# I618 Advanced Computer Science II (Part II)



Ryuhei Uehara uehara@jaist.ac.jp

http://www.jaist.ac.jp/~uehara

#### Introduction

- Representative approaches to (*NP*-)hard problems are...
  - approximation algorithms
  - exact algorithms with exponential time
  - restrictions on inputs
    - some special graph classes

#### Introduction

A graph *G*=(*V*,*E*) is an *intersection graph* over set *V* of objects iff {*v*,*u*} is in *E* if and only if corresponding objects are overlapping.

- We will mainly discuss about
  - Chordal graphs and interval graphs
    - typical intersection graphs
    - many applications
      - □ matrix manipulation, bioinformatics, scheduling, ...
    - many useful graph theoretic properties
      - typical subclasses of <u>Perfect Graphs</u>

1960 [Berge]: Strong Perfect Graph Conjecture

2002 [Chudnovsky, Cojnuejols, Liu, Seymour, and Vuskovic]: Strong Perfect Graph Theorem

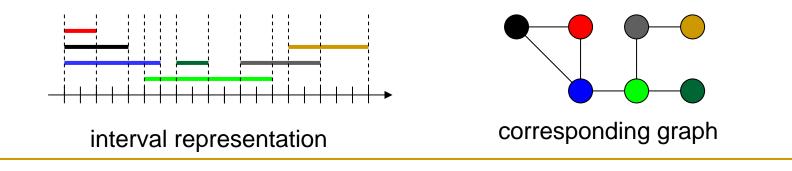
#### Introduction

- We will mainly discuss about
  - Chordal graphs and interval graphs
    - typical intersection graphs
    - many applications
      - □ Matrix manipulation, bioinformatics, scheduling, ...
    - many useful graph theoretic properties
      - typical subclasses of Perfect Graphs
    - Many *NP*-hard problems become *tractable* on those graph classes
    - Several problems are still hard on those graph classes

[Today's Goal] For any given interval graph, its maximum clique can be found in linear time. (C.f., the maximum clique problem is  $\mathcal{NP}$ complete in general.)

- Simplest intersection graphs
  - Since 195?- (Hajos (Graph theorist) & Benzer (Biologist))

[Definition 1] A graph G=(V,E) with  $V=\{v_1,v_2,...,v_n\}$  is an *interval* graph if and only if there is a set  $\mathcal{I}$  of intervals  $\{I_1, I_2,..., I_n\}$  such that  $\{v_i, v_j\} \in E$  if and only if  $I_i$  intersects  $I_j$ . We call  $\mathcal{I}$  an *interval representation* of G.



[Description] open interval... closed interval... mixed interval...

- Interval representations of an interval graph
  - □ is an interval open or closed?
    - open... e.g., (1,5) does not contain the value 5.
    - *closed...* e.g., [2,8] contains the value 8.
    - Let  $C_o$ ,  $C_c$ ,  $C_m$  be the classes of interval graphs that consist of open intervals, closed intervals, and mixed, respectively.

```
[Theorem 1] C_o = C_c = C_m
```

(Proof) We show that  $\bigcirc C_{o} \subseteq C_{c} \oslash C_{c} \subseteq C_{m}$  and  $\bigcirc C_{m} \subseteq C_{o}$ .

[Notation]

For an interval I, we denote the left endpoint by L(I), and the right endpoint by R(I).

(1) Let  $\mathcal{I}_{o}$  be an interval representation of an interval graph G such that  $\mathcal{I}_{o}$  only contains <u>open</u> intervals. Then, we construct  $\mathcal{I}_{c}$  that is an interval representation of G and  $\mathcal{I}_{c}$  only contains <u>closed</u> intervals as follows.

[Description] open interval... •••••• closed interval... mixed interval... •••••••

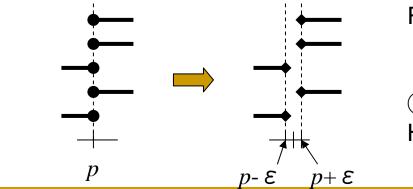
Interval representations of an interval graph

[Theorem 1]  $C_o = C_c = C_m$ 

(Proof) We show that  $\widehat{1} \mathcal{C}_{o} \subseteq \mathcal{C}_{c} \widehat{2} \mathcal{C}_{c} \subseteq \mathcal{C}_{m}$  and  $\widehat{3} \mathcal{C}_{m} \subseteq \mathcal{C}_{o}$ .

