I618 Advanced Computer Science II (Part II)

1/18

- Well known as "<u>chordal graph</u>," "triangulated graph," and "rigid circuit graph."
 - since it has many applications
 - matrix manipulation, graphical modeling, architecture, ...
 - (typical intersection graphs)
 - many useful graph theoretic properties
 - many "hard" problems can be solved efficiently

[Notation] A *chord* of a cycle is an edge that joins two non-consecutive vertices on the cycle.

[Definition 3] A graph G=(V,E) is *chordal* if and only if any cycle of length at least 4 has a *chord*.

- Well known as "<u>chordal graph</u>," "triangulated graph," and "rigid circuit graph."
 - (typical intersection graphs?)

many usef	[Today's Goal] Properties of a chordal graph, especially,
An interval graph is a special chordal graph.	 Perfect Elimination Ordering Intersection graph of subtrees of a tree.

[Notation] A *chord* of a cycle is an edge that joins two non-consecutive vertices on the cycle.

[Definition 3] A graph G=(V,E) is *chordal* if and only if any cycle of length at least 4 has a *chord*.

[Definition 4] For a graph G=(V,E):

For two vertices u, v and a subset $S \subset V$, S is a uv-separator if S is a separator of G and u and v are separated by S.

Set *S* is a *minimal separator* if no proper subset of *S* separates the graph.

 $S=\{b,e\}$ is a minimal *dc*-separator, but, *S* is not a minimal separator of *G* since $\{e\} \subset S$ is also a separator of *G*.

[Theorem 6] (Dirac 1961) A graph G=(V,E) is chordal if and only if every minimal separator is a clique.

(Proof) "if" part: every min. separator is a clique $\rightarrow G$ is chordal Let $C=(v_0,v_1,...,v_k,v_0)$ be any cycle with $k \ge 3$. If $\{v_0,v_2\}$ is in E, we have a chord. Hence assume $\{v_0,v_2\} \notin E$. Then there exist v_0v_2 -separators. Among them, we take a minimal v_0v_2 -separator S. Then S has to contain v_1 and v_i with $3 \le i \le k$. By assumption, $\{v_1,v_i\}$ is in E, which is a chord of C.

[Theorem 6] (Dirac 1961) A graph G=(V,E) is chordal if and only if every minimal separator is a clique.

(Proof) "only if" part: *G* is chordal—every min. separator is a clique. Let *a* and *b* be <u>any</u> non-adjacent vertices, and let *S* be a minimal *ab*-separator. W.I.o.g., assume |S|>1. Let *x* and *y* be <u>any</u> distinct vertices in *S*. It is sufficient to show that $\{x, y\}$ is in *E*.

Let V_a and V_b be the vertex sets of two connected components in G[V-S] that contain *a* and *b*, resp.

[Theorem 6] (Dirac 1961) A graph G=(V,E) is chordal if and only if every minimal separator is a clique.

(Proof) "only if" part: G is chordal \rightarrow every min. separator is a clique.

Let V_a and V_b be the vertex sets of two connected components in G[V-S] that contain a and b, resp.

Let P_{ij} denote any path between *i* and *j*. We take four paths P_{ax} , P_{ay} , P_{bx} , P_{by} . We further take *a*' that is

- 1. common on P_{ax} and P_{ay}
- 2. no other vertices closer to *x*, *y*.

Take *b*' similarly.

[Theorem 6] (Dirac 1961) A graph G=(V,E) is chordal if and only if every minimal separator is a clique.

(Proof) "only if" part: G is chordal \rightarrow every min. separator is a clique.

There exists a cycle *C* of length at least *four* that contains *a*', *x*, *b*', *y* by joining *P_{a'x}*, *P_{b'x}*, *P_{b'y}*, and *P_{a'y}*.
Among them, no pair of vertices in *G*[*V_a*] and *G*[*V_b*] is joined by an edge since *S* is a separator.

Hence, since G is chordal, $\{x, y\} \in E$.

[Definition 5] A vertex v is simplicial if N(v) induces a clique.

[Theorem 7] (Dirac 1961) Every chordal graph *G* has a simplicial vertex. If *G* is not complete, it has at least two non-adjacent simplicial vertices.

- (Proof) When *G* is complete, it is clear. Hence we assume that *G* is not complete. We proceed by induction on the number *n* of vertices. Since the cases n < 3 is easy, suppose $n \ge 3$.
 - Since *G* is not complete, there are two non-adjacent vertices *a* and *b*.
 - Then, by Theorem 6, there exists an *ab*-separator *S* which induces a clique.

[Theorem 7] (Dirac 1961) Every chordal graph *G* has a simplicial vertex. If *G* is not complete, it has at least two non-adjacent simplicial vertices.

(Proof)

- Since *G* is not complete, there are two non-adjacent vertices *a* and *b*.
- Then, by Theorem 6, there exists an *ab*-separator *S* which induces a clique.
- Let V_a and V_b be vertex sets such that $G[V_a]$ and $G[V_b]$ contain a and b in G[V-S], respectively.
- Then, $G[V_a \cup S]$ and $G[V_b \cup S]$ are chordal graphs with fewer vertices than G (since $V_a \neq \phi$ and $V_b \neq \phi$).

[Theorem 7] (Dirac 1961) Every chordal graph *G* has a simplicial vertex. If *G* is not complete, it has at least two non-adjacent simplicial vertices.

