then, by the definition of (2), there exists a standard program
which halt with 1 or 0 in polynomial time.

- 2 Reversing 0/1 of output in the standard program, we can obtain a polynomial time standard program which recognizes the complement of L.
- **3** :. By the definition (0), L is in co- $\mathcal{P}$ .

 $\mathcal{P}\supseteq\mathsf{co} ext{-}\mathcal{P}$ 

**4** We can apply the similar arguments for any  $L \in \text{co-}\mathcal{P}$ , then we have  $L \in \mathcal{P}$ .

**5**  $\therefore$  co- $\mathcal{P} \subseteq \mathcal{P}$ .

Finally, we have  $\mathcal{P} = \text{co-}\mathcal{P}$ .



Show that the Knapsack Problem (KNAP) is in the class  $\mathcal{NP}$ .

 $\mathcal{NP}$  complete!



Stephen A. Cook



Richard M. Karp

Reducibility!

Solution 2

Letting  $\langle a_1, \ldots, a_n, b \rangle$  denote an instance for KNAP, the witness is the sequence  $S = \langle i_1, i_2, \dots, i_m \rangle$  of indices.

$$R(x, w) = [x = \langle a_1, \dots, a_n, b \rangle \text{ is a } (n+1)\text{-tuple}] \land$$

$$[w = \langle i_1, \dots, i_m \rangle \text{ is a tuple }] \land$$

$$\left[\sum_{j=1}^m a_{i_j} = b\right]$$

- The length of w is bounded by at most  $\mathcal{O}(|x|)$ ; e.g.  $q(\ell) = 3(\ell^2 + \ell + 1)$ .
- It is also obvious that R is polynomial time computable.
- **Furthermore**, an instance of KNAP has a yes-solution if and only if R(x, w)is true. Therefore, KNAP is in the class  $\mathcal{NP}$ .

Report (5)

問題 1

問題 1 の解答例

問題 2 の解

問題 3

問題 3 の解答例

Problem

Solution J

Problem 2

01011011 2

Problem 3

olution 3

## Problem 3

Prove that the assumption co- $\mathcal{NP}\subseteq\mathcal{NP}$  implies  $\mathcal{NP}=\text{co-}\mathcal{NP}.$ 

## Solution 3

#### 1222 計算の理論 "Theory of Computation"

Report (5)

問題 1

可超 I の解合で

問題 2 の解

問題 3 の解答

Problem :

Solution

Problem

r Tobletti 3

Solution 3

Soluti

### Solution

Showing  $\mathcal{NP}\subseteq \text{co-}\mathcal{NP}$  completes the proof.

- 1 Let L be an arbitrary element of  $\mathcal{NP}$ . Then,
- 2 from the definition,  $\overline{L} \in \text{co-}\mathcal{NP}$ .
- 3 By the assumption in the problem,  $\overline{L} \in \mathcal{NP}$ .
- 4 By the definition,  $\overline{\overline{L}} \in \text{co-}\mathcal{NP} \iff L \in \text{co-}\mathcal{NP}.$
- Therefore, we have  $\mathcal{NP} \subseteq \text{co-}\mathcal{NP}$ .