(1) Let  $\mathcal{I}_{o}$  be an interval representation of an interval graph *G* such that  $\mathcal{I}_{o}$  only contains <u>open</u> intervals. Then, we construct  $\mathcal{I}_{c}$  that is an interval representation of *G* and  $\mathcal{I}_{c}$  only contains <u>closed</u> intervals as follows.

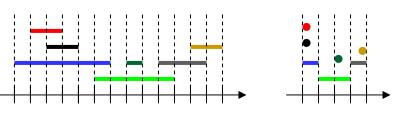
For each point *p* that is an endpoint of at least one interval, we modify the intervals as follows for sufficiently small  $\varepsilon$ :



Repeating this process, we can obtain a closed interval representation  $\mathcal{I}_{c}$  of *G*.

(2) is trivial, and (3) is similar to (1). Hence we have the theorem.  $\Box$ 

- Interval representations of an interval graph
  - Hereafter,
    - By Theorem 1, we assume that all intervals are <u>closed</u>.
    - All endpoints are integers, and leftmost endpoint is <u>0</u>.
  - We have two natural interval models;
    - 1. Each endpoint takes distinct value in [0..2n-1] with *n* vertices (conversely, each integer in [0..2n-1] corresponds to exactly one endpoint).
    - 2. We admit L(I)=R(I), that is, the length of an interval can be 0, and intervals have *no redundancy*.



We call the second type "compact representation".

[Notation] For a point p, let N[p] denote the set of intervals that contain p.

Compact interval representations of an interval graph

[Definition 2] An interval representation  $\mathcal{I}$  is called *compact* if it satisfies the following conditions;

- 1. (all endpoints are integers and the leftmost endpoint is 0,)
- 2. each integer *i* corresponds to at least one endpoint with  $0 \le i \le k$  for some positive integer *k*, and
- 3. for each integer i with  $0 \leq i < k$ , we have  $N[i] \not\subset N[i+1]$  and  $N[i+1] \not\subset N[i]$ .



[Notation] For an interval representation  $\mathcal{I}$ , we denote by  $L(\mathcal{I}) \coloneqq \min_{I \in \mathcal{I}} L(I)$ and by  $R(\mathcal{I}) \coloneqq \max_{I \in \mathcal{I}} R(I)$ 

Compact interval representations of an interval graph

[Theorem 2] Let  $\mathcal{I}$  be a compact interval representation of a *connected* interval graph G=(V,E) of *n* vertices with  $n \ge 2$ . Then  $L(\mathcal{I})=0$  and  $R(\mathcal{I})=k$  for some integer *k*. Then,  $k \le n-2$ .

[Lemma 1] Let  $\mathcal{I}$  be a compact interval representation of a *connected* interval graph G=(V,E). Then there exists an interval  $I \in \mathcal{I}$  such that [L(I),R(I)]=[0,0].

(Proof) of Lemma 1. We have two cases;

- 1.  $[L(\mathcal{I}), R(\mathcal{I})] = [0,0]$  (C.f. *G* is a complete graph): Trivial.
- 2.  $R(\mathcal{I})>0$ : If there are no such intervals, we have N[1]=N[2]or  $N[1] \subset N[2]$ . Both cases contradict to the assumption that  $\mathcal{I}$  is a <u>compact</u> interval representation.  $\square$

[Notation] For an interval representation  $\mathcal{I}$ , we denote by  $L(\mathcal{I}) \coloneqq \min_{I \in \mathcal{I}} L(I)$ and by  $R(\mathcal{I}) \coloneqq \max_{I \in \mathcal{I}} R(I)$ 

Compact interval representations of an interval graph

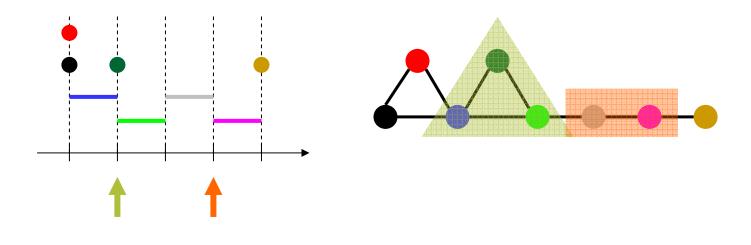
[Theorem 2] Let  $\mathcal{I}$  be a compact interval representation of a *connected* interval graph G=(V,E) of *n* vertices with  $n \ge 2$ . Then  $L(\mathcal{I})=0$  and  $R(\mathcal{I})=k$  for some integer *k*. Then,  $k \le n-2$ .

(Proof) of Theorem 2. We prove by induction for *k*.

- *k*=0: The graph *G* is a complete graph, and easy to see that  $k \leq n-2$ .
- 2. k>0: By Lemma 1, there are x intervals I with R[I]=L[I]=0 with x>0. We then remove them from  $\mathcal{I}$  and obtain  $\mathcal{I}'$  with n-x intervals. Then, by the inductive hypothesis, we have  $k-1 \leq n-x-2$ . Hence we have  $k \leq n-2$  since x>0.

[Notation] For an interval representation  $\mathcal{I}$ , we denote by  $L(\mathcal{I}) \coloneqq \min_{I \in \mathcal{I}} L(I)$ and by  $R(\mathcal{I}) \coloneqq \max_{I \in \mathcal{I}} R(I)$ 

- Compact interval representations of an interval graph
- [Theorem 3] Let  $\mathcal{I}$  be a compact interval representation of a connected interval graph G=(V,E) of n vertices with  $n \ge 2$ . Then N[i] induces a maximal clique of G for each i in  $[L(\mathcal{I}), R(\mathcal{I})]$ . Moreover, each maximal clique M of G satisfies M=N[i] for some i. That is, they make one-to-one mapping.



[Notation] For an interval representation  $\mathcal{I}$ , we denote by  $L(\mathcal{I}) \coloneqq \min_{I \in \mathcal{I}} L(I)$ and by  $R(\mathcal{I}) \coloneqq \max_{I \in \mathcal{I}} R(I)$ 

- Compact interval representations of an interval graph
- (Proof) of latter half which says a maximal clique *M* satisfies M=N[i] for some *i*.
- To derive a <u>contradiction</u>, we assume that there are no such index *i*. Let *i*' be the index such that  $|N(i') \cap M| \ge |N(i'') \cap M|$  for any other *i*''. Then there is an interval  $I_j$  such that  $v_j \in M$  and  $I_j$  $\notin N[i]$ . Without loss of generality, we assume that  $R(I_j) < i$ .
- By assumption of *i*', there is a vertex  $v_k \in M$  such that  $I_k \in N(i')$ and  $I_k \notin N[R(I_j)]$  since  $|N(i') \cap M| \ge |N(R(I_j)) \cap M|$  and  $I_j \in N(R(I_j))$ -N(i'). Then,  $I_k$  and  $I_j$  cannot intersect, which contradicts that Mcontains  $v_k$  and  $v_j$ .

[Notation] For an interval representation  $\mathcal{I}$ , we denote by  $L(\mathcal{I}) \coloneqq \min_{I \in \mathcal{I}} L(I)$ and by  $R(\mathcal{I}) \coloneqq \max_{I \in \mathcal{I}} R(I)$ 

Compact interval representations of an interval graph

(Proof) of former half which says *N*[*i*] induces a maximal clique *M* for each *i*.

- It is easy to see that N[i] induces a clique *C*. Hence we show *C* is maximal. To derive a contradiction, we assume that  $C \subseteq M$  for some maximal clique *M*.
- Then, by the latter half of the proof, there exists j such that N[j] induces M. Without loss of generality, we assume i < j.
- Then, it is not difficult to see that there are two indices i and j' with  $i \leq i' < j' \leq j$  such that  $N[i'] \subset N[j']$ , which contradicts that  $\mathcal{I}$  is compact.

[Notation] For an interval representation  $\mathcal{I}$ , we denote by  $L(\mathcal{I}) \coloneqq \min_{I \in \mathcal{I}} L(I)$ and by  $R(\mathcal{I}) \coloneqq \max_{I \in \mathcal{I}} R(I)$ 

Compact interval representations of an interval graph

[Theorem 4] Any connected interval graph G=(V,E) with |V|>1 has at most |V|-1 maximal cliques.

(Proof) Immediately from Theorems 2 & 3. □

[Theorem 5] For any connected interval graph G=(V,E) given in a compact interval representation form, its maximum clique can be found in O(|V|) time.

(Proof) Roughly, sweep the interval representation and check
N[i] for each integer i. Details will be discussed in the future class with suitable data structure. □