(Proof)

- Then, $G[V_a \cup S]$ and $G[V_b \cup S]$ are chordal graphs with fewer vertices than G (since $V_a \neq \phi$ and $V_b \neq \phi$).
- By inductive hypothesis, $G[V_a \cup S]$ ($G[V_b \cup S]$) have two simplicial vertices a_1 , a_2 (b_1 , b_2) as follows;
- 1. if it is complete, we take at least one from V_a (V_b),
- 2. if it is not complete, we take two non-adj. vertices.
- Thus we can take two non-adjacent simplicial vertices a_i and b_j for some *i* and *j*.

[Definition 6] Let G=(V,E) with |V|=n. Then a vertex ordering

 v_1, v_2, \dots, v_n is called a *perfect elimination ordering (PEO*) if v_i is simplicial in $G_i := G[\{v_i, v_{i+1}, \dots, v_n\}]$.

[Theorem 8] (Fulkerson and Gross 1965) A graph G is chordal if and only if G has a PEO.

(Proof) "only if" part: G is chordal \rightarrow G has a PEO.

By Theorem 6, *G* has at least one simplicial vertex if *n*>0.
Hence let v₁ be the simplicial vertex, and remove it from *G*.
Since "chordality" is *hereditary* for vertex deletion, the resultant graph is still chordal, and we can repeat this process until *V* becomes empty.

[Definition 6] Let G=(V,E) with |V|=n. Then a vertex ordering

 $v_1, v_2, ..., v_n$ is called a *perfect elimination ordering (PEO*) if v_i is simplicial in $G_i := G[\{v_i, v_{i+1}, ..., v_n\}].$

[Theorem 8] (Fulkerson and Gross 1965) A graph *G* is chordal if and only if *G* has a PEO.

(Proof) "if" part: G has a $PEO \rightarrow G$ is chordal.

- To derive a contradiction, we assume that *G* has a PEO and *G* is *not* chordal. We then have a <u>chordless cycle</u> *C* of length at least 4. Let $C=(v_1,v_2,...,v_k,v_1)$.
- Without loss of generality, we suppose v_i is *j*-th element in the PEO, and it is the smallest index in *C*.
- Then, v_i is not simplicial in G_j since $\{v_{i-1}, v_{i+1}\}$ is not in E, which contradicts the definition of PEO.

[Definition 7] Let *S* be any family of sets $s_1, s_2, ..., s_n$. We say *S* has <u>Helly property</u> if any subfamily $S' \subseteq S$ satisfies the following condition:

for any $s_i, s_j \in S'$, $s_i \cap s_j \neq \phi$ implies $\bigcap_{i=1} s_i \neq \phi$.

[Fact 1] In the following cases, we have Helly property;

- 1. S is a set of intervals
- 2. *S* is a set of subtrees of a tree

[Note 1]

1. We can find a similar idea in the proof of Theorem 3.

[Theorem 9] A graph G is chordal if and only if G is an intersection graph of subtrees of a tree.

[Corollary 1] Any interval graph is a chordal graph.

(Proof of Theorem 9)

"if" part; any intersection graph *G* of subtrees $T_1, T_2, ..., T_n$ of T is chordal.

To derive a contradiction, we assume that *G* is *not* chordal. Then we have a <u>chordless cycle</u> *C* of length at least 4. Without loss of generality, let $C=(T_1,T_2,...,T_k,T_1)$.

[Theorem 9] A graph G is chordal if and only if G is an intersection graph of subtrees of a tree.

(Proof of Theorem 9) "if" part; any intersection graph G of subtrees $T_1, T_2, ..., T_n$ of \mathcal{T} is chordal.

To derive a contradiction, we assume that *G* is *not* chordal. Then we have a <u>chordless cycle</u> *C* of length at least 4. Without loss of generality, let $C=(T_1,T_2,...,T_k,T_1)$.

To make $T_1 \cap T_2 \neq \phi$ and $T_2 \cap T_3 \neq \phi$ and $T_1 \cap T_3 = \phi$, and so on, we have to arrange... Then we cannot make $T_1 \cap T_1 \neq \phi$

Then we cannot make $T_k \cap T_1 \neq \phi$ without intersecting one of them and $T_2, T_3, \ldots, T_{k-1}$ which contradicts that *C* is chordless.

[Theorem 9] A graph G is chordal if and only if G is an intersection graph of subtrees of a tree.

(Proof of Theorem 9) "only if" part; chordal graph *G* can be an intersection graph of subtrees $T_1, T_2, ..., T_n$ of \mathcal{T} .

For any chordal graph *G*, we construct a tree representation. By Theorem 8, *G* has a PEO v_1, v_2, \dots, v_n .

For $i=n,n-1,\ldots,2,1$, we construct $T_n, T_{n-1},\ldots,T_2, T_1$ (with T), where T_i corresponds to v_i , as follows.

1. When i=n, we initialize T_n by single vertex of T.

[Theorem 9] A graph *G* is chordal if and only if *G* is an intersection graph of subtrees of a tree.

(Proof of Theorem 9) "only if" part; chordal graph *G* can be an intersection graph of subtrees $T_1, T_2, ..., T_n$ of \mathcal{T} .

For $i=n,n-1,\ldots,2,1$, we construct $T_n, T_{n-1},\ldots,T_2, T_1$ (with T), where T_i corresponds to v_i , as follows.

- 2. When i < n, since v_i is *simplicial* in $G[v_i, v_{i+1}, ..., v_n]$, all subtrees corresponding to vertices in $N(v_i)$ have a common vertex u in T by Fact 1.
- 3. Add a new neighbor *w* of *u* and set $T_i := \{w\}$, and extend subtrees corresponding to vertices in $N(v_i)$.
- 4. Repeat steps 2-3 and obtain T_i s and T_i